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QCD & QED NNLO corrections to Drell-Yan production

Daniel de Florian, Manuel Der, and Ignacio Fabre®

International Center for Advanced Studies (ICAS), ECYT-UNSAM, Campus Miguelete,
25 de Mayo y Francia, 1650 Buenos Aires, Argentina

® (Received 21 June 2018; published 12 November 2018)

We compute the QCD x QED [O(a,a)] mixed and QED? [O(a?)] corrections to the production of an
on-shell Z boson in hadronic collisions. We obtain them by profiting from the calculation of the pure QCD
terms after taking the corresponding Abelian limits. Therefore, we extend the available knowledge up to
complete next-to-next-to-leading-order precision in QCD @ QED. We present explicit results for the
perturbative coefficients and perform the phenomenological analysis at different collider energies with
particular emphasis on the mixed corrections. We study the contribution from the different channels and
discuss the scale dependence stabilization effect. We find that the contributions compete with the pure QCD
NNLO ones under relevant kinematical conditions for the LHC, despite the fact that they are small,

typically at the few per mille level.
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I. INTRODUCTION

In recent years the development of high precision
experiments in particle physics demanded a theoretical
upgrade to match the accuracy achieved at the LHC. The
state of the art in fixed order computations for processes
with up to two hard partons in the final state is reaching
next-to-next-to-leading order (NNLO), i.e., O(a?). Since
a2 ~ a, it becomes necessary to include also the corre-
sponding next-to-leading-order (NLO) electroweak (EW)
corrections, that for many observables exceed the few
percent level (e.g., [1,2]) and become quantitatively impor-
tant for an accurate description. Both precise measurements
and calculations are essential to test different aspects of the
Standard Model (SM) and to discern between them and
possible new physics evidence due to beyond the Standard
Model (BSM) effects.

In this sense, inclusive massive lepton pair production
(the Drell-Yan process) has worked as an important test
bed of perturbative quantum chromodynamics (QCD).
On one hand, it has offered a sensitive way to study
parton distribution functions (PDFs) [3-5]. From weak
boson production, charge asymmetry measurements and
invariant mass dependencies have helped to extract precise
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information on both the quarks’ valence structure functions
and the separation of quarks’ flavors. On the other
hand, knowing the behavior of charged-current (CC) and
neutral-current (NC) processes has allowed us to perform
high-precision measurements of fundamental electroweak
parameters, like Z and W widths and masses and the EW
mixing angle.

In addition, the Drell-Yan process is not only relevant to
test SM predictions, but also to evaluate alternative BSM
theories, where W and Z bosons usually appear as final or
intermediate states in the decay of particles predicted in
new physics models, like new gauge interactions, super-
symmetry or heavy resonances [6].

In this sense, and considering that the improvement in
statistics over the last years has made higher-order correc-
tions experimentally noticeable, having access to QCD
(and QED) corrections to these processes has become of
great importance to put the previous predictions on a firmer
ground.

Furthermore, recent work has been performed to include
QED effects in the evolution of parton distributions, by
providing explicit expressions for splitting kernels up to
O(aay) [7] and O(a?) [8] and by the determination of
precise photon distributions in the proton within the
LUXqed approach [9,10], which are essential to match
the theoretical calculations at the partonic level.

From the point of view of partonic cross sections, the
O(a) and O(aa;) corrections represent the first EW and
mixed-order contributions to Drell-Yan pair production in
the general expansion

do = aialdo!’), (1)
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where pure EW do(*/) and QCD do("0) corrections, as well
as mixed-order contributions, which combine effects of the
two interactions, arise.

So far, QCD corrections to the total cross section have
been calculated at NLO in Ref. [11] and at NNLO in an
inclusive way in Refs. [12—14]. Exclusive results have also
been presented up to NNLO QCD accuracy [15-20].
Additionally, threshold calculations have been performed
at next-to-next-to-next-to-leading-order (N°LO) and next-
to-next-to-next-to-leading-logarithmic (N*LL) accuracy in
Refs. [21,22].

On the other hand, concerning the EW contributions,
exclusive computations for NLO-EW corrections to
CC-DY are available in Refs. [23-25] and for NC-DY in
Refs. [26,27]. Finally, progress towards the computation
of NNLO-EW has been accomplished in recent years too
[28-31]. Due to the lack of the full calculation of the
NNLO mixed-order terms O(aaq,), different approaches
have been followed to approximately combine the QCD
and QED/EW corrections [32-36], by either assuming the
full factorization or the additive combination of the strong
and electroweak contributions. Particularly, recent partial
exclusive results have been presented for the resonance
region, by using the pole approximation [37-39].

The contributions for a general (i.e., including the decay
of the gauge boson) perturbative calculation of Drell-Yan
can be roughly characterized into purely factorizable terms
that arise due to the initial state (production, from the initial
state partons) and final state (decay, from the final state
leptons) emissions and, on the other hand, nonfactorizable
terms originated by soft photon exchange between the
production and the decay. The nonfactorizable O(aa)
contributions have been shown [37-39] to have a negligible
impact on the cross section, allowing us to treat effectively
Drell-Yan in the (resonant) limit of the decoupling between
the production and decay processes, at least for the
achieved experimental accuracy. The results presented in
[39] also rely on the assumption that the missing initial-
initial state factorizable O(aq,) contributions are very small.

The computation of the so far unknown mixed QCD x
QED O(aay) corrections to the inclusive on-shell produc-
tion of a Z boson in hadronic collisions is the main goal of
this paper. Those contributions are by themselves a gauge-
invariant set of the complete Drell-Yan cross section
calculation. Besides, QED corrections have been shown
in [24,26] to be dominant over the pure weak ones at NLO,
at least for distributions sensitive to recoil effects.' In this
way, from now on we will make use of Eq. (1) in the sense
of pure QED corrections instead of the full EW ones.

