
AUTHOR COPY ONLY

© 2021 Society for Reproduction and Fertility https://doi.org/10.1530/REP -20-0603
ISSN 1470–1626 (paper) 1741–7899 (online) Online version via https://rep.bioscientifica.com

REPRODUCTION

-20-0603

161 4

RESEARCH

Inhibition of MTOR signaling impairs rat embryo 
organogenesis by affecting folate availability

Romina Higa 1,2, Fredrick J Rosario4, Theresa L Powell3,4, Thomas Jansson4 and 
Alicia Jawerbaum1,2

1Laboratory of Reproduction and Metabolism, Universidad de Buenos Aires, Facultad de Medicina, Ciudad de 
Buenos Aires, Buenos Aires, Argentina, 2Laboratory of Reproduction and Metabolism, CONICET-Universidad de 
Buenos Aires, CEFYBO, Ciudad de Buenos Aires , Buenos Aires, Argentina, 3Section of Neonatology, Department of 
Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA and 4Division of Reproductive 
Sciences, Department of OB/GYN, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA

Correspondence should be addressed to R Higa; Email: rominahiga@gmail.com

Abstract

Mechanistic target of rapamycin (MTOR) is essential for embryo development by acting as a nutrient sensor to regulate cell growth, 
proliferation and metabolism. Folate is required for normal embryonic development and it was recently reported that MTOR 
functions as a folate sensor. In this work, we tested the hypothesis that MTOR functions as a folate sensor in the embryo and its 
inhibition result in embryonic developmental delay affecting neural tube closure and that these effects can be rescued by folate 
supplementation. Administration of rapamycin (0.5 mg/kg) to rats during early organogenesis inhibited embryonic ribosomal protein 
S6, a downstream target of MTOR Complex1, markedly reduced embryonic folate incorporation (−84%, P < 0.01) and induced 
embryo developmental impairments, as shown by an increased resorption rate, reduced embryo somite number and delayed neural 
tube closure. These alterations were prevented by folic acid administered to the dams. Differently, although an increased rate of 
embryonic rotation defects was observed in the rapamycin-treated dams, this alteration was not prevented by maternal folic acid 
supplementation. In conclusion, MTOR inhibition during organogenesis in the rat resulted in decreased folate levels in the embryo, 
increased embryo resorption rate and impaired embryo development. These data suggest that MTOR signaling influences embryo 
folate availability, possibly by regulating the transfer of folate across the maternal–embryonic interface. 
Reproduction (2021) 161 365–373

Introduction

Birth defects are a major cause of infant mortality. 
Periconceptional folate deficiency is a risk factor for 
fetal structural malformations such as neural tube 
defects (NTD) (Smithells et al. 1976, Czeizel & Dudas 
1992), however, the molecular mechanisms linking 
folate availability to birth defects remain to be fully 
established. Furthermore, low maternal folate intake 
and red cell folate levels are linked to restricted fetal 
growth (Tamura & Picciano 2006, Fekete et al. 2012, 
van Uitert & Steegers-Theunissen 2013). We recently 
reported that mechanistic target of rapamycin (MTOR) 
signaling functions as a folate sensor in mammalian 
cells including placental trophoblast (Rosario et  al. 
2016, 2017b), providing a novel pathway by which 
folate modulates cell growth and function. However, 
if inhibition of MTOR signaling is involved in linking 
folate deficiencies to NTDs is unknown. 

MTOR is a conserved serine/threonine protein kinase 
that functions as a nutrient sensor and regulates cell 

growth, proliferation and metabolism in accordance 
with nutrients availability. MTOR forms the catalytic 
subunit of two different protein complexes known 
as mTOR complex 1 (mTORC1) which is associated 
with the protein raptor (regulatory associated protein 
of MTOR) and mTOR complex 2 (mTORC2) which 
is associated with the protein rictor (rapamycin-
insensitive companion of mTOR) (Laplante & Sabatini 
2009). mTORC1 plays a central role in control cell 
growth and proliferation by regulating the balance 
between cellular anabolism and catabolism in response 
to environmental conditions (Hay & Sonenberg 2004). 
The eukaryotic translation initiation factor 4E binding 
protein 1 (EIF4EBP1) and the 70-kDa ribosomal protein 
S6 kinase polypeptide 1 (RPS6KB1) that phosphorylates 
the ribosomal protein S6 RPS6) are mTORC1 
downstream targets (Saxton & Sabatini 2017) that 
regulate protein translation. mTORC2 plays key roles in 
cell survival, metabolism, proliferation and cytoskeleton 
organization and its main downstream targets are 
protein kinase B (AKT), protein kinase C (PKC), and 
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serum- and glucocorticoid-regulated protein kinase 1 
(SGK1) (Alessi et  al. 2009). Rapamycin, which forms 
a ternary complex with the FK506-binding protein 1a 
(FKBP1A) and the FKBP12-Rapamycin-Binding domain 
of MTOR, is an allosteric inhibitor of mTORC1 (Yang 
et  al. 2013), although it does not bind to mTORC2 
(Jacinto et al. 2004).

