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We describe properties of a Hermitian matrix M ∈ Mn(C) having
minimal quotient norm in the following sense:

‖M‖ � ‖M + D‖

for all real diagonal matrices D ∈ Mn(C). Here ‖ ‖ denotes the

operator norm. We show a constructive method to obtain all the

minimal matrices of any size.
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1. Introduction

Let Mn(C) and Dn (R) be, respectively, the algebras of complex and real diagonal n × n matrices.

In this paper we describe Hermitian matrices M ∈ Mn(C) such that

‖M‖ � ‖M + D‖, for all D ∈ Dn (R)

or equivalently

‖M‖ = dist (M,Dn (R)) ,
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where ‖ ‖ denotes the operator norm. These matrices M will be called minimal. These matrices ap-

peared in the study of minimal length curves in the flag manifold P(n) = U (Mn(C)) /U (Dn(C)),
where U(A) denotes the unitary matrices of the algebra A, when P(n) is endowed with the quotient

Finsler metric of the operator norm [4]. Minimal length curves δ in P(n) are given by the left action of

U (Mn(C)) on P(n). Namely

δ(t) =
[
eitM

]
,

where M is minimal and [U] denotes the class of U in P(n).
The following theorem follows ideas in [4], where this problem was also studied in the context of

von Neumann and C∗ algebras. The next result was stated in Theorem 3.3 of [1] for 3×3matrices. The

same proof holds for n × nmatrices.

Theorem 1. A Hermitian matrix M ∈ Mn(C) is minimal in the above sense if and only if there exists a

positive semidefinite matrix P ∈ Mh
n(C) such that

• PM2 = λ2 P for λ = ‖M‖.
• All the diagonal elements of PM are zero.

Previous attempts to describeminimalmatriceswere done in [1] for 3×3matrices. In that paper, all

3× 3minimal matrices were parametrized. We note that, Theorem 1 does not show how to construct

n × n minimal matrices. Our goal in the present paper is to study some properties of n × n minimal

matrices that allow the construction of them.

Minimal operators were studied in [8] where Theorem 2.2 of [1] was used to relate Leibnitz semi-

norms with quotient norms in C∗-algebras.

2. Preliminaries and notation

LetMn(C)be the algebra of square complexmatrices ofn×n,Mh
n(C) the real subspace ofHermitian

complex matrices, and Dn (R) the real subalgebra of the diagonal real matrices. We denote with ‖A‖
the usual operator norm of A ∈ Mn(C) and with ‖A‖1 = tr(|A|) = tr

(
(A∗A)1/2

)
the trace norm of A,

where tr denotes the usual (non-normalized) trace.

Given a matrix A ∈ Mh
n(C), λ(A) ⊂ R

n denotes the set of the eigenvalues of A, in decreasing order

and counting multiplicity, that is,

λ(A) = (λ1, λ2, . . . , λn) ,

with λ1 � λ2 � · · · � λn. In this context λmin(A) and λmax(A) denote the smallest and biggest

eigenvalues of A respectively.

The symbol σ(A) denotes here the set (unordered) of eigenvalues of A.

We denote with {ei}ni=1 the canonical basis of C
n. Given a matrix A ∈ Mh

n(C), we denote with ai,j
the i, j entry of A and we write A = [ai,j] for i, j = 1, . . . , n.

Observe that if M ∈ Mh
n(C) and D ∈ Dn (R) then (M + D) ∈ Mh

n(C). Let us consider the quotient

Mh
n(C)/Dn (R) and the quotient norm

‖| [M] ‖| = min
D∈Dn(R)

‖M + D‖ = dist (M,Dn (R))

for [M] = {M + D : D ∈ Dn (R)} ∈ Mh
n(C)/Dn (R). The minimum is clearly attained.

Definition 1. A matrix M ∈ Mh
n(C) is called minimal if

‖M‖ � ‖M + D‖ for all D ∈ Dn (R) ,

or equivalently, if ‖M‖ = ‖| [M] ‖| = min
D∈Dn(R)

‖M + D‖ = dist (M,Dn (R)).
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Remark 1. Note that if M ∈ Mh
n(C) is a minimal matrix then its spectrum is centered, i.e. ‖M‖,

−‖M‖ ∈ σ(M). In general, for a given matrix A ∈ Mh
n(C), ±‖A‖ ∈ σ(A) if and only if ‖A‖ =

min
λ∈R

‖A + λI‖ if and only if λmin(A)+ λmax(A) = 0.