'To take into account weak effects, one can work in the
effective Born approximation, absorbing most of the pure weak
contributions in an effective tree-level vectorial coupling between
the Z boson and the quarks, so that only photonic corrections
have to be considered and self-energy insertions in the Z (and
eventually y) propagator can be avoided [26].

Counting with analytical expressions for the total cross
section can be useful to extend subtraction methods, such
as gp-subtraction [40] at O(aay).

In principle a full computation of QCD x QED O(a«)
terms involves the evaluation of double-virtual, single-
virtual plus one parton emission and double parton emis-
sion contributions, where a parton in general refers to
quarks, antiquarks, gluons, and photons. Most of these
double real contributions were recently presented in [41],
including the case of W boson production which is not
discussed in this paper,2 while the master integrals for the
two-loop calculation were obtained in [42].

Instead of following the path of a dedicated calculation
for each term, in this work we profit from the available
computation of NNLO pure QCD corrections O(a?)
presented in [12] and, by pointing out the Abelian compo-
nent, we extract the corresponding QCD x QED O(aa;)
contributions and assess the phenomenological impact for
the inclusive cross section at different hadronic energies.

Furthermore, by following the same procedure we also
present the QED? O(a?) corrections, completing, therefore,
the set of NNLO contributions in QCD & QED [i.e., all
terms that correspond to i + j = 2 in Eq. (1)].

This paper is organized as follows: In Sec. II we present
the method used to compute the QCD x QED O(a«,) and
QED? O(a?) contributions from the pure QCD corrections
O(a?). In Sec. Il we present the results and study the
detailed phenomenology of the corrections at different
collider energies. Finally, in Sec. IV we present our
conclusions. The explicit NNLO coefficients are presented
in Appendix A.

II. ABELIANIZATION PROCEDURE

In order to achieve the O(aqy) corrections we analyze
the contributing diagrams for each channel in [12] and take
the corresponding Abelian limit. To schematize this pro-
cedure, we describe the algorithm of gluon-photon inter-
change, taking as an example the most relevant gg channel.

For this explicit case, given that the color factors in the
partonic cross section only depend on the QCD structure,
without loss of generality we concentrate on diagrams with
double real emission, which appear only to tree level. As
can be observed in Fig. 1 there are four kinds of diagrams to
consider, which we will label with the supraindex (k, /)
according to the total number of QCD (k) and QED (/)
vertices for each topology. Since the order of external
momenta affects the color structure of the diagram, we will
refer to the diagram shown in Fig. 1 as (a), while (&)
represents the corresponding one obtained after crossing
the final state parton lines.

2Only the contribution from the interference of QCD and QED
qq — qq diagrams is missing in [41].
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FIG. 1. Some of the diagrams contributing to NNLO QCD
corrections to Drell-Yan.

We can recognize different color factors, according to the
configurations of color matrix traces in the calculation of
each contribution to the partonic cross section. For example,
terms corresponding to the calculation of |(a)*?)|? in NNLO

QCD turn out to be proportional to 2Ill—chr[T”T“T“Tb] =

sv- Cr» where the Nz in the denominator arises due to the
average over the color factor of the incoming quarks and the
symmetry factor 1/2 is due to the appearance of two identical
gluons in the final state. For the case of [(a)>?) x (a/*)?9)]
both Abelian and non-Abelian contributions appear, result-

ing in a factor 3> Tr(T?T*T?T*] = ﬁCF(CF - Cy/2)
C

and, when considering terms from [(»)>%) x (a*)>9)], they
result proportional to ﬁf”bCTr[TCT“Tb] :—ﬁ(CFCA/Z),

a purely non-Abelian contribution.

Once color factors are characterized for each term, we
choose a gluon in the diagram, replace it by a photon and
recalculate the color structure, thus obtaining modified
diagrams with the corresponding new factors for QCD x
QED corrections. These are shown in Fig. 2. Naturally, all
the diagrams of type (b) vanish when considering the
Abelian limit. Taking this into account, we find that the
modified factors for |(a)"V|* and [(a)!V) x (a’*)(V)]
are both given by ;—%Tr[T“T“] = ;}—iC r» Where we have
included the charge of the quark for the QED coupling.
Here we may notice that all the color factors proportional to
C,, which corresponds to the non-Abelian part of the
calculation, could be thrown out when considering the
Abelian limit, while the ones proportional to C2 are to be
replaced by 2e§C r, thus obtaining QCD x QED factors in
each case.

It is worth noticing by performing the same analysis for
the topology shown in Fig. 1(c), i.e., the production of a gg
pair, that also the color factor T, vanishes when the similar
contribution is analyzed in the QCD x QED case, since
the result for [(¢)?? x (¢*)(*2)] becomes proportional to
Tr[T“]. Therefore, since terms proportional to both Cy,

(1,1) (1,1)

(a) (a')
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FIG. 2. Diagrams that result after applying the Abelianization
procedure to the real NNLO QCD corrections in Fig. 1.

and T, are vanishing, the same occurs for terms propor-

tional to ﬂgCD in the original pure QCD calculation,
consistent with the fact that no renormalization is needed
at this order either for the QED or QCD couplings.
Likewise, only a few contributions survive in the products
of the type [(c)®®) x (d*)©?] and [(d)?? x (d'*)(02)],
i.e., the interference of amplitudes with one photon and
with one gluon exchange.

This strategy can be extended for all the topologies in ¢g,
and also for all channels, after treating carefully the initial
color average factor.

