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Epidermal growth factor receptor (EGFR) is a prototypical cell-
surface receptor that plays a key role in the regulation of cellu-
lar signaling, proliferation and differentiation. Mutations of its
kinase domain have been associated with the development of a
variety of cancers and, therefore, it has been the target of drug
design. Single amino acid substitutions (SASs) in this domain
have been proven to alter the equilibrium of pre-existing con-
former populations. Despite the advances in structural descrip-
tions of its so-called active and inactive conformations, the
associated dynamics aspects that characterize them have not
been thoroughly studied yet. As the dynamic behaviors and
molecular motions of proteins are important for a complete
understanding of their structure–function relationships we pre-
sent a novel procedure, using (or based on) normal mode anal-
ysis, to identify the collective dynamics shared among different

conformers in EGFR kinase. The method allows the comparison
of patterns of low-frequency vibrational modes defining repre-
sentative directions of motions. Our procedure is able to
emphasize the main similarities and differences between the
collective dynamics of different conformers. In the case of EGFR
kinase, two representative directions of motions have been
found as dynamics fingerprints of the active conformers. Protein
motion along both directions reveals to have a significant
impact on the cavity volume of the main pocket of the active
site. Otherwise, the inactive conformers exhibit a more hetero-
geneous distribution of collective motions. © 2018 Wiley Period-
icals, Inc.

DOI:10.1002/jcc.25590

Introduction

The epidermal growth factor receptor (EGFR) is a key protein in
cellular signaling, and regulation of cell proliferation, differentia-
tion, and migration.[1] EGFR is part of the family of ERBB cell
membrane receptor proteins. It is composed by, following the
human EGFR canonical amino acid sequence numbering
(Universal Protein Resource, UniProtKB, P00533, isoform 1), an
extracellular receptor (residues 25–641), a single-pass trans-
membrane helix (642–668), and a cytoplasmic region harboring
a membrane proximal juxtamembrane segment (669–711) fol-
lowed by a kinase domain (N-lobe: 712–792, C-lobe: 793–979)
and a 231 residue long C-terminal intrinsically disordered tail
(980–1210) that works as a recruiter of cell signaling molecules
through its many phosphorylatable sites. Mutations and overex-
pression of EGFR have been associated to different human can-
cers[2,3] with kinase activity enhancement, reason why the EGFR
kinase region is an intensely pursued target of small-molecule
drugs.[4–7] Single amino acid substitutions (SASs), deletions and
insertions in this domain can alter the equilibrium of pre-
existing conformer populations.[8–12] In this way, certain EGFR
kinase cancer mutants become enzymatically more active than
the wild-type.[13,14] These SAS are denominated as activating,
due to the stabilization of the conformer required to drive the
phosphorylation (active form).

The current accepted mechanism of activation of wild-type
EGFR,[15–17] proposes that the binding of factors like EGF (epi-
dermal growth factor) to the extracellular receptor, shifts the
conformational equilibrium to conformers that are able to

establish specific interactions between each other in extracellu-
lar, transmembrane, and juxtamembrane regions, approaching
the kinase domains in an asymmetric dimer way, facing the
C-lobe of one kinase (activator) with the juxtamembrane and
N-lobe of the other (activated). This way, the last becomes cata-
lytically active, being able to phosphorylate the Tyrosines pre-
sent in the C-terminal tail of the activator. Besides, the presence
of intrinsic disorder in some regions of the EGFR kinase domain
has been proposed to play a significant role in the EGFR
dimerization.[18]

The detailed understanding at a molecular level of the struc-
tural and dynamical differentiation among wild-type and cancer
mutants of EGFR kinase is a very important goal in the develop-
ment of personalized cancer treatments.[19] In particular, it
would be most enlightening to be able to elucidate structural
and dynamical features that represent fingerprints of kinase
activation.