For a1, a2, . . . , an ∈ R we denote with diag(a1, a2, . . . , an) the diagonal matrix of Dn (R) with

a1, a2, . . . , an on the diagonal.

Given v ∈ C
n, v ⊗ v denotes the linear map in C

n defined by (v ⊗ v)(x) = 〈x, v〉v.
Let us denote with� the linear map from Mh

n(C) to Dn (R) defined by

�(X) = diag
(
x1,1, . . . , xn,n

)
, for X = [

xi,j
] ∈ Mh

n(C).

Note that

�(X) =
n∑

j=1

〈Xej, ej〉 ej ⊗ ej.

For M ∈ Mh
n(C) and v ∈ C

n we write M and v to denote the matrix and vector obtained from M

and v by conjugation of its coordinates.

IfM,N ∈ Mn(C)we denote withM ◦ N the Schur or Hadamard product of these matrices defined

by (M ◦ N)i,j = Mi,jNi,j for 1 � i, j � n. Therefore, if v ∈ C
n, with coordinates in the canonical basis

given by v = (v1, v2, . . . , vn),

v ◦ v = (|v1|2, |v2|2, . . . , |vn|2) =
n∑

j=1

|vj|2ej ∈ R
n+.

Observe that with these notations, if X ∈ Mh
n(C) and {vi}i=1,...,n is an orthonormal basis of C

n of

eigenvectors of X with corresponding eigenvalues λ(X) = (λ1, . . . , λn), then X = ∑n
i=1〈Xvi, vi〉 vi ⊗

vi = ∑n
i=1 λi vi ⊗ vi. Direct calculations with the canonical coordinates of these eigenvectors prove

that

�(X) = diag

⎛
⎝

n∑
i=1

λi (vi ◦ vi)

⎞
⎠ . (2.1)

For M,N ∈ Mn(C) the usual matrix product will be denoted with MN and ran(M)will denote the

range of the linear transformationM.

3. Minimal matrices

It is apparent that for X ∈ Mh
n(C)

tr (DX) = 0 ∀ D ∈ Dn (R) ⇐⇒ �(X) = 0. (3.1)

Then, from the Banach duality formula for the quotient norm and (3.1), it follows that

max
X∈Mh

n(C),�(X)=0

‖X‖1=1

|tr(MX)| = min
D∈Dn(R)

‖M + D‖. (3.2)

Note that for an orthogonal projection E and A ∈ Mh
n(C) the condition EA = A is equivalent to

ran(A) ⊂ ran(E).
If X ∈ Mh

n(C), let X
+ and X− be the positive and negative parts of X , that is,

X+ = |X| + X

2
and X− = |X| − X

2
(with |X| = (X2)1/2 � 0).
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Theorem 2. Let 0 = M ∈ Mh
n(C) and E+ (respectively E−) the spectral projection of M corresponding to

the eigenvalue λmax(M) (respectively λmin(M)). The following conditions are equivalent:

(i) M is minimal.

(ii) There is a non-zero X ∈ Mh
n(C) such that

�(X) = 0, E+X+ = X+, E−X− = X− and tr(MX) = ‖M‖ ‖X‖1.

(iii) λmax(M) + λmin(M) = 0, and for any diagonal D ∈ Dn (R) there exist y ∈ ran(E+) and z ∈
ran(E−) such that

‖y‖ = ‖z‖ = 1 and 〈Dy, y〉 � 〈Dz, z〉.
Proof. Wemay assume that ‖M‖ = 1.

(i) ⇒ (ii). Since M is minimal, by Remark 1 it must be λmax = 1 and λmin = −1. Consider the

projections

E1 = E+, E2 = E− and E3 = I − E1 − E2.

Then E3 is the spectral projection ofM corresponding to the open interval (−1, 1), hence E3M = ME3
and ‖ME3‖ < 1. NowM is written as

M = E1 − E2 + ME3.