In Table I we show the different color factors (after
factorizing an overall factor of 1/2N.) for diagrams
contributing to 6%, and the resulting ones after the
Abelianization procedure corresponding to o). The
replacements in the color structures needed to go from

TABLE 1. Color factors corresponding to the gg channel for
each contribution to NNLO QCD & QED corrections to Drell-
Yan, up to an overall ﬁ factor. Focusing on a? factors, the third
column includes sums over sets of quark (Q) and lepton (L) final
state charges, while ¢; and e; refer to different quark flavor
charges in the scattering.

Color factors in gg

2 2

Diagram a; axa, a

(a)]? Ct ZeécF 6’3

(d) x (d*) CrTg 0 CAe%e?

(c) x (c*) npCpTy 0 egINeY et + Xrereil
(a) x (a™) 3 -SE 2e3Ck e

(d)x(d”) 3 -Sfa 265Ck ¢

(b) x (a*) S 0 0

(c)x(d*) 3-S5 2e3Ck e
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the NNLO QCD coefficients to the QCD x QED ones can
be directly read from the entries in Table 1.

As an important feature, this method shows to be
versatile in order to obtain NNLO QED corrections to
Drell-Yan as well (i.e., the calculation of 6(*2)), if a deeper
Abelian limit is considered. Here, by turning two gluons
into photons from the topologies of NNLO QCD calcu-
lation one can recover correction terms up to second order
in a, thus completing the set of QCD @ QED NNLO
corrections to Drell-Yan, in the sense of Eq. (1). The
corresponding color factors for the gg channel (including
electric charges of final state quarks and leptons) are also
shown in Table I. The same occurs for other channels, after
treating carefully the initial flux factor, which depends on
the color properties of initial state particles. For instance,
both ¢y and gg contributions to 6" can be obtained from
the gg calculation for NNLO QCD corrections, by choos-
ing the initial or final state gluon, respectively, to perform
the Abelianization and following the procedure detailed
above. Particularly, in the case of the yg channel, we have
performed the explicit calculation of the fixed order
corrections, finding perfect agreement with the result
obtained by applying the Abelianization procedure.

III. RESULTS AND PHENOMENOLOGY

In general the cross section can be written as

d VA
d%z = 16(Q*)W,(z, 0?), (2)

where 6(Q?) is the pointlike LO cross section; VS is the
hadronic center-of-mass energy; Q the invariant mass of the
produced Z; z = %2; and W, (z, Q?) is the hadronic struc-
ture function.

The pointlike cross section that appears in Eq. (2) is
defined as

V2G,M,
4N

'z,
=" wowp e O

where No =3 is the number of quark colors, G, =
1.16639107 GeV~?2 is the muon Fermi constant, M, =
91.187 GeV and I', are the mass and width of the Z,
and I';_ x is the partial width due to the decay of the Z to X
(e.g., for leptonic decay, X = #7).” The narrow-width
approximation used in this paper consists of making the
following replacement:

T

= 2 _ 2
a0, 0@ M), (4)

(Q* = M3)* + M7

Note that although other EW parameter schemes can been
used, at this order of perturbation theory the discrepancies may be
numerically significant.

1.010—
I K
1.005 NLO QED —
NNLO QCD x QED
1.000 =
NNLO QED
0.995 NNLO QCD ]
I E R B S B
0.990 20 40 60 80 100
Ecm (TeV)
FIG. 3. K-factors for the different distributions as defined in

Eq. (6). The (blue) dashed line corresponds to Kgﬁg, the (blue)
dotted line to K glg%o’ the solid line to the mixed K ggBQQED and the
(black) dotted line to the pure NNLO QCD corrections Ko

ensuring the decoupling of the production and decay
mechanisms. The hadronic structure function appearing
in (2) can be written as a sum of contributions of different
orders:

1 1 1
Wa(z, Q2):/ dxl/ dxz/ dxs(z — xx1x;)
0 0 0
ag o\ iy
<2(&) (@) enn ©

where the dependence on the factorization uy and renorm-
alization up scales is implicit.

The analytic expressions for the inclusive cross section
of Drell-Yan Z-production at QCD @ QED NNLO are
presented in Appendix A.

To study the phenomenology of the total inclusive cross
section, i.e., in all the decay channels of the Z within the
narrow-width approximation, a specific code was written
which makes use of the LHAPDF [43] package to interpolate
sets of parton distribution functions. Unless explicitly
stated, we set the renormalization and factorization scales
to ugr = ur = M. For both interactions, we set the running
coupling at the corresponding renormalization scale [i.e.,
a(My) Nﬁ] and always use the parton distributions to
NNLO (QCD) accuracy [3-5,44] with the corresponding
QED corrections from the set LUXqedl7_plus_
PDF4LHC15_nnlo_100 [9,10].4 In Fig. 3 we plot the

*It should be noted that this set includes splitting functions of
order O(a,a) and O(a?). For the results presented in this work,
one order further would be needed to perform a fully consistent
evolution of the PDFs.
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K-factors for different orders as a way to quantify the size
of the QED and QCD corrections to Drell-Yan at different
center-of-mass energies.

Here the K-factor is defined as the ratio of the cross section
computed at a given order over the previous one, i.e.,

600 1 g0

NLO __
KQep = 5(0.0)
KNNLO _ o0 + a0l + o360
QCD 600 | g 6(10)
NNLO c(00) + a0l + 2602
KQED - 00 1 460D
NNLO %0 + a6®) + a6 + aa,60)
KQCDxQED = . (6)

600 4 60D 4 aso(l’o)

As can be observed, the NNLO QCD corrections are of
the same (~5 per mille level) order, but typically with the
opposite sign, as the NLO QED corrections, as expected
from the simple counting a? ~ a. The mixed QCD x QED
turn out to be positive and below the per mille level over the
whole range of energies spanned in the plot. Interestingly,
due to the particular dependence of the NNLO QCD
corrections with the energy, with a sign change around

VS ~ 16 TeV, for the LHC at v/S ~ 14 TeV the mixed

QCD x QED corrections are only a factor of ~3.5 smaller
than the pure NNLO QCD contributions. Furthermore, for

lower center-of-mass energies \/§ ~2 TeV the mixed
terms almost reach the per mille level and are just a factor
of 5 smaller than the NLO QED ones, showing that the
elementary counting of couplings can fail under certain
kinematical conditions. The pure NNLO QED terms, also
plotted in Fig. 3, are negative but the corrections always
remain at the O(1075) level.