There are common sequence and structural characteristics
shared among most of active EGFR kinase domain have been
identified[20,21] (see Fig. 1): (a) α C-helix rotated inwards against
the N-lobe and toward the active site, allowing a salt-bridge
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between residues E762 and K745[20]; (b) a more extended and
open conformation of the activation loop (residues 855–886),
so-called DFG-in conformation with its aspartate pointing to the
ATP-binding site. Besides these two main features, the triad
HRD (residues 835–837)[22,23] and different amino acid networks
seem to contribute to the ATP active site stabilization.[24–26]

Nevertheless, not all of active conformers fulfill all of this
requirements,[27] and several reported controversies and ambig-
uous conformation classification can be found.[28] In a previous
article,[29] we have extensively analyzed these structural param-
eters in a large set of human EGFR kinase domains previously
classified as active or inactive forms. We have focused our
attention on changes in the size and shape of the main pocket
among the EGFR kinase active and inactive conformers. For this
purpose, a hierarchical clustering based on RMSD (root mean
square difference) of α-C belonging to main pocket positions
has been performed. Our main pocket structural comparison
allows us to analyze effects that changes in the main pockets’
structural features have on the EGFR kinase activity.

Despite advances in structural descriptions of the so-called
active and inactive conformations,[21,30–33] the associated dynam-
ics aspects that characterize them have not been thoroughly
studied yet. As the dynamic nature of proteins is essential to
their function, a complete description should consider their
motions.[34] Using unbiased long-timescale molecular dynamics
simulations, Shan et al.[35] have explored the transitions from the
active to the inactive conformations of a single EGFR mutant.
Besides, the intrinsic disorder of EGFR kinase domain has been
shown to play a significant role in the EGFR dimerization.[18] Dif-
ferences between active and inactive states have been also stud-
ied using MD followed by principal component analysis
(PCA),[36,37] finding that EGFR is more flexible in the active state
than in the inactive state. Other MD studies have been centered
on the analysis of SASs on the relative stability of the active ver-
sus the inactive state,[38] and also on the conformational transi-
tion between active and inactive conformers.[39,40]

In the present study, we use normal mode analysis (NMA) to
explore global dynamics aspects that differentiate these con-
formers. NMA based on a coarse-grained model of proteins has
been extensively proved as a useful technique to explore the
intrinsic dynamics within a folded state.[41–45] The complex

motions of proteins are decoupled into a linear combination of
independent harmonic oscillators, that is, the normal modes. Low-
frequency normal modes correspond to the most collective ones,
involving the concerted motions of many atoms. These modes are
commonly related to functional aspects of a protein[46–49] and
they have been proven to be robust to sequence variations, that
is, they are evolutionary conserved.[50–54]

The fact that normal modes provide a decoupled harmonic
description of protein vibrations is fundamental to identify
common dynamics aspect shared by a set of related mutant
proteins.[53] Nevertheless, small local structural perturbations,
introduced by SASs, can significantly modify the global dynam-
ics and functionality of proteins.[55]

Herein, we present a novel procedure that allows us to iden-
tify collective dynamics shared among different conformers in
EGFR kinase. The method allows the comparison of patterns of
low-frequency vibrational modes defining representative direc-
tions of motions that can be considered as dynamics finger-
prints of the active conformers.

The article is organized as follows: theoretical methods are
described in methods section. Our results are presented and
discussed in results and discussion section. Finally, conclu-
sions section summarizes our findings and conclusions.

Methods
Set of active and inactive EGFR kinase mutant structures

Our set of active and inactive EGFR kinase structures has been
selected from CoDNAS[56] corresponding to the canonical
sequence of the human EGFR (UniProtKB ID: P00533). EGFR kinase
is a domain with N = 277 residues plus the activation loop. Struc-
tures presenting more than 16 missing residues were not included
in our dataset, otherwise missing residues have been included
using the MODELLER software package with loop optimization.[57]

Most of the missing residues were located in the activation loop
and a loop between the β-sheets of the N lobe. Each model was
evaluated using the DOPE scoring function to assert that each
amino acid scored a negative energy value. Theoretical B-factors
profiles have been calculated using NMA on each protein of the
initial dataset and compared them with the experimental B-factor
profiles. Then, we removed from the dataset all structures with
optimal Spearman rank correlation coefficient between experi-
mental and theoretical B-factors <0.6 Å. As a result of these filters
in the original dataset, we were left with a final dataset composed
of 41 EGFR kinase conformer’s structures, 26 of which are classified
as active conformers and the rest of 15 structures as inactive con-
formers. The complete set of EGFR kinase structures used in our
final dataset is given in Table S1 (Supporting Information).