In view of (3.2) there exists X ∈ Mh
n(C) such that

�(X) = 0, ‖X‖1 = 1 and tr(MX) = 1. (3.3)

In terms of the orthogonal decomposition C
n = ran(E1)⊕ ran(E2)⊕ ran(E3), we can write

M =

⎛
⎜⎜⎜⎜⎝

I 0 0

0 −I 0

0 0 M3,3

⎞
⎟⎟⎟⎟⎠

and X =

⎛
⎜⎜⎜⎜⎝

X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

X3,1 X3,2 X3,3

⎞
⎟⎟⎟⎟⎠
.

Let us to prove the identities X1,2 = X∗
2,1 = 0, X1,3 = X∗

3,1 = 0, X2,3 = X∗
3,2 = 0 and X3,3 = 0.

The pinching inequality of Chandler Davis [2, IV.52] implies that

∥∥∥∥∥∥

⎛
⎝X1,1 X1,2

X2,1 X2,2

⎞
⎠

∥∥∥∥∥∥
1

+ ‖X3,3‖1 � ‖X‖1 = 1 (3.4)

and

‖X1,1‖1 + ‖X2,2‖1 �

∥∥∥∥∥∥∥

⎛
⎜⎝
X1,1 X1,2

X2,1 X2,2

⎞
⎟⎠

∥∥∥∥∥∥∥
1

. (3.5)

Note that ‖M3,3‖ < 1. First let us show that X3,3 = 0. Suppose, that ‖X3,3‖1 = 0. Then by (3.3)

and the inequalities (3.4) and (3.5) we have

‖X‖1 = 1 = tr(MX)= tr(X1,1)− tr(X2,2)+ tr(M3,3X3,3)

� ‖X1,1‖1 + ‖X2,2‖1 + ‖M3,3‖ ‖X3,3‖1

< ‖X1,1‖1 + ‖X2,2‖1 + ‖X3,3‖1 � ‖X‖1 = 1,
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a contradiction. Hence X3,3 = 0. Incidentally, we have proved that

tr(X1,1) = ‖X1,1‖1 and tr(−X2,2) = ‖ − X2,2‖1.

Therefore, by the well-known fact that tr(Y) = ‖Y‖1 occurs only if Y � 0, we have that

X1,1 � 0 and − X2,2 � 0. (3.6)

Moreover by (3.3)

tr(MX) = tr

⎛
⎜⎜⎜⎝

X1,1 X1,2 X1,3

−X2,1 −X2,2 −X2,3

M3,3X3,1 M3,3X3,2 0

⎞
⎟⎟⎟⎠ = 1 =

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝

X1,1 X1,2 X1,3

−X2,1 −X2,2 −X2,3

M3,3X3,1 M3,3X3,2 0

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥
1

.

Then, by the same argument, thematrixMX should be positive semidefinite,which implies thatX1,3 =
X∗
3,1 = 0 and X2,3 = X∗

3,2 = 0.

In the same way from the relation

tr

⎛
⎝ X1,1 X1,2

−X2,1 −X2,2

⎞
⎠ =

∥∥∥∥∥∥

⎛
⎝ X1,1 X1,2

−X2,1 −X2,2

⎞
⎠

∥∥∥∥∥∥
1

we can conclude that

⎛
⎝ X1,1 X1,2

−X2,1 −X2,2

⎞
⎠ � 0, and then X1,2 = X∗

2,1 = 0.

Therefore

X =
⎛
⎜⎜⎝
X1,1 0 0

0 X2,2 0

0 0 0

⎞
⎟⎟⎠ with X1,1 � 0 and X2,2 � 0,

which proves that X+ = E+X1,1E+ and X− = −E−X2,2E−, hence E+X+ = X+ and E−X− = X−.

(ii) ⇒ (i) is immediate from (3.2).

(ii) ⇒ (iii). Take a non-zero X ∈ Mh
n(C) such that�(X) = 0, E+ = X+, E−X− = X− and ‖X‖1 =

tr(MX). Pick a diagonal D ∈ Dn (R). Note that X = 0 and�(X) = 0 imply that�(X+) = �(X−) = 0.

Since X+, X− � 0, it follows that

‖X+‖1 = ‖�(X+)‖1 = ‖�(X−)‖1 = ‖X−‖1 = 0.

The inequalities

tr
(
�(X+)D

)
= tr

(
X+D

)
� ‖X+‖1 min

y∈ran(E+), ‖y‖=1
〈Dy, y〉

and

tr
(
�(X−)D

)
= tr

(
X−D

)
� ‖X−‖1 max

z∈ran(E−), ‖z‖=1
〈Dz, z〉

prove (iii).

