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Summary

We develop and estimate a multifactor affine model of commodity futures that
allows for stochastic seasonality. We document the existence of stochastic sea-
sonal fluctuations in commodity futures and that properly accounting for the
cost-of-carry curve requires at least three factors. We estimate the model using
data on heating oil futures and analyze the contribution of the factors to risk
premia. Correctly specifying seasonality as stochastic is important to avoid erro-
neously assigning those fluctuations to other risk factors. We also estimate a
nonlinear version of the model that imposes the zero lower bound on interest
rates and find similar results.

1 INTRODUCTION

Futures prices in many energy and agricultural commodities display seasonal fluctuations. Often, those fluctuations are
not perfectly predictable. From the point of view of market participants, stochastic seasonal fluctuations imply a source of
risk that manifests itself in futures prices and risk premia. The purpose of this paper is to develop and estimate an affine
model of futures prices that allows for stochastic variations in seasonality. We use the model to analyze the implications
of stochastic seasonal fluctuations for the pricing of commodity futures and risk premia.

The earlier literature, such as Gibson and Schwartz (1990) and Litzenberger and Rabinowitz (1995), assumes that the
price of commodity futures depends on two factors: a spot price factor and a cost-of-carry (or convenience yield) factor.
Schwartz (1997) extends the model to include a stochastic interest rate, which became the standard three-factor model of
commodity futures. Casassus and Collin-Dufresne (2005) provides a different interpretation of the three-factor model that
we use to relate the cost-of-carry and the spot commodity price. Miltersen and Schwartz (1998) use the affine framework
to price derivatives on commodity futures, and Hamilton and Wu (2014) study risk premia in oil futures markets. Finally,
existing models of seasonal commodity futures only allow for deterministic seasonal fluctuations in prices (e.g., Sorensen,
2002) or in the cost-of-carry (e.g., Borovkova & Geman, 2006).

This paper extends the current literature in three dimensions. First, our model features stochastic seasonal fluctuations
in both the spot price and the cost-of-carry. By attaching market prices of risk to seasonal factors, we are able to measure
the risks associated with stochastic seasonal shocks. Second, following much of the literature on bond prices, we assume
that bond yields depend on three factors. And third, consistent with data on a set of agricultural and energy commodity
futures, we assume that the cost-of-carry curve is driven by three factors.

We begin with a preliminary analysis of futures prices for a group of energy and agricultural commodities that provide
support to our modeling assumptions. We first document that seasonal fluctuations in this set of commodity futures are
stochastic. Second, we perform a principal components analysis on the cost-of-carry curve for each commodity. We con-
clude that we need at least three factors to appropriately account for the dynamics of the cost-of-carry curve. The first
three principal components account for 90% or less of the variability of the cost-of-carry curve, with the third principal
component contributing between 4% and 14% of the variability depending on the commodity and method used to com-
pute the curve. Furthermore, the first principal component only accounts for between 16% and 80% of the variability.
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These results suggest that a model in which the cost-of-carry depends on a single factor misses important features of the
data, and motivates our assumption that the cost-of-carry depends on three factors.

We next describe an affine model of commodity futures with stochastic seasonality in discrete time. The model prices
zero-coupon bonds and commodity futures of any maturity, and stochastic variations in seasonality are driven by a pair
of random walks (Hannan, 1964). To estimate the model we need to impose identifying restrictions. An approach often
used in the bond pricing literature is to impose an identifying assumption such that the yield curve adopts an augmented
Nelson and Siegel (1987) specification (Christensen, Diebold, & Rudebusch, 2011). We extend this literature to the pricing
of commodity futures and find conditions under which the yield curve and the cost-of-carry curve derived from the model
adopt a Nelson–Siegel representation.

We estimate the model of bond and commodity futures prices using data on US zero coupon bonds and futures prices
on heating oil for the period January 1984 to April 2017. We concentrate our analysis on heating oil but leave for an
online supplement (Supporting Information) estimation results using data on soybeans futures. The model matches the
cross-section of futures prices over time, including their seasonal pattern. We find strong evidence of stochastic season-
ality: the peaks and troughs of the seasonal cycle vary over the years, and the amplitude of the seasonal fluctuations
decreases over time, particularly at the end of the sample. Consistent with the theory of storage, the moderation of the
estimated seasonal component coincides with a similar mitigation of the seasonal component in stocks of heating oil
inventories.

Expected returns of holding a futures contract fluctuate widely over time, and most of those fluctuations come from
variations in the spot, cost-of-carry, and yield curve factors. Although nonnegligible, the contribution of seasonal shocks to
risk premia is small. Seasonal shocks account for about 0.5 percentage points of expected returns but become less relevant
at the end of our sample period. Therefore, correctly specifying seasonality in futures prices as stochastic is important
mostly to avoid erroneously assigning those fluctuations to other risk factors. When we estimate the model imposing
deterministic seasonality, the omitted time variation in the seasonal pattern manifests itself as large fluctuations in the
cost-of-carry factors, which, in turn, translate into large and spurious fluctuations in estimated risk premia.

It is often argued that interest rate shocks have a minor impact on the time variation in commodity futures risk premia.
Schwartz (1997) assumes a constant interest rate because interest rate fluctuations are orders of magnitudes lower than
those in futures returns. Using the three-factor model, Casassus and Collin-Dufresne (2005) argue that the market price
of interest rate shocks is barely significant. In contrast, we find that yield curve factors have a significant impact on risk
premia, mostly at medium and lower frequencies. In our sample period, interest rates declined from about 12% to roughly
zero. The contribution of interest rate factors to expected holding returns went from about −10 percentage points to 0
over the same time frame. When the slope of the yield curve is positive, long-term contracts are relatively more expensive
than shorter contracts, while the reverse holds when the yield curve is inverted. Thus changes in the slope of the yield
curve over time affect futures prices and risk premia. Overall, we find that several measures of risk premia began to drop
by 2007. This drop is associated with a decline in the risk premia associated with the commodity factors and a decline in
the (negative) risk premia associated with the yield curve factors. The contribution of the seasonal shocks to risk premia
also declines, but this effect is smaller than that of the other factors.

From December 2008 to December 2015, the US Federal Reserve set the policy interest rate to virtually zero. We explore
to what extent our results change if we explicitly impose the zero lower bound on interest rates. To that end, we adapt the
yield curve model proposed by Wu and Xia (2016) and jointly estimate a model of commodity futures and bond prices
that imposes the zero lower bound constraint. Although this constraint is important for bond pricing, we find that it has
a minor impact on futures prices and risk premia relative to the results of the baseline model.

The paper is organized as follows. Section 2 documents two empirical regularities for commodity futures and Section
3 describes an affine model with stochastic seasonality. Section 4 proposes a representation of the model that adopts
Nelson–Siegel functional forms and Section 5 describes the estimation method. Section 6 contains the main results and
Section 7 concludes. Proofs are relegated to the Appendix (the Supporting Information contains additional material).

2 SOME EMPIRICAL PROPERTIES OF COMMODITY FUTURES

In this section we document two empirical regularities in a group of energy and agricultural commodity futures. The first
is that seasonal fluctuations are stochastic. The second is that we need at least three factors to properly account for the
variability of the cost-of-carry curve. Those results provide support to our subsequent modeling assumptions.
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2.1 Stochastic seasonality in commodity futures
Futures prices in many energy and agricultural commodities display seasonal fluctuations.1 Although it is common to
model seasonality as deterministic cycles, in this section we argue that, for many commodities, those seasonal fluctuations
are in fact stochastic. This distinction is important because stochastic seasonality implies an additional risk factor that
affects risk premia.

Let us decompose a stochastic process