NMA background

Normal mode analysis has been performed using the elastic
network model (ENM) that considers the protein as an elastic
network of N α-carbons (nodes) linked by springs within a cut-
off distance rc. For each protein in the dataset, the value of rc
varies to obtain the best match between theoretical and experi-
mental B-factors.

Figure 1. a) Inactive, and b) active EGFR kinase conformers indicating the
main structural elements that commonly distinguish them. [Color figure can
be viewed at wileyonlinelibrary.com]
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The interaction potential between residues is defined as.[41,58,59]

E ri ,rj
� �¼ 1

2
kij rij
�� ��− r0ij

��� ���� �2
ð1Þ

being rij ≡ ri − rj the vector connecting residues i and j, and the
zero superscript indicates the equilibrium position that corre-
sponds to the coordinates of the α-carbons in the experimental
structure. The value of the force constant kij is determined
according to the type of interaction between nodes[60]:

if |i − j| = 1 ) kij = γ.
else

if r0
ij

��� ���≤rc then

if i and j are connected by disulphide bridge

) kij = γ

if i and j interact by hydrogen bond or salt

bridge ) kij = γ x 0.1

otherwise ) kij = γ x 0.01

if r0
ij

��� ���≥rc ) kij = 0

being γ a scaling constant to match the theoretical result to
experimental data. HBPlus program[61] has been used to obtain
the connectivity information related to hydrogen bonds, salt
bridges, and disulphide bridges.

Normal modes are obtained by solving the eigenvalue
equation

Λ¼qTHq ð2Þ

being the Hessian matrix H a 3N x 3N matrix of second-order
partial derivatives of the potential energy, q is an orthogonal
3N x 3N matrix whose columns qk are the eigenvectors of H,
that is, the normal modes, and Λ is the diagonal matrix of
eigenvalues λk of H. The theoretical B-factor Bi of residue i, asso-
ciated to its thermal fluctuation, is calculated as[62]

Bi ¼ 8π2

3
Δr2i
� � ð3Þ

with Δr2i
� �¼ ri−r0i

� �2D E
as the mean square displacement

from its r0i equilibrium position. Δr2i
� �

that can be expressed as

the sum of contributions from the 3N-6 internal modes of
motion {qk}k = 1, 3N − 6 as

[63]

Δr2i
� �¼ 3kBT

X3N−6
k¼1

λ−1k qkq
T
k

	 

ii ð4Þ

where kB is the Boltzmann constant, T is the absolute
temperature.

Comparison of weighted normal mode spaces

Vibrational motions associated to structural fluctuations on the
main pocket of the active site of EGFR kinase structures have

been compared through the calculation of the corresponding
weighted Gramian matrix.[55,64,65] Being q and q

0
the eigenvec-

tor 3Nx(3N − 6) matrices (see NMA background subsection)
associated to two conformers A and B, respectively, the vector
projection of each q0

j onto the set of modes {qk}k = 1, 3N − 6 is

defined as

pAB
j ¼

X3N−6
k¼1

q0
j ∙wkqk

� �
qk ð5Þ

where the weight wk associated to normal mode qk is defined
as the normalized accumulation of contributions of qk to B-
factors Bi of each ith residue belongs to the main pocket of the
active site of the EGFR kinase

wk ¼
P

i 2 pocket λ−1k qkq
T
k

	 