(iii) ⇒ (ii). Suppose that there is no 0 = X ∈ Mh
n(C) satisfying the requirements of (ii). Consider

the following two compact convex subsets of Mh
n(C)

A = {Y : E+Y = Y � 0, tr(Y) = 1} and B = {Z : E−Z = Z � 0, tr(Z) = 1}.
Since the assumption implies that�(A)∩�(B) = ∅, the compact convex sets�(A) and�(B) in R

n

are separated by a linear form, that is, there is a non-zero vector d = (d1, . . . , dn) ∈ R
n such that
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min
Y∈A

〈�(Y), d〉 > max
Z∈B

〈�(Z), d〉.
This contradicts the condition (iii): taking D = diag(d1, . . . , dn),

min
Y∈A

〈�(Y), d〉 = min
y∈ran(E+), ‖y‖=1

〈Dy, y〉

and

max
Z∈B

〈�(Z), d〉 = max
z∈ran(E−), ‖z‖=1

〈Dz, z〉.

This completes the proof. �

Remark 2. Let M ∈ Mh
n(C) be a minimal matrix and X ∈ Mh

n(C) be as in (ii) of the previous the-

orem. The functional ψ(·) = tr(X·) is a witness for the fact that 0 is a best approximation to M

in Dn (R) as defined in [8]. That is, ψ is a norm one functional such that ψ |Dn(R) = 0 and ψ(M)
= ‖M − 0‖.

4. An algorithm to construct minimal matrices

It is now clear that Theorem 2 can be used to construct all minimal matrices.

Theorem 3. (step 1) Take non-zero X ∈ Mh
n(C)with 0 diagonal (hence X+ = 0, X− = 0 and ran(X+) ⊥

ran(X−)).
(step2)Takenon-zeroorthoprojectionsE+ andE− such thatE+E− = 0, E+X+ = X+ andE−X− = X−.

(step 3) Take R ∈ Mh
n(C) such that R(E+ + E−) = 0 and ‖R‖ < 1.

Then M = E+ − E− + R is a minimal matrix with ‖M‖ = 1.

Conversely every minimal matrix M with ‖M‖ = 1 is obtained in this way.

Remark 3. Note that for differentX ∈ Mh
n(C)with zerodiagonal, the constructiondetailed inTheorem

3 may give the same orthoprojections E+ and E− onto ran(X+) and ran(X−), and therefore the same

minimal matrices. Take for example the 3 × 3 unitary U = 1√
3

⎛
⎜⎜⎜⎝

1 1 1

1 w w2

1 w2 w

⎞
⎟⎟⎟⎠ with w = ei

2π
3 . Then

define Xt = Udiag (1, t − 1,−t)U∗ for t ∈ R and 0 < t < 1. It is apparent that Xt ∈ Mh
n(C),

�(Xt) = 0 and ‖Xt‖1 = 2. By construction, if t1 = t2, the matrices Xt1 and Xt2 are different. However

ran
(
(Xt1)

+) = ran
(
(Xt2)

+)
and ran

(
(Xt1)

−) = ran
(
(Xt2)

−)
for t1, t2 ∈ (0, 1).

The following corollary is a slight variation of Theorem 1.

Corollary 1. A non-zero matrix M ∈ Mh
n(C) is minimal if and only if there exists a non-zero positive

semidefinite matrix P ∈ Mh
n(C) such that

• PM2 = λ2 P for λ = ‖M‖.
• All the diagonal elements of PM are zero.
• P commutes withM.

Proof. If M is minimal and X is as in (ii) of Theorem 2 then P = X+ + X− fulfills all the required

conditions. That these conditions are necessary follows from Theorem 1. �

Recall that E+ and E− are the spectral projections corresponding respectively to the eigenvalues

λmax(M) and λmin(M).
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Corollary 2. A non-zero matrix M ∈ Mh
n(C) is minimal if and only if λmin(M) + λmax(M) = 0 and

there exist two non-zero positive semidefinite matrices P,Q ∈ Mh
n(C) such that

• ran(P) ⊂ ran(E+) and ran(Q) ⊂ ran(E−).• �(P) = �(Q).
• PQ = 0.