Even though for this particular observable the mixed
QCD x QED contributions are small, it is interesting to
study how well they can be approximated by the factorization

assumption on QED plus QCD corrections, where it is
5(0:1) 5(1.0)

_ [®NLO NLO _
assumed that Kfact = [KQED X KQCD]O(aa‘.) = 5 500 5(00)>
(L)
compared to the exact case Kpjxeq = A %o For that

purpose, we define the following quantity:
Kmixed o U(O'O)G(I’U

R= = :
Kfact O_(O, 1 >6( 1,0)

(7)

which is the ratio between the exact and the approximated
factorized contribution. Although this approximation is well
motivated in many cases, in this particular process there is no
reason to expect it to work. In fact, as it can be observed in
Fig. 4, the factorization approach fails to reproduce the correct
behavior of the mixed contribution typically by a factor of 2
or more. Of course, given the size of the corrections, the effect
of the factorized treatment of these contributions is small at
the level of the cross section, as shown in the inset plot of

R 1.001 - Uexact/gfact -

0.8 i
1.000

T
1

0.999

T
1

0.6

] ] ] ]
20 40 60 80 100
Ecm (TeV)

0.4r
02r J
OO L L L L
20 40 60 80 100
Ecm (TeV)

FIG. 4. Ratio R between the exact and the factorization
approximation for the mixed QCD x QED contributions. The
inset plot shows the ratio of the cross section computed exactly
and with the factorization approximation for the mixed term.

Fig. 4, where we show the ratio between the cross section
computed exactly and within the factorization approach,
but the situation might not hold for other observables or
even for more exclusive distributions in Drell-Yan.

In Fig. 5 we show the contribution to the mixed QCD x
QED K-factor from the different channels. It is noticeable
that the photon initiated contributions are rather small,
mostly due to the size of the photon PDF in the proton, as
can be observed by comparing gy and gg contributions,
which share the same partonic coefficient apart from the
color factor. It is also clear that the different signs of qq
(fully dominated by the Born level ¢gg channel and exceed-
ing the per mille level) and gg contributions conspire to

1.0015
NNLO QCD x QED
1.0010~ qq 7
1.0005 - m
g7 1
10000 e s |
qQy ]
0.9995 - m
qg
0.9990 : 1 1 1
20 40 60 80 100
Ecm (TeV)
FIG. 5. Contribution to the mixed QCD x QED K-factor from

the different channels. Here the label g accounts for both quarks
and antiquarks and ggq represents the sum of ¢g and ¢gq.
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12[ o(u)/a(iy) - -

“'NLO .

0.8 7 i
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FIG. 6. Cross sections corresponding to LO [dashes, i + j = 0
in Eq. (I)], NLO (dots, i+ j=0,1) and NNLO (solid,
i+ j=0,1,2) at different factorization and renormalization
scales with up = pp = u. All results are normalized by the
corresponding cross section at u = M.

reduce the effect of the mixed QCD x QED corrections to
the Drell-Yan cross section. Again, in more exclusive
distributions this partial cancellation might be spoiled
by some kinematical cuts, resulting in an increase of the
mixed-order corrections.

Finally, we discuss the effect of the higher order con-
tributions in the stabilization of the perturbative expansion
in terms of the scale dependence for /S = 13 TeV (very
similar behaviors are observed for other values of +/S).
In Fig. 6 we show the LO (¢(*)), NLO (6% 4 ac(®!) 4
a,619)and NNLO (6% + a6V + a,61:0) + aa,othD +
a26(%2) + a26(29)) cross sections for different values of the
factorization and renormalization scales yup = up = p, nor-
malized by the corresponding value at the central scale
1 = M ,. From the slope of the different curves, it is clearly
visible the reduction in the scale dependence when

including higher order corrections, mostly due to the
dominant QCD effects. At NLO the QED corrections
contribute less than 1%, increasing the scale dependence
introduced by QCD corrections. At NNLO, the inclusion of
the mixed-order terms as well as pure QED corrections
(that make up less than 0.1% of the total cross section)
reduce the scale dependence introduced by pure QCD
corrections.

IV. CONCLUSIONS

In conclusion, mixed QCD x QED as well as pure QED?
NNLO corrections to the total Drell-Yan Z-production cross
section were presented for the first time. This was achieved
via an Abelianization procedure that profits from the avail-
able pure QCD NNLO result and proved to be a versatile
technique. We performed the phenomenological analysis
finding that the mixed corrections are of the order of per mille
at the LHC, but only a factor of ~3.5 smaller than the pure
QCD NNLO due to a sign change that occurs in the latter at
V/S ~ 16 TeV. Pure QED NNLO terms are shown to be
negative corrections of the order of 107>, The full QCD &
QED NNLO corrections are found to further stabilize the
scale dependence of the final result. The exact K-factor at
order O(aa,) was compared with the naive factorization
approximation, which consists of the mixed-order term of the
product of QCD and QED NLO K-factors. It was shown that
the latter fails to reproduce the exact result by a factor of 2 or
more. Although in this case the difference is not significant,
due to the smallness of the overall contribution, this result
hints that the factorization approximation may not work for
other processes nor for more exclusive measurements of the
one presented herein.
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APPENDIX A: DEFINITIONS AND NOTATION