iiP3N−6

j¼1

P
i 2 pocket λ−1j qjq

T
j

h i
ii

ð6Þ

The weighted Gramian matrix G (3N − 6 x 3N − 6) of the set

of vectors pAB
j

n o
j¼1,N

is calculated as the matrix of inner prod-

ucts with elements

Gkl ¼ wkpAB
k ∙wlpAB

l

� � ð7Þ

The diagonalization of G

LTGGLG ¼ΩG ð8Þ

allows us to use the eigenvalues ΩG of G, ΩGkf gk¼1,3N−6, as a

measure of the similarity between the two vibrational motions.
Eigenvalues of G varies between 0 and 1.[64] The higher the
value of ΩGk , the more the associated direction of motion,
given by the corresponding LGk, is common to both structures.
Therefore, we define the similarity between the two weighted
vibrational spaces can be defined as

ζAB ¼
P3N−6
k

Ωk

3N−6
ð9Þ

Moreover, an effective number of dimensions shared by two
structures can be expressed as the Kirkpatrick index[66] rounded
to the nearest higher integer

nD ¼
X3N−6
k¼1

Ωk

Ω1
ð10Þ

SVD representative vectors

The similarity among directions of fluctuations shared by differ-
ent pairs of structures can be analyzed as follows. Matrices Ak

of dimension 3 N x L are built with columns representing the
LGk directions of each of the L pairs of structures compared as
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described in comparison of weighted normal mode spaces
subsection.

(LGk, pair # 1) (LGk, pair # 2) …. (LGk, pair # L)

Ak ¼

residue#1,x
residue#1,y
residue#1,z
residue#2,x

residue#N,z

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð11Þ

Singular value decomposition (SVD)[67] of each Ak matrix is
performed. That is, each Ak is written as the product of an 3N x L
column-orthogonal matrix Uk, an L x L diagonal matrix Wk with
positive or zero elements (the singular values), and the transpose
of an L x L orthogonal matrix Vk:

Ak
� �¼ Uk

� �� wk
l

… wk
i …

wk
l

0
@

1
A� Vk

� �T� �
ð12Þ

Thus, the akij elements of matrix Ak can be expressed as the

sum of products of columns of Uk and rows of (Vk)T, with the

“weighting factors” being the singular values wk
j .

akij ¼
Xl
z¼1

wk
z �ukiz�vkjz ð13Þ

Because of this, in the present work, the Uk
1 vector with the

highest wk
1 is considered the representative mode for the LGk

directions of the matrix Ak.

Results and Discussion

The human EGFR kinase domain is depicted in Figure 1. Follow-
ing the definition given by Hasenahuer et al.[29] using structural
an biological information, the main pocket of the active site is
selected by manually inspection of the active conformers
PDBids 1M14 (apo form) and 2GS6, and considering residues
within a 5 Å radius from each atom of the ATP analog
substrate-peptide conjugate in 2GS6.[68] Residues belonged to
the pocket related to the active site are pointed out in Figure 2.
The total number of residues in the pocket, Npocket, is 53 (see
Table S2 Supporting Information). Active and inactive con-
formers (Fig. 1) present distinguishable structural features con-
cerning relative orientation of αC-helix, the N-lobe, and the
active site, and changes in the main conformation of the activa-
tion loop. Nevertheless, the classification is long from been
definitive since not all the currently available structures
completely fulfill these requirements.

In the present work, common dynamical features among
active conformers are explored to achieve unique fingerprints
that enlighten us on minimum functional mechanisms within
them. We first analyze differences in contributions of protein
vibrations to thermal fluctuations of main pocket residues.
Figure 3 shows the distributions of relative values of the weight

wk [see eq. 6)] associated to each normal mode qk. The lowest
frequency normal mode q1 is the one that contributes the most
to thermal fluctuations of main pocket residues. Therefore, wk/
w1 represents the corresponding relative contribution of kth
normal mode. Small values of wk/w1 indicate that the contribu-
tion of the kth normal mode to thermal fluctuations of main
pocket residues can be neglected compared to the correspond-
ing contribution of the first mode. Figure 3 shows that, in the
case of active conformers, thermal fluctuations of main pocket
residues are mainly covered by the first two lowest frequency
normal modes. The contribution of the third normal mode
results approximately 50% of the contribution of the first mode.
On the contrary, in the case of inactive conformers, at least the
six lowest frequency modes present larger contributions to
pocket residue fluctuations. That is, fluctuations of the main
pocket of active conformers are restrained to less number of
low-frequency collective motions than inactive conformers.