MTOR is essential for embryonic development as a 
homozygous inactivation of the kinase activity of MTOR 
mutation results in embryonic lethality (Murakami et al. 
2004). During the first stages of embryonic cleavage, 
MTOR is critical by balancing energy metabolism 
and nutrient availability and is involved in the 
highly specialized programs of tissue growth during 
organogenesis (Land et al. 2014).

Folate, also known as vitamin B9, is an essential 
B vitamin. The synthetic oxidized monoglutamate 
form of folate is folic acid which is used as a dietary 
supplement. Once absorbed, folic acid requires 
reduction to tetrahydrofolate (THF). THF is converted 
to 5-methyltetrahydrofolate (5-MTHF), which transfers 
a methyl group onto homocysteine to synthesize 
methionine (Lu 2000). Methionine is a substrate for 
S-adenosylmethionine synthesis, which is an important 
co-factor in methylation reactions (key mechanism of 
epigenetic regulation), including histone methylations, 
methylation of cytosine residues in DNA, as well as 
other methylation reactions (Lu 2000, Caudill 2010). 
Folates are also required for de novo purine and 
thymidylate synthesis (Fox & Stover 2008). Thus, folates 
are critically important in widespread cellular events, 
including sustained cell division occurring during 
embryo development. Indeed, it is well established 
that folic acid supplementation prevents neural tube 
defects. Both folic acid deficiency and impaired 
folic acid metabolism have long been recognized as 
important contributors to developmental anomalies 
and to increase the risk of intrauterine growth restriction 
(Rondo & Tomkins 2000, Scholl & Johnson 2000, 
Imbard et  al. 2013, Christensen et  al. 2015, Rosario 
et al. 2017a).

In this work, we tested the hypothesis that MTOR 
functions as a folate sensor in the embryo and its 
inhibition result in embryonic developmental delay 
affecting neural tube closure and that these effects can 
be rescued by folate supplementation.

Materials and methods

Animals

Albino Wistar rats were purchased at the certified Animal 
Facilities of the Faculty of Exact and Natural Sciences, 
University of Buenos Aires, Argentina (UBA). The animal 
protocol was approved by the Institutional Committee 
for the Care and Use of Experimental Animals (CICUAL, 
Resolution CD Nº 1497/2013), School of Medicine, UBA, 
and conducted according to the Guide for the Care and Use 
of Laboratory Animals, US National Institutes of Health (NIH 
Publication, 8th Edition, 2011, http://www.ncbi.nlm.nih.gov/
books/NBK54050/?report=reader). Animals were fed with 
commercial rat chow (Asociación Cooperativa Argentina, 
Buenos Aires, Argentina) and water ad libitum, in a 12 h 
light:12 h darkness cycle.

Experimental design and tissue collection

Three-month-old Wistar female rats were mated with 
adult males. Mating was confirmed by the presence of 
sperm in vaginal smears and this day was designated day 
0.5 of pregnancy. To study MTOR inhibition during early 
organogenesis without affecting the implantation process, 
pregnant rats received daily subcutaneous injections during 
three consecutive days beginning on day 8.5 of pregnancy 
(Fig. 1). Four experimental groups were constituted receiving 
either: (i) vehicle (control), (ii) rapamycin (MTOR inhibitor, 0.5 
mg/kg, LC Laboratories, Massachusetts, USA), (iii) folic acid 
(15 mg/kg, Sigma), (iv) rapamycin (0.5 mg/kg) and folic acid 
(15 mg/kg). Each group comprised of 7 litters (n = 7). Doses of 
rapamycin and folic acid used were chosen based on previous 
reports (Anderl et al. 2011, Higa  et al. 2012, Way et al. 2012, 
Roberti et al. 2018) and preliminary experiments. 