Proof. If M is minimal and X is as in (ii) of Theorem 2, then P = X+ and Q = X− satisfy all the

required conditions. That these conditions are necessary for M to be minimal follows picking X =
1

‖P−Q‖1
(P − Q), which satisfies condition (ii) of Theorem 2. �

5. Spectral eigenspaces corresponding to λmin and λmax for a minimal matrix

In this section we describe some properties of the subspaces ran(E+) and ran(E−), where E+ and

E− are the spectral projections of a minimal matrixM corresponding to the eigenvalues λmax(M) and
λmin(M). As seen in Theorem 3 these are the building blocks of all the minimal matrices.

For given vectors {wk}mk=1 ⊂ C
n we denote with co

({wk}mk=1

)
the convex hull generated by

them.

Corollary 3. Let M ∈ Mh
n(C) be a non-zero matrix such that λmax(M) + λmin(M) = 0. Then the

following properties are equivalent:

(a) M is minimal.

(b) There exist orthonormal sets {vi}ri=1 ⊂ ran(E+) and {vj}r+s
j=r+1 ⊂ ran(E−) such that

co
({vi ◦ vi}ri=1

) ∩ co
(
{vj ◦ vj}r+s

j=r+1

)
= ∅. (5.1)

Proof. Suppose that M is minimal. By using Theorem 2 there exists a non-zero X ∈ Mh
n(C) that

satisfies (ii) of that theorem. Fix a basis of ran(X+) of orthonormal eigenvectors {vi}ri=1 corresponding

to the (strictly) positive eigenvalues {ai}ri=1 of X
+, and a basis of ran(X−) of orthonormal eigenvectors

{vj}r+s
j=r+1 corresponding to the (strictly) positive eigenvalues {aj}r+s

j=r+1 of X− (note that ran(X+) ⊥
ran(X−)). Then, since X+ = ∑r

i=1 ai(vi ⊗ vi) and X− = ∑r+s
j=r+1 aj(vj ⊗ vj), using the formula (2.1)

for�(X+) and�(X−), it can be shown that

�(X) = �(X+)−�(X−) = diag

⎛
⎝

r∑
i=1

ai (vi ◦ vi)

⎞
⎠ − diag

⎛
⎝

r+s∑
j=r+1

aj
(
vj ◦ vj

)
⎞
⎠ .

Since�(X) = 0, it is apparent that
∑r

i=1 ai (vi ◦ vi) = ∑r+s
j=r+1 aj

(
vj ◦ vj

)
and tr(X+) = tr(X−) > 0,

which proves that
∑r

i=1 ai = ∑r+s
j=r+1 aj . Therefore,

r∑
i=1

ai∑r
i=1 ai

(vi ◦ vi) =
r+s∑

j=r+1

aj∑r+s
j=r+1 aj

(
vj ◦ vj

)
.

Then, since ran(X+) ⊂ ran(E+) and ran(X−) ⊂ ran(E−), (b) holds.
Conversely, if (b) holds, there exist αi, βj > 0 satisfying

∑r
i=1 αi = 1 = ∑r+s

i=r+1 βj , and orthonor-

mal sets {vi}ri=1 ⊂ ran(E+) and {vj}r+s
j=r+1 ⊂ ran(E−), such that

r∑
i=1

αi(vi ◦ vi) =
r+s∑

j=r+1

βj(vj ◦ vj) ∈ co
({vi ◦ vi}ri=1

) ∩ co
(
{vj ◦ vj}r+s

j=r+1

)
.
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Put

X = 1

2

⎛
⎝

r∑
i=1

αi (vi ⊗ vi)−
r+s∑

j=r+1

βj
(
vj ⊗ vj

)
⎞
⎠ .

It is straightforward that X satisfies condition (ii) of Theorem 2. Therefore M is minimal. �

The previous corollary could have been provedwith similar techniques as in the proof of (ii)⇒ (iii)

in Theorem 2. Moreover, define the following subsets of R
n+

P+ = ⋃

o.n. set {vi}ri=1{vi}ri=1⊂ran(E+)

co
({vi ◦ vi}ri=1

)
and P− = ⋃

o.n. set {vj}r+s
j=r+1

{vj}r+s
j=r+1⊂ran(E−)

co
(
{vj ◦ vj}r+s

j=r+1

)
.