Here we present for the first time the coefficients wiD

QED x QCD and QED corrections, respectively:

and w,

(02) in the sense of Eq. (5). They include the NNLO mixed

Wy = 37 ()@ (0)e2e2Cr AL T (x) + 3 qi(xn)qi(xa) e, 263 CrAR ()

i€0,0

i€0,0

+ Z [2C4Cr(qi(x1)y(x2) + 7(x1)qi(x2)) + (gi(x1)g(x2) + g(xl)q,»(xz))]ciel?A,(ﬁl)cF(x)

i€0,0

+ (g(x1)r(x2) + 7(x1)g(x2))2C4 (chei

k€0

Jalin)

(A1)
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U= Y almme) {aer (@a”

i€0,0

+ Z ckAqq

+aaA “(x)]2C e2e

02N+ et Ao e ()

keQ

+ Z ckAqq

keo kel

keL F

x) + a;a; A( Jax “(x )}26?6%}

2)id
+ 37 i) gi(n) A et + D gi(x1)g;(x)2C €7

i,jeQ.,0

i€0.0
x [(¢; + Cj)ASIZq)non—id(x> n vinAg;l;on-id,v

+ Z (qi(x1)

i€0,0

+ 7 (x)r(x2)4Cy [chckei + cheq A ().

keo kel

where Q(Q) and L are the sets of (anti)quarks and leptons
considered (e.g., Q = {u,d,c,s,b}, L = {e,pu,t}), e is
the charge of the particle & in units of the electron charge,
up and up are the factorization and renormalization scales,
¢; = v? + a? with v; and a; defined as the vector and axial
couplings of particle i:

8
v, =1 —gsinzew, a, =—1, (A3)
4.,
vd:—1+§sm Ow, ag =1, (A4)
v, = —1 +4sin®0y,  a, =1, (A5)

and replicated through families, the QED and QCD beta
functions are given by
|

(2)non-id, A

(x) +a; a;jBgq (x)]

7(%2) +7(x1)qi(x2))c;2C €} { 00+ A ﬂog(ﬂi)]

(A2)
|
w2 (N + 3 4)
keQ keL
11 2
AP _ ~_c, —Zn,, (A6)

0 3 3

ng is the number of quark flavors considered (n, = #Q),
and the various A(x) correction functions are defined in
Appendix B.

The other coefficients needed for the full NNLO calcu-
lation, W(Z for i <2 and w(®!), were presented in [12] and
[26,27] respectively. Here they are rewritten in this notation
for the sake of completeness and as a reference for the full
set of NNLO corrections to the Drell-Yan Z production:

wy = %c,’qxxnzz,(xz)é(l —x) (A7)
= ;Q{c,-q,(x])zz,-(x;)cFAgy (0)(gi(x1)g(x2) + g(x1)gi (x2))eigy (x)} (A8)
gg{c,q, 1) (x2) €Ak () (i(x1)7 (x2) + 7(x1 )i (x2) )e2Cae? Al (1)} (A9)
w(z“”=iEEQjquxl)a,»(xz){cicf<cAA£,?CA<x>+cFA£f; )+ e+ 8 g () )
# 2t ) + aans F}+%}Qciq,(xl>q,»<x2>A<qé”d<x>cF(CF—%cA)
D @l Crl(es + ¢ A" (x )+ o A (2) + 0 A )
i.j€Q.0
+ g@(q[(xl)g(xz) gl [ 1) + Craf (o) + ) tog(22)

g(x))g(xs <ch> (x) + AR (x)). (A10)

k€0

094008-7
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APPENDIX B: ANALYTIC EXPRESSIONS FOR CORRECTION TERMS

In order to present the expressions for the different corrections, we define the following distributions:

In‘(1 -
Di(x) = {M} (B1)
I-x ],
which appear in the soft terms regularizing the divergence of soft emission (x ~ 1) and defined as usual by
! Hni(1 - x)
[ Posar= [y - e (B2)

We also define an auxiliary variable to write the dependence on the factorization scale,

L, =In (gg) (B3)

where up is the factorization scale and Q the invariant mass of the produced Z.
The corrections needed for the NLO result are

4(x* +1)In(x)
1-

ALY =8Dy(x)L,, + 16D, (x) +8(x—1)(6L,, +8L,—16) 4L, (x+1)— -

—8(x+1)In(1-x)  (B4)

1
Aé? = 5(2(2x2 —2x+1)(L,, +2In(1 —x) —In(x)) — 7x? 4+ 6x + 1). (B5)

For the second NNLO, several correction terms are introduced. We denote with a C, superscript the corrections coming
from the non-Abelian part of the contributions (only relevant for the QCD NNLO contribution), with ny the ones that
involve a sum over fermion families (relevant for the QCD and QED NNLO result), and with C the rest of the Abelian
contributions.

The non-Abelian contributions on the quark-antiquark channel are

AR = 3 age? 50
A = AN 4 20502 @

.8
A = > (9Dy(x)L2, + L, (36D; (x) — 30Dy (x)) — 36D(x)¢, + 28Dy (x)

— 60D, (x) +36D,(x)) + %5@ — 1)(36L2, —204L,, —224¢, + 144¢5 + 381)
1

N 27(x—1)

—36x8, + 103x —36(, —47)) = 241In(1 —x)((x = 1)(3L,, (x + 1) = 11x 4+ 1)

—6(x? +1)In(x)) 4+ 18(4L,, (x* + 1) = 11x* + 10x — 9) In(x) — 72(x* — 1)In?*(1 — x)

—9(5x% + 7)In?(x))), (B8)