Animals were euthanized in a CO2 chamber 3 h after the 
last rapamycin injection on day 10.5 of pregnancy. The uterus 
was collected and transferred to Petri dishes with Krebs Ringer 
Bicarbonate (KRB) solution: 5 mM glucose, 145 mM Na+,5.9 
mM K+, 2.2 mM Ca+2, 1.2 mM Mg+2, 127 mM Cl−, 25 mM 
HCO3

−, 1.2 mM SO4
2− and 1.2 mM PO43−. The decidual 

tissue masses were collected from each uterus and gently 
opened to free the conceptuses using a stereomicroscope 
and microsurgical dissecting instruments. The embryos were 
dissected out of the yolk sacs and evaluated morphologically 
under a stereomicroscope. Viability was established by the 
presence of a beating heart. Embryos in resorption stages 
received no further analyses. Somite number was recorded 
and a score of the progression of the neural folds apposition 

Figure 1 Experimental design: pregnant rats 
received daily subcutaneous injections during 
three consecutive days beginning on day 8.5 
of pregnancy and embryos were collected on 
day 10.5 of pregnancy. Four experimental 
groups were constituted receiving either: (i) 
vehicle (control), (ii) rapamycin (MTOR 
inhibitor, 0.5 mg/kg), (iii) folic acid (15 mg/kg), 
(iv) rapamycin (0.5 mg/kg) and folic acid (15 
mg/kg). 
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(1 = neural plate stage to 7 = neural folds completely closed) 
was performed for each embryo by two observers blinded to 
the source of the embryos (Higa et al. 2014).

Embryos at 10.5 days of gestation were categorized as having 
neural tube closure defects and as having rotation defects when 
the physiological process of embryo turning did not initiate on 
embryos that had more than 12 somites (Matsuda 1991, Higa 
et  al. 2012). Viable embryos were preserved immediately at 
−80°C for further analyses described subsequently.

Western blot analysis

Proteins from four pooled embryos from the same rat (n =7 rats 
in each experimental group) were separated by SDS-PAGE and 
transferred to PVDF membranes (35 V constant, overnight at 
4°C), as previously described (Capobianco et  al. 2016). The 
membranes were stained with Amido Black staining solution 
for total proteins (Sigma-Aldrich) to confirm equal loading and 
transfer. Blocking was carried out for 1 h at room temperature 
in 5% BSA in Tris-buffered saline-Tween (TBS-T), and 
membranes were incubated with the primary antibody (diluted 
in 1% BSA in TBS-Tween) overnight at 4°C. The expression 
of the following proteins was determined using antibodies 
from Cell Signaling Technology: total and phosphorylated 
RPS6 (Ser-235/236), EIF4EBP1 (T-70) and AKT (Ser-473). After 
washing, the membranes were incubated with the appropriate 
peroxidase-conjugated secondary antibody, visualized using 
ECL detection solution (Thermo Scientific) and captured in a 
G:BOX gel imaging system (Syngene). Densitometry analysis 
was performed with ImageJ software. The expression of the 
target protein in each individual lane was normalized for total 
protein staining to adjust for unequal loading. 

Folate measurement in embryos

One embryo from each rat (n = 7) was sonicated in distilled 
water, on ice, an aliquot was used for protein measurement 
and ascorbic acid (0.5%) was added followed by freeze-
thaw. Embryonic folate content was measured by using a 
commercially available kit (ALPCO Diagnostic Products, 
Windham, NH, USA), according to the manufacturer’s 
instructions. 

Statistical analysis

Data are presented as the mean ± s.e. Groups were compared 
by two-way ANOVA. In all cases, differences were considered 
statistically significant at P  < 0.05. 

Results

Embryonic folate levels

We first determined if MTOR inhibition by maternal 
administration of rapamycin influenced folate levels in 
the embryo. Folate levels were markedly decreased in 
embryos from rapamycin-treated compared to embryos 
from control dams (−84%, P < 0.01, Fig. 2). Maternal 
treatments with folic acid increased folate content in 

embryos from both control group (P < 0.05, Fig. 1) and 
rapamycin-treated dams (P < 0.001, Fig. 2).

mTORC1 pathway signaling

To determine if maternal administration of rapamycin 
(MTOR inhibitor, from days 8.5 to 10.5 of pregnancy) 
caused a robust inhibition of the mTORC1 pathway in 
the embryos, we measured the phosphorylation of two 
mTORC1 downstream targets, RPS6 and EIF4EBP1. 
Phosphorylation at Ser-235/236 of RPS6 was found to 
be decreased in embryos from rapamycin-treated dams 
compared to the control group (−81% P <0.01, Fig. 3A). 
The decreased phosphorylation of RPS6 was similar in 
the rapamycin + folic acid-treated group (Fig. 3A). Total 
RPS6 expression in embryos was not different between 
the different groups (Fig. 3B). The ratio between P-RPS6 
to total RPS6 showed a similar pattern than P-rpS6 
(Fig. 3C). On the other hand, phosphorylation at T-70 
of EIF4EBP1 or total EIF4EBP1 showed no differences 
between embryos from different treatments (Fig. 4).