ThenP+ andP− induce the subsets�(A) and�(B) ⊂ Dn (R), whereA andB are the compact convex

sets defined in the proof of Theorem 2. Then, P+ and P− are compact and convex sets ofRn. Therefore

for a matrixM such that λmin(M)+ λmax(M) = 0, the property P+ ∩ P− = ∅ is equivalent to being

minimal.

A different way to construct minimal matrices is the following. Take ai > 0, for 1 � i � r, aj > 0

for r + 1 � j � r + s with 1 � r, s, r + s � n and such that
∑r

i=1 ai = ∑r+s
j=r+1 aj . If we define �a =

(a1, . . . , ar,−ar+1, . . . ,−ar+s, 0, . . . , 0) ∈ R
n, it follows that �a majorizes �0 = (0, . . . , 0) ∈ R

n,

and we will denote �0 ≺ �a as usual (see [6] for basic facts on majorization). Then a concrete unitary

matrix U ∈ Mn(C) can be found (see [5–7]) such that (U ◦ U) ∈ Mn(R+) satisfies that (U ◦ U)�a = �0.
This last equality can be written as

r∑
i=1

ai(vi ◦ vi)−
r+s∑

j=r+1

aj(vj ◦ vj) = �0,

where {vk}nk=1 are the columns of the unitary U. Then any matrix of the form

M = λ
r∑

i=1

vi ⊗ vi − λ
r+s∑

j=r+1

vj ⊗ vj +
n∑

h=r+s+1

λh(vh ⊗ vh) (5.2)

is minimal, provided that λ > 0, λh ∈ R, |λh| < λ. These computations provide a different way to

construct examples of minimal matrices of any size.

In [3] several algorithms are produced to find unitary (or orthogonal) matrices U that satisfy(
U ◦ U

) �a = �0 for a given �a. Nevertheless, the set of all possible unitaries U that satisfy (U ◦ U)�a = 0

is not known in general. The papers [9] and [10] study this problem.

The method to obtain minimal matrices as in (5.2) has the disadvantage that M relies on the con-

struction of the unitary U.

Remark 4. In [1] a different characterization of minimal 3×3matrices was obtained. It is shown that

given a 3 × 3 matrixM, with λ(M) = (λ, μ,−λ), |μ| � λ = ‖M‖, then,M is minimal, if and only if,

there exists a normalized eigenvector vλ of the eigenvalue λ and a normalized eigenvector v−λ of the

eigenvalue −λ such that vλ ◦ vλ = v−λ ◦ v−λ. The statement remains valid if any of the eigenvalues

has multiplicity two (μ = ±λ). The following is an example of a 4 × 4 minimal Hermitian matrix

where this condition does not hold. Let

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

9
14

− 15
14

− i
7

− 1
7

+ 5i
7

2
7

+ 6i
7

− 15
14

+ i
7

13
14

− 1
7

+ i 6i
7

− 1
7

− 5i
7

− 1
7

− i 5
7

−1 − 2i
7

2
7

− 6i
7

− 6i
7

−1 + 2i
7

5
7

⎞
⎟⎟⎟⎟⎟⎟⎠
.
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Then λ(M) = (2, 2, 1,−2), and the eigenspace of the eigenvalue 2 is generated by the orthonormal

eigenvectors

v1 = 1

5
√

2
(−1 − 2i, 5,−3 − i, 1 − 3i) and

v2 = 1

10
√

14
(17 − 11i,−15 + 5i,−9 + 17i, 3 − 19i).

The vectorw = 1

2
√

2
(1 − i, 1 − i, 1 + i, 1 + i) is a normalized eigenvector of eigenvalue−2. A direct

calculation shows that for α = 2
9
, α(v1 ◦ v1) + (1 − α)(v2 ◦ v2) = w ◦ w = ( 1

4
, 1
4
, 1
4
, 1
4
), which

proves thatM is minimal (using Corollary 3). However, there is not an eigenvector v in the eigenspace

of the eigenvalue 2 such that v ◦ v = w ◦ w. This follows writing v = βv1 + γ v2 with β, γ ∈ C, and

|β|2 + |γ |2 = 1, and proving that v ◦ v = w ◦ w cannot happen (note that it can be supposed that

γ =
√
1 − |β|2).
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