(2(2(18x’Lig(1 —x) — (x = 1)(9LZ (x + 1) + L, (6 — 66x)

where we amended the result for A< )

term 103x above, and where

7. A2 given in Eq. (B.11) of Ref. [12] by adding the corresponding missing x factor to

094008-8
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Nsc, 1

2
w1 " = g 00x = 1)(~1980L, —4320L,, (3 + 11580L,,

4
- ﬁ (99D0 (X)LﬁF

+108D0(X)L14F£:2 - 402D0(X)Lﬂ[: - 396@0(}6)4’2 - 378D0(X)é’3
+404Dy(x) + 396D, (x)L,,, + 216D, (x)¢, — 804D, (x) + 396D, (x))

—43272 4 11840¢, + 504085 — 23025)

1 . 2 2
370 =1y PROL(l =X)Ly, (7 4 1) =747+ 3x 4+ 3)

+99L2 (x> = 1) + 6L, (x — 1)(2x(9, — 62) + 188, — 19)

+270x28 5 (1 = x) — 1628 (1 — x) + 324Li5(1 — x) — 450x%¢, — 378x%3

+1139x2 + 108x¢, — 1362x + 342, + 3785 + 223) 4 121n(1 — x)

x (36x2Liy (1 — x) + (x = 1)(66L,, (x + 1) + 36x¢, — 239x + 36¢,

—38) — 6(22x% + 13) In(x)) — 181n(x)(12(x> + 1)Li,(1 — x)

+L,, (44x% +26) + 12x2¢; — 109x% 4 83x + 12, — 78)

+792(x? — 1)In?(1 — x) + 9(55x? + 32)In?(x)] (B9)

ANYCr = L, (=Dy(x)(64, + 128) + 96D (x) + 192D, (x)) + L2, (48D ()
+ 64D, (x)) + 256D (x)5 — Dy (x) (1285 + 256) + 128D5(x) + 5(x — 1)

8 2
X (L,%F(IS —328,) + Lup(24C2 + 17645 — 93) +%

511 1
708 =604 + %41 ) + 3y RO =02, (2 - 3)

—4x? +x+3)+ L2 (—(x* +4x=35)) + L, (x — 1)(x(4L2 +2)

+4&) +15) + 6x2S 5(1 — x) +2S; 5(1 — x) — 4x?Liz(1 — x) + 6Li5(1 — x)

— 8x?L,—16x%¢3 + 6x> 4+ 16x{, — 15x — 88, + 16{3 +9) + 61In(1 — x)

X (6(x* =3)Lip(1 —x) — (x = 1)(8L; (x+1)—4L, (x—7)

—x(1685 +3) = 16(85 +4)) + 4(L,, (9x* +5) = 7x* 4 11x — 4) In(x)

—12(2x* 4+ 1)In*(x)) + 121In(x)(3(x* + 1)Lis(1 —x) + L (3x* + 1)

+L,, (=3x2 + 10x = 1) = 12x?(, 4+ 6x> — 19x = 4, — 1)

—6In(1 —x)(8(x — 1)(3L,,, (x + 1) — 2x + 2) — (39x% + 23) In(x))

—6(L,, (9x* +3) — 6x% + 8x — 2)In*(x) — 96(x* — 1)In’(1 — x)
+(25x2 + 11)In3(x))] (B10)

1
Cr=Cy/2 :
Ay al BN 1)(12L12(1 x)(2L,, x* 4+ 2L, —9x* +4x?

+4(x* + 1) In(1 — x) +2(2x* + 6x% —4x — 1) In(x) + 9x — 1)
+72(x = 1)(x 4 1)*Lip(—x)(In(x) = 2In(x 4 1) + 1) + 84L,, x*
+ 12L,, x* In*(x) — 24L,, x* In(x) — 180L,, x

+12L,, In*(x) + 60L,, In(x) + 96L, + 96x°S;,(1 —x)

094008-9
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— 144x3S 1 5(—x) + 300x?S; (1 — x) — 144x%S; 5(—x) — 192xS; 5 (1 — x)

1+ 14418, 5(=x) + 128, 5(1 — x) + 1448, 5(=x) — 24x°Liz (—x) — 722°Lis (1 — x)
— 24x°Lig(—x) + 24xLiz(—x) — 24Li5(1 — x) + 24Li5(—x) + 36x°C,
+24x3¢ In(x) — 72338 In(x + 1) — 78x3 + 4x3 In?(x) — 90x° In?(x)
—72x3In(x) In?(x + 1) + 60x> In?(x) In(x + 1) + 72x3 In(x) In(x + 1)
+36x2¢, + 24x%¢, In(x) — 72x%¢, In(x + 1) — 240x? + 6x% In?(x)

+24x? In(1 — x) In?(x) + 54x% In?(x) — 72x? In(x) In*(x + 1)

+ 60x? In?(x) In(x + 1) + 168x? In(1 — x) — 48x? In(1 — x) In(x)

+ 42x% In(x) + 72x? In(x) In(x + 1) — 36x8, — 24x8, In(x) + 72x&, In(x + 1)
—24&, In(x) + 724 In(x + 1) + 762x — 12x1n?(x) — 141n?(x) + 84x1n?(x)
+ 72xIn(x) In?(x + 1) — 60x In?(x) In(x + 1) + 24 In(1 — x) In?(x)
—931n%(x) + 721n(x) In?(x + 1) — 60 1n*(x) In(x 4 1) — 360x In(1 — x)
+162xIn(x) = 72xIn(x) In(x + 1) + 192In(1 = x) + 1201In(1 — x) In(x)
—2761n(x) — 721n(x) In(x + 1) — 36, — 444).