We next measured AKT, a substrate downstream of 
mTORC2 pathway. Phosphorylation at Ser-473 of AKT 
was found increased in embryos from rapamycin-treated 
dams compared to embryos from control group (+65%, 
P <0.05, Fig. 5A). No changes were observed in the 
rapamycin + folic acid-treated dams compared either 
with the control or the rapamycin-treated dams (Fig. 5A). 
Total AKT showed no differences between embryos from 
different treatment groups (Fig. 5B). The ratio between 
P-AKT to total AKT showed similar pattern than P-AKT 
(Fig. 5C).

Embryo morphology

We also evaluated embryonic resorptions and found 
that they were increased by more than two-fold in the 

Figure 2 Effect of maternal administration of folic acid in control and 
rapamycin-treated dams from day 8.5 to 10.5 of gestation on embryo 
folate content. Values are means ± s.e.m. n = 7 litters per group. 
Two-way ANOVA in conjunction with Bonferroni’s post-test was 
performed. Different letters denote significant differences between 
groups, P  < 0.05.
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Figure 3 Effect of maternal administration of folic acid in control and 
rapamycin-treated dams from day 8.5 to 10.5 of gestation on: (A) 
embryonic protein levels of active RPS6 (phosphorylated at Serine 
235/236), (B) embryonic protein levels of total RPS6. Values are 
means ± s.e.m. n = 7 litters per group. Two-way ANOVA in 
conjunction with Bonferroni’s post-test was performed. Different 
letters denote significant differences between groups, P  < 0.05.

Figure 4 Effect of maternal administration of folic acid in control and 
rapamycin-treated dams from day 8.5 to 10.5 of gestation on: (A) 
embryonic protein levels of active EIF4EBP1 (phosphorylated at 
Threonine-70), (B) embryonic protein levels of total EIF4EBP1. Values 
are means ± s.e.m. n = 7 litters per group. Two-way ANOVA in 
conjunction with Bonferroni’s post-test was performed. Different 
letters denote significant differences between groups, P  < 0.05.
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embryos from the rapamycin-treated group compared 
with the embryos from control group (+212%, 
P < 0.05, Fig. 6A). Treatment with folic acid prevented 
the increased number of resorptions observed in  
the embryos from rapamycin-treated dams (P < 0.05, 
Fig. 6A). 

We also determined the number of somites for each 
embryo, an index of embryo development, and observed 

Figure 5 Effect of maternal administration of folic acid in control and 
rapamycin-treated dams from day 8.5 to 10.5 of gestation on: (A) 
embryonic protein levels of active AKT (phosphorylated at 
Serine-473), (B) embryonic protein levels of total AKT. Values are 
means ± s.e.m. n = 7 litters per group. Two-way ANOVA in 
conjunction with Bonferroni’s post-test was performed. Different 
letters denote significant differences between groups, P  < 0.05.

Figure 6 Effect of maternal administration of folic acid in control and 
rapamycin-treated dams from day 8.5 to 10.5 of gestation on: (A) 
resorption rate, (B) embryonic somite number, (C) Embryonic neural 
fold closure score. Values are means ± s.e.m. n = 7 litters per group. 
Two-way ANOVA in conjunction with Bonferroni’s post-test was 
performed. Different letters denote significant differences between 
groups, P  < 0.05.
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a decreased number of somites in embryos from the 
rapamycin-treated dams compared to embryos from 
control group (−18% P < 0.01, Fig. 6B). Supplementing 
with folic acid prevented the decreased somite number 
observed in the embryos from the rapamycin-treated 
dams (P < 0.05, Fig. 6B).

When we assessed the score of the progression 
of neural fold closure, we found that this score was 
lower in the embryos from the rapamycin-treated 
dams compared to embryos from control dams (−19%, 
P < 0.05, Fig. 6C). Treatment with folic acid prevented 
the decreased score of neural fold closure observed in 
the embryos from rapamycin-treated dams (P < 0.01, 
Fig. 6C).