Second, we investigate differences in the nature of low fre-
quency normal modes. To do that, we have calculated the resi-
due participation number of lowest frequency normal modes
for EGFR kinase active and inactive conformers defined by

Pk ¼
XN
i¼1

r4ik

 !−1

ð14Þ

where r2ik ¼ qxik
� �2

+ qyik
� �2

+ qzik
� �2

, and qjik ¼ j¼ x,y,zð Þ are the

components of the ith atom in the kth normal mode. Values of
Pk ≈ N correspond to vibrations equally distributed throughout
all the residues of the protein, and Pk ≈ 1 corresponds to vibra-
tions involving the displacement of a single residue. In Fig-
ures 4a and 4b, we show the distribution of the fraction of
residues involved in the motion of the two lowest frequency
normal modes, calculated as values Pk/N, for active and inactive
EGFR kinase conformers, respectively. We note first that, on

Figure 2. Human EGFR kinase domain. Residues belonged to the main
pocket of the active site are pointed out (green) following the definition
given by Hasenahuer et al.[29] [Color figure can be viewed at
wileyonlinelibrary.com]
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average, inactive conformers comprise a disparity of effects on
the collective motion of residues involved in these vibrations,
spreading the distributions over a larger range of values. On
average, first normal modes of active conformers are more
delocalized (hP1iA = 0.21 � 0.03) than first normal modes of
inactive conformers (hP1iI = 0.10 � 0.05), involving almost the
double of residues. The effects on second normal modes are
more scattered ((hP2iA = 0.17 � 0.06) and (hP2iI = 0.21 � 0.10))
without showing a clear tendency to disrupt the collectivity.
That is, P1 indicates a large impact of nonactivating mutations
on the original collectivity of the lowest normal mode observed
on active conformations. It is, therefore, expected that func-
tional aspects of EGFR kinase involve coordinated motions
between residues that are mainly reflected in the lowest fre-
quency normal mode of active conformations.

Normal mode conservation has been shown to increase line-
arly with collectivity, so that the slowest most collective modes
are the most conserved ones.[54] Therefore, our findings could
point out toward a relative conservation of unique flexibility
patterns among active conformers compared to inactive ones.
To analyze this feature, we have calculated Pearson linear corre-
lation ρB coefficients to quantify the similarity between Cα B-
factor profiles of pairs of active and inactive conformers. In
Figure 5, we compare the ρB distributions obtained for active
and inactive conformers. Mean values of 0.92 and 0.81 are

obtained for active and inactive conformers, respectively. The
difference between both distributions is statistically validated
by the Kolmogorov–Smirnov (KS) statistic value of 0.57. This
result indicates that thermal fluctuations are more conserved
between active conformers than between inactive conformers.
Nevertheless, B-factors flexibility patterns do not result accurate
enough to separate both types of conformers.

Vibrational motions associated to structural fluctuations of
pairs of EGFR kinase conformers can be further compared
through the calculation of the corresponding weighted Gra-
mian G matrix (see Comparison of weighted normal mode
spaces section). The diagonalization of G provides a set of new
directions of motion {LGk}k = 1, N, given in decreasing order of
their corresponding eigenvalues {Ωk}k = 1, 3N − 6. The values of
Ωk varies in a [0:1] range. On one hand, a value of Ωk ≈ 1 indi-
cates that the direction of motion defined by the correspond-
ing vector LGk is shared by both conformers. On the other
hand, a value of Ωk ≈ 0 indicates that the corresponding direc-
tion LGk is specific to a single conformer. The value of ζAB,
defined as the average {Ωk}k = 1, 3N − 6 values [see eq. 9)], pro-
vides our final similarity measure between weighted vibrational
spaces of A and B conformers. Figure 6a displays the distribu-
tion of values of ζAB obtained over all pairs of active and inac-
tive conformations. The difference between both distributions
is statistically validated by the KS statistic value of 0.97. This