(B11)

The singlet contributions for the (anti)quark-(anti)quark channel include terms arising from identical initial quarks, and
nonidentical ones. These are given by the following expressions:

INFE) (LM <_ . l . (4(x2 + 1)(4Liy(—x) —In?(x) + 41n(x + 1) In(x) + 2¢,))

+8(x + 1) In(x) — 16(x — 1)) - (4(x* + 1)(=18Liy(1 — x) In(x)

1
3(x+1)

1- -1
+ 12Li5(=x)(21In(1 — x) = 21In(x) + In(x + 1)) — 24Li; <x +)1C> + 24Li; (jz n 1>

— 248, 5(1 = x) + 128, 5(=x) + 24Lis(1 — x) + 6Lis (—x) — 98, In(x) + 128, In(1 — x)
+6&, In(x + 1) + 2In*(x) — 61n(1 — x)In?(x) — 21 In(x + 1)In?(x)

+6In%(x + 1) In(x) + 24 1n(1 — x) In(x + 1) In(x) + 3¢3)) + (1 — x)

X (—16Liy(—x) In(x + 1) — 16S; 5(—x) + 8Li3(—x) + 4{, In(x) — 8, In(x + 1)

- §1n3(x) +41In(x + 1)In(x) — 8In?(x + 1) In(x) + 321In(1 — x) + 8¢5 — 34)

+4(x + 1)(2Li5(—x) +41In(1 — x) In(x) 4+ 21In(x) In(x + 1) + &,)

+8(x + 3)Lip(1 — x) — 4(3x + DIn(x) + 2(7x — 9) ln(x)) - g (x—1)

x (6Liy(1 = x)(21In(x) 4+ 3) + 128 5(1 —x) — 12Li3(1 — x) + 2In*(x) + 9In*(x))
+4(6x — 7) In(x) — 26x* + 56x — 30

non—i 1 .
A,(fq) on-id _ —— (36Li, (1 —x)(x(lZLMF(x +1) +x(8x+15) +39) + 6x(x + 1)

54x
X (4In(1 — x) +In(x)) + 16) 4 6xIn(x)(18L; (x4 1) + 36In(1 —x)

X (2(L,, +3)x+2L,, +2(x+ 1)In(1 — x) + 4x? + 3)
H18L,, (422 + 6x + 3) + 2002 — 72(x + 1)¢, — 48x + 345)

094008-10
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+ (x = 1)(=18L2, (x(4x +7) +4) +241n(1 — x)

X (=3L,, (x(4x +7) +4) = 3(x(4x +7) +4) In(1 — x) + (17 — 22x)x — 22)

—12L,,, (x(22x — 17) 4 22) + 703x2 + 72(x(4x + 7) +4){, — 1895x — 116)

—9xIn?(x)(24L,,, (x + 1) +48(x + 1) In(1 — x) 4 5(x(8x + 15) + 3))

+432x(x + 1)(3S15(1 — x) = 2Li3(1 — x)) + 162x(x + 1)In?(x)). (B13)

It is worth noticing the sign difference in the nonidentical vectorial contribution for the gq initial state, with respect to ¢g:

99

A (2)non-id,A

a9

non-i non-i 1 .
AGremidV _ _ pnonidV 25 (2(12Lin(=2) (2(22 + 5) In(x) + Sx(x + 1) = 6(x(x +2) +2)
X

xIn(x + 1)) — 6xLir (1 — x)(4x + (x — 10) In(x) — 5) + 6(3x((x — 2)Liz(1 — x)
—4(x +2)S15(—x)) + 4(x(x +2) +2)S;5(1 = x) +2(10 — 3x)xLi3(—x))

— 1448, 5(=x) + 24Li5 (1 — x) — 120Li5(—x) + 30x(x(Cy +4) + & — 4)

+6In(x+ 1)(5In(x)(2x(x 4+ 1) + (x(x +2) + 2) In(x)) — 6(x(x +2) +2){>5)
—x1In(x)(=6x¢, + 48x + xIn(x) (4 In(x) + 39) — 60¢, + 60) — 18((x — 6)x

+4)&3 = 36(x(x 4+ 2) + 2) In(x)In*(x + 1))) (B14)

=4Liy(1 —x)((3x+2)In(x) + 1) + 8Lir(—x)(x + 8In(x) = 6(x +2) In(x + 1) + 1)

+4(4(x +2)S;5(1 —x) — x(12S; 5(—=x) + Liz(1 — x) — 10Li3(—x)))

=965 5(—x) + % (=72Li3(=x) + 6(x(52 + 983 +4) + ¢, —6{3 — 4)

+6In(x + 1)(=6(x +2)& + 5(x +2) In?(x) + 2(x + 1) In(x))

+ In(x)(6(5x¢5 + 28, —2) — x1In(x)(4In(x) + 3))

—36(x +2)In(x) In*(x 4 1)) + 8Liz(1 — x). (B15)

The correction terms that appear in the gg and gy channels are given by the following expressions:

A(2>CA _

q9

+4Lij <

§L,,F(36(2x2 + 6x + 3)Liy (1 — x) — 36(2x% + 2x + 1)(Liy (—x)
+1In(x) In(x + 1)) = 72(2x% — x + 1)&5 + 73x% + 54(2x* — 2x + 1)In?(1 — x)

8
+ 6(—71x2 +54x +—+ 9) In(1 —x) + 18(28x> — 2x + 3) In(x)
X

44
+36(=2x? + 10x + 1) In(1 — x) In(x) — 12x + — — 36(3x + 1)In?(x) — 87)
x

x+1

— 4(2x? 4 2x + 1)(4Liy(—=x)(In(1 — x) — In(x)) + 2Li3(—x) — 4Li3 <1 — x)

X —

s 1) —31In(x + 1)In?*(x) + 41In(1 — x) In(x + 1) In(x))

4 16
+§ <44x2 +90x +—+ 33>Li2(1 —x) + 8(5x% + 10x + 7)Liy (1 — x) In(1 — x)
x
+ 8(4x? + 5x + 1)(Liy(—=x) + In(x) In(x 4+ 1)) + 8xLiy (1 — x)