There was no difference in the frequency of embryos 
with neural tube defects in the four groups (Fig. 
7A). However, we observed an increased number of 
embryos with rotation defects in the rapamycin-treated 
dams (P < 0.05, Fig. 7B) compared with embryos from 
control group, that was not prevented with the folic acid 
supplementation (Fig. 7B).

Discussion

We report that MTOR inhibition during organogenesis in 
the rat resulted in decreased folate levels in the embryo, 
increased embryo resorption rates and impaired embryo 
development. These effects of MTOR inhibition on the 
embryo are prevented by maternal folate administration 
suggesting that MTOR signaling influences embryo 
folate availability. These findings are consistent with the 
possibility that MTOR inhibition leading to impaired 
folate transfer to the embryo may underpin impaired 
early embryo development even when maternal folate 
levels are normal. 

There are several pregnancy complications related 
to MTOR inhibition that should benefit from folic acid 
supplementation. For example, polymorphism in Mtor 
gene associated with recurrent spontaneous abortion, 
preeclampsia (which shows reduced MTOR pathways 
in the placenta), intrauterine growth restriction (which 
shows reduced MTOR signaling in both fetuses and 
placentas) and pregnancies in which MTOR inhibitors 
have been administered due to organ transplantation 
(Framarino-dei-Malatesta et al. 2013, Xiang et al. 2015, 
Gupta & Jansson 2019, Huang et al. 2020).

On the other hand, providing an excess of folates, 
the recovery of most embryo developmental patterns is 
likely not MTOR-dependent as this treatment allowed 
embryonic folate uptake despite the unrecovered MTOR 
signaling. 

In this work, we used a dose of folic acid that had 
been previously found to be effective to prevent 
malformations in diabetic rats (Wentzel et al. 2005, Higa 
et  al. 2012), which is higher than that recommended 
to be taken preconceptionally in woman, and thus 
provides an excess of folates. As a limitation, we did not 
use lower folic acid doses, and thus we were not able 
to determine the minimum dose required to prevent the 
reduced folate levels induced by MTOR inhibition in 
embryos from diabetic rats.

In vitro studies showed that the excess of extracellular 
folates induce its uptake by a mechanism that does not 
involve folate receptors binding proteins and are likely to 
be mediated by the process of passive diffusion (Antony 
et  al. 1989). In HeLa cell line, a high dose of folates 
induces a posttranscriptional regulation of the reduced 
folate carrier that modified its stability inducing an 
increase in its protein and transcripts levels (Hou et al. 
2014). However, little is known and further research is 
needed to elucidate the precise mechanisms that allow 
embryo access to folates when MTOR is inhibited but 
folates are simultaneously administered in excess.

Folates participate in nucleic acid and protein 
methylation reactions and in de novo purine and 
thymidylate synthesis and are essential for normal 
embryo development (Lu 2000, Fox & Stover 2008, 
Caudill 2010). Recently, we showed that MTOR 
functions as a folate sensor both in cultured primary 

Figure 7 Effect of maternal administration of folic acid in control and 
rapamycin-treated dams from day 8.5 to 10.5 of gestation on: (A) 
embryonic neural tube defects rate, (B) embryonic rotation defects 
rate. Values are means ± s.e.m. n = 7 litter per group. Two-way 
ANOVA in conjunction with Bonferroni’s post-test was performed. 
Different letters denote significant differences between groups,  
P  < 0.05.
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human trophoblast cells (Rosario et  al. 2017b) and in 
pregnant mice in vivo (Rosario et al. 2017a). 

At early post-implantation stages and before the 
establishment of the placenta, MTOR is a key regulator 
of nutrient transport in the maternal decidua (Roberti 
et  al. 2018). Moreover, it was recently reported that 
activation of mTORC1 and mTORC2 increased the 
plasma membrane expression of the folate receptor-1 
and the solute carrier family 19 (folate transporter), 
member 1 (SLC19A1, also known as reduced folate 
carrier) in primary human trophoblast cells (Rosario 
et al. 2016, 2017b). During early organogenesis, folate 
receptor 1, solute carrier family 46, member 1 (SLC46A1, 
also known as proton-coupled folate transporter), and 
SLC19A1 expression was found in the ectoplacental 
cone and the chorionic membrane (Cherukad et  al. 
2012). In the current study, maternal administration 
of rapamycin during the early organogenesis stage in 
pregnant rat, lead to a marked reduction in embryo 
folate content, suggesting that MTOR signaling regulates 
folate transport at the maternal–embryonic interface 
also at this early stage of pregnancy. 