Figure 3. Distributions of relative values of normalized accumulation of
contributions of modes qk to B-factors Bi of residues belong to the main
pocket of the active site of the EGFR kinase, that is, wk/w1 [eq. 6)]. [Color
figure can be viewed at wileyonlinelibrary.com]

Figure 4. Distribution of the fraction of residues involved in the motion of
the a) first and b) second lowest frequency normal modes, calculated as
values Pk/N, for inactive and active EGFR kinase conformers. [Color figure
can be viewed at wileyonlinelibrary.com]

Figure 5. Histograms of backbone flexibility similarity ρB. The two
histograms show the frequency distributions of ρB for active and a reference
set of inactive conformers. [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 6. Histograms of values of a) the similarity meassure ζAB between
pairs of weighted vibrational spaces, and b) the effective number of
dimensions nD shared by pairs of mutants calculated over all pairs of active
and inactive mutants. [Color figure can be viewed at wileyonlinelibrary.com]
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means that ζAB separates active and inactive distributions bet-
ter than Pearson linear correlation ρB coefficients between
α-carbon B-factor profiles. That is, dynamics information con-
cerning the directionality of collective motions allows a signifi-
cant improvement in the distinction between active and
inactive conformations respect to previous results using flexibil-
ity patterns (see Fig. 5).

Furthermore, the effective number of dimensions shared by
pairs of conformers, given by the Kirkpatrick index nD [eq. (10)],
also allows a clear differentiation between active and inactive
conformers. Figure 6b shows the distributions of values of nD for
both active and inactive conformers. An average value of 1.7
between pairs of active conformers indicates that dynamics simi-
larities between them can be efficiently reduced to 1–2 common
directions of motions. On the contrary, dynamics similarities
between inactive conformers are scattered among 3–4 (average
value of 3.4) different directions, less shared among pairs of con-
formers. The corresponding KS statistic value between both dis-
tributions is 0.89. That is, nD results to be slightly less effective
than ζAB to separate active and inactive dynamics.

The identity of the two lowest common directions LG1 and
LG2 for pairs of active conformers can be explored by analyzing
their projections on the basis of the original normal modes. The
average contribution of the first lowest normal mode to LG1 is
0.73 � 0.41 and the contribution of the second lowest normal
modes to LG2 is 0.6 � 0.41. Therefore, active conformers share
one direction of motion mainly represented by the lowest fre-
quency normal modes. This is in agreement with previous
results obtained by Coveney and coworker.[36,37] using MD and
PCA, that shows that the first PCA mode distinguish between
active and inactive states. On the contrary, values of
0.59 � 0.35 and 0.35 � 0.30 are obtained for contributions of
first and second normal modes to LG1 and LG2 of inactive con-
formers. That is, while the dynamics of pairs of active con-
formers reveal a common direction of motion that correspond
to their natural lowest frequency of vibration, the dynamics of
pairs of inactive conformers do not present unique patterns
that can be assigned to individual original normal modes.

As we have shown, pairs of active conformers share common
directions of motion represented by direction LG1. To obtain a
fingerprint that characterizes it among the complete set of
active conformers, further analysis is required. SVD, as a data
compression technique, highlights the main common features
of the original LGk directions within a few SVD representative

modes Uk
i . Figure 7 depicts distributions of the overlap between

SVD representative modes, Uk
1 , and original LGk directions. As it

can be seen, our complete set of active conformers share com-
mon directions represented by the corresponding SVD repre-
sentative mode. In contrast, the corresponding U1

1 in inactive
conformers cannot be used as representative modes of the
ensemble. Finally, directions LG2 and LG3 are different among
either pairs of active or inactive conformers. In summary, all
active conformers of our dataset share common dynamics that
can ultimately associated to their lowest frequency mode. On
the contrary, the dynamics of inactive conformers result hetero-
geneous and no unique dynamics patterns that include all of
them can be found.

Figure 8 shows that fingerprint mode U1
1, shared by all active

conformers, and also the less representative mode U2
1. Both

modes describe relative displacements between the two lobes
(N and C lobes) of the kinase domain. Particularly, motions of N
lobe, and αG helix. Local rearrangements of the αG helix have
been previously related to the conformational change of c-Src
kinase associated to ligand binding.[69] Besides, a relative sup-
pression of active loop deformations also characterizes modes
U1
1 and U2

1 respect to motions of the corresponding modes of
inactive conformations, in agreement with previous MD results
that reveal a relatively more rigid alpha-C helix and active loop
in the active than inactive states of wild-type and active EGFR
mutants.[36–38] For the sake of comparison, we also show shows
the corresponding modes for inactive conformers.

To evaluate effects of modes U1
1 and U2

1 on the active confor-
mation of EGFR kinase domain we calculate the corresponding

Figure 7. Histograms of the overlap between the first SVD representative
modes, Uk

1 , and original LGk directions for a) U1
1 �LG1; b) U2

1 �LG2; c) U3
1 �LG3 for

both active (red) and inactive (blue) mutants. [Color figure can be viewed at
wileyonlinelibrary.com]

Figure 8. SVD representative modes U1
1 (red) and U2

1(blue) of a) inactive and
b) active conformers. [Color figure can be viewed at wileyonlinelibrary.com]
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changes of radius of gyration (ΔRg). Figure 9 shows the distri-
bution of values of ΔRg due to displacements in the direction
of these modes. As it can be seen, their effect on active con-
formers significantly differs from displacements of the corre-
sponding modes of inactive conformers. Modes U1

1 and U2
1 of

active conformers lead to more extended conformations involv-
ing a hinge-like separation of the N and C lobes (see also Sup-
porting Information).

The motion in the direction of U1
1 and U2

1 modes in active
conformers is consistent with previously reported motions[18,35]

analyzed using molecular dynamics simulations, that describe
the active–inactive conformational transition. Shan et al.[35]

reported an opening of the two lobes to allow local unfolding
at the hinge region, prior to the close of the lobes to re-stabilize
in its inactive conformation. Besides, Coveney et al.[35,36]

reported hinge and shear motions between the C- and N-lobe
associated to first and second PCA modes. Our analysis sug-
gests that these findings are actually a hallmark of active

conformers dynamics when it comes to differentiate them from
the inactive conformers.

We finally explore functional aspects of motions in the direc-
tion of U1

1 and U2
1 modes. For this purpose, we calculate

changes in the cavity volume of the main pocket of the active
site due to structural displacements in the direction of these
modes. Cavity volumes are calculated using our previously
developed method,[70] particularly suited to measure changes
in cavity volumes due to small atomic coordinate displace-
ments in the direction of specific normal modes. Figure 10 dis-
plays the distribution of differences in cavity volumes between
structures of active and inactive conformers previously dis-
placed a magnitude –Ai and +Ai, being Ai(Å) the corresponding
amplitude of the ith mode at room temperature. That is,
Ai = ((2kBT)/λi)

1/2 where kB is the Boltzmann constant and T is
the absolute temperature (300 K). λi corresponds to the eigen-
value associated to the ith normal mode, as defined in NMA
background section, scaled to best fit the theoretical residue
fluctuations with the corresponding experimental temperature
factors. As can be seen, motions in the direction of the two low-
est frequency normal modes of active conformers lead to con-
formational changes that involve larger changes in cavity
volumes than motions in the direction of the corresponding
modes of inactive conformers. Changes in cavity volumes could
have a subsequent impact on ligand affinity and, therefore, reg-
ulation of the biological function of the active site pocket of
the EGFR kinase a protein. Herein, we have identified common
dynamics shared only by the active conformers of the EGFR
kinase. Since these dynamics are associated to significant
changes in the volume of the main pocket of the active site of
EGFR kinase, their functional impacts should be expected. Previ-
ous works have shown that inhibitors can act by hindering
and/or change the direction of specific protein motions.[71] Fur-
thermore, the identification of dynamically important residues
associated to these motions can be performed using previously
developed methods.[55,72,73] Therefore, strategies for the devel-
opment of new inhibitors that hinder or modify our dynamics
fingerprints can be faced. Particularly, compounds that disrupt
relative displacements between the two lobes (N and C lobes),
focusing on motions of the N lobe, and αG helix. Furthermore,
inhibitors particularly designed to interact with the gly-rich loop
could strongly modify these concerted motions.

Conclusions

We have performed an extensive comparative analysis of global
dynamics features shared by existing conformers in EGFR
kinase. We have identified clear directions of motions that can
be used as fingerprints to differentiate active and inactive con-
formers. A novel procedure has been applied that can be used
for sets of conformers in other proteins. The method allows the
comparison of patterns of vibrations rescuing common repre-
sentative directions of motions shared among the ensemble.

Two representative directions of motions have been identi-
fied and characterized among active conformations in EGFR
kinase. These motions represent fingerprints of active con-
formers that can be added to previously reported structural

Figure 9. Histograms of changes of the radius of gyration, ΔRg, of the EGFR
kinase domain due to displacements in the direction of SVD representative
modes a) U1

1 and b) U2
1 for both inactive and active conformers. [Color figure

can be viewed at wileyonlinelibrary.com]

Figure 10. Histograms of differences in cavity volumes (ΔVol) between
structures of active and inactive conformers previously displaced a
magnitude –Ai and + Ai, being Ai(Å) the corresponding amplitude of the ith
mode at room temperature. a) i = 1, and b) i = 2. [Color figure can be
viewed at wileyonlinelibrary.com]

WWW.C-CHEM.ORG FULL PAPER

Wiley Online Library Journal of Computational Chemistry 2018 7

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://WWW.C-CHEM.ORG


features. Their conservation among the complete set of active
conformers enlighten us on minima functional mechanisms
within them. Inactive conformers have shown a general ten-
dency to disrupt the collective motion of residues involved in
these vibrations. It is, therefore, expected that functional
aspects of EGFR kinase involve coordinated motions between
residues that are mainly reflected in the two lowest frequency
normal modes of active conformers. These modes allow active
conformers to reach more extended conformations involving a
hinge-like separation of the N and C lobes, a prior requirement
to achieve a relatively more stable inactive conformation.
Besides, they lead to larger changes of cavity volumes compare
to the corresponding modes of inactive conformers. This differ-
ential dynamics between active and inactive conformers can
impact on ligand affinity and, therefore, regulation of the bio-
logical function of the active site pocket of the EGFR kinase
region. The importance of protein dynamics to explain biologi-
cal function has been extensively recognized using the ensem-
ble of conformations in dynamic equilibrium to represent the
native state of the protein.[74] Protein studies considering
dynamics are important and central to improve our compre-
hension of protein function in normal as well in disease-related
states.

The importance of protein dynamics to explain biological
function has been extensively recognized using the ensemble
of conformations in dynamic equilibrium to represent the
native state of the protein.[74] Protein studies considering this
dynamics are important and central to improve our compre-
hension of protein function in normal as well in disease-related
states. Moreover, it is important in the study and design of
inhibitors, given that their selectivity and specificity depend on
protein sequence, structural, or conformational differences as
well on protein motions being a challenge the recognition of
specific mechanisms to modulate protein activity.

Keywords: normal modes � protein conformers � Epidermal
growth factor receptor � dynamics fingerprints
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