2
+ 8x(7 = 2x)Lip (1 — x) In(x) + = L2 <—31x2 +6(2x* = 2x + 1) In(1 — x) + 24x

3ﬂF

4
+ 24 6(4x + 1) In(x) + 3> + 8(4x2 4 16x + 9)S; (1 — x) — 4(12x% + 34x + 15)Li5(1 — x)
X

094008-11
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4 8
+3 <1O7x2 —84x—-+ 15) £y —32(2x% = x + 1) In(1 = x)
X

1837x2 26
27 3

4 8
+3 (—77)(2 +63x +—+ 6) In?(1 — x) + 4(=6x% + 22x + 1) In(x)In?(1 — x)
x

—4(2x% +4x + 1)+ ——— + = (2x* = 2x + D)In*(1 — x)

346x2

+4(2x% — 14x = 3)In?(x) In(1 — x) — ( - 5>ln (x)+= <74x +75x + % - 210)

2
x In(1 = x) +20(13x% = 2x + 1) In(x) In(1 — x) — §(457)c2 + 12x

—354) In(x) + 16x(2x — 5)¢, In(x) — 12§6x + ;6 i (20x + 9)In* (x)
—4xIn?(x) + 8xIn(x) In(1 — x) — 8x1In(x) + 53—9> (B16)

1
A = 3 (LMF(—48x2Li2(1 —x) + (2x% = 2x + 1)(36In%(1 — x) — 8¢,) + 22x2

+ 8(4x? — 2x + 1) In?(x) — 4(23x> — 34x + 8) In(1 — x) + 2(46x> — 40x + 5)
x In(x) — 8(16x% — 10x + 5) In(1 — x) In(x) — 68x + 24) + (2x* = 2x + 1)

(—16Li2(—x) In(x) + 32Lis(=x) — 16, In(1 — x) + 73—Oln3(1 —x) + 100@)

+ 2(40x% — 28x + 3)Liy(1 — x) — 4(26x> — 6x + 3)Li (1 — x) In(1 — x)
—16(3x% + 2x — 1) (Liy(=x) + In(x) In(x + 1)) + 8(x — 3)Liy (1 — x) + 4(1 — 2x)
x Lip(1 = x)In(x) +3L3 ((8x* —8x + 4)In(1 — x) + (—8x% + 4x — 2)
xIn(x) + 4x — 1) — 4(34x? — 22x + 11)S; (1 — x) + 4(18x? + 2x — 1)Li3(1 — x)

3052 1
2x — 5 (5227 = 34x + 17) I (x)

+ 4(=12x% + 2x + 5)5 + 24(4x2 = 2x + 1)&, In(x) —

1
-5 (4x? — 68x + 35) In?(x) + 8(10x> — 6x + 3) In(1 — x) In?(x)

—6(22x% = 14x + 7) In?(1 — x) In(x) — 2(63x* — 80x + 23) In?(1 — x) — (174x>
_245x + 59) In(x) + 4(48x2 — 50x + 13)In(1 — x) In(x) + 2(88x2 — 147x + 38)
xIn(1 —x) = 12(x — 1) +233x — 4(x — 3) In?(x) + (28 — 44x) In(x) + 8(x — 3)

x In(1 — x) In(x )+24(x—1)1n(1—x)—£§>. (B17)

The last correction terms correspond to the ones contributing to the gg, gy and yy channels:

2
A = Cfi 1 %( —8(x + 1)2Lis (—x)(9In(x) — 6In(x + 1) —2) = 24(x — 1)2S; 5 (1 — x)
+48(x + 1)%S; 5(=x) + 72x(x + 2)Liz(—x) + 72Li3(—x) + x(x(8¢, + 485 + 191)

+16(8, + 683 —9)) + 248, In(x + 1) + 4In(x + 1)(6x(x +2)& + (x + 1)?(4=91n(x)) In(x))
+24(x 4+ 1) In(x) In?(x + 1) + 21In(x)(—=x(75x + 38) + (x(25x +2) = 2)
x In(x) — 6) 4 8¢, + 48(3 —47) (B13)
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AR = L, ((2x+ 1)2(2In(x)(In(x) — 41n(1 — x)) — 8Liy(1 — x)) — 67x + 60x
+16(x = 1)(3x + 1) In(1 —x) +2(1 —=4(x = 2)x) In(x) + 7) —4(x + 1)?
x (In(x 4 1)(4Liy(—x) = 31In*(x) + 2In(x + 1) In(x) + 2¢,) + 4S;,(—x))
—4(2x + 1)*(Lir(1 = x)(4In(1 —x) + In(x)) — 4Li3(1 — x) + In(1 — x)
x (2In(1 —x) —In(x)) In(x)) + 4(2x(7x —2) = 5)Lip(1 — x) + 8(x(x +4) + 2)
X Lip(—x) In(x) + 8(x + 1)(Liy(—x) + In(x) In(x + 1)) — 2L
X (—6x% +4x + (2x + 1)*In(x) +2) — 8(x(7x +10) + 1)S;5(1 —x) + 8((x = 2)x — 1)
x Liz(—x) + 98x% + 4(3(3 — 4x)x + 5){, + 4(10x(x + 1) + 3)& In(x) +4(2(x — 1)x — 1)&5

— 66x —%(SX(x +1) +3)In?(x) = 2(x + 1)(4x + 3) In?(x) + 16(x — 1)

x (3x + 1) In?(1 — x) + (x(105x — 64) — 23) In(x) + 4(1 — 4(x — 2)x) In(1 — x)

x In(x) = 2(x = 1)(67x + 7) In(1 — x) — 32.

(B19)
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