Homozygous MTOR knockout embryos die shortly 
after implantation due to impaired cell proliferation in 
both embryonic and extraembryonic compartments 
(Murakami et  al. 2004), demonstrating the critical 
role that mMTOR signaling plays in early embryonic 
development. Other studies have highlighted MTOR 
role in neural tube development (Rennebeck et al. 1998, 
Hentges et  al. 2001) and in survival and proliferation 
of cardiomyocytes in the developing heart (Zhu et  al. 
2013). To the best of our knowledge, this is the first 
report that examines the effects of maternal rapamycin 
administration on embryos at an early organogenesis 
stage to evaluate the regulation of embryonic folic 
acid availability. However, there are several previous 
reports in the literature exploring the effects of maternal 
administration of rapamycin in pregnancy. Studies 
performed during late gestation showed that a single 
dose of rapamycin (1 mg/kg) given to pregnant dams at 
day 16 of pregnancy resulted in inhibition of S6 pathway 
of mTORC1 in neonatal brain (Anderl et  al. 2011). 
Administration of rapamycin from day 15.5 of gestation 
until delivery induced IUGR and altered postnatal 
cardiac growth, morphology and function (Hennig et al. 
2017). Maternal rapamycin administration from day 12 
of pregnancy inhibited ribosomal protein S6 signaling 
in the rat embryo at day 14 of pregnancy (Ozmen et al. 
2019). However, there are only few studies of rapamycin 
administration in dams during early gestation. We 
recently found that maternal rapamycin administration 
during the immediate post-implantation stage (days 7–9 
of gestation) lead to increased embryo resorptions at day 
14 of pregnancy (Roberti et al. 2018). In the current work, 
rapamycin administration to pregnant dams from 8.5 
to 10.5 days of gestation did not alter phosphorylation 
of EIF4EBP1 in the embryo, but resulted in a marked 

inhibition of the mTORC1-downstream target RPS6. 
This inhibition was also observed in the embryos from 
dams simultaneously treated with rapamycin and folate. 
Rapamycin is known to specifically inhibit mTORC1 
without decreasing the activity of mTORC2 (Jacinto 
et  al. 2004). In this work, we found increased AKT 
phosphorylation at Ser-473, suggesting an activation of 
mTORC2, in the embryos from rapamycin-treated dams, 
an alteration that was not observed in the rapamycin 
and folate-treated group compared to controls. This 
likely reflects cross-talk between mTORC1 and 2 in the 
embryo. For example, it is well established that inhibition 
of mTORC1 may activate insulin/IGF1 signaling by a 
feedback loop from S6K to IRS1 (Saxton & Sabatini 2017), 
which in turn can lead to an activation of mTORC2. 

In this work, we found that rapamycin administration 
to pregnant dams during 3 consecutive days of early 
organogenesis increased resorption rate and reduced 
somite number and the neural fold closure score, 
demonstrating that mTORC1 inhibition impairs normal 
embryo development. Interestingly, with exception of 
rotation defects, folate supplementation prevented the 
adverse effect on mTORC1 inhibition. However, because 
folate supplementation failed to normalize embryo 
RPS6, folate recovery of the adverse effect of rapamycin 
on embryo development is likely independent of 
embryonic mTORC1 activation. 

Despite the known fact that folic acid administration 
prevents neural tube defects (Copp & Greene 2013, 
Sarmah et al. 2016), the mechanisms involved are not 
fully established. We were not able to observe any 
changes in increased neural tube defects in the embryos 
from rapamycin-treated group that had reduced levels 
of folate. Other studies have also found a lack of neural 
tube defects induction in folate-deficient embryos 
without genetic predisposition (Heid et al. 1992, Burren 
et al. 2008). Interestingly, an increase rate of embryos 
with a rotation defect (fail to perform the physiological 
process of rotation around the body axis) was found 
in the rapamycin-treated group. This defect was 
previously described in MTOR mutant mice (Hentges 
et al. 1999). However, folate treatment was not able to 
prevent the rotation defects in the rapamycin-treated 
group, suggesting that this process is dependent on 
mTORC1 signaling pathway and not related to the folate 
metabolism.

In conclusion, our results identified a link between 
mTORC1 and folates relevant for proper embryo 
development during organogenesis. Indeed, maternal 
administration of rapamycin during early organogenesis 
leads to reduced mTORC1 activity, developmental 
impairments and reduced folate content in the 
embryo. Of relevance, we found that maternal folate 
supplementation limited to early organogenesis is 
an effective treatment for embryo developmental 
impairments in a context in which MTOR activity is 
reduced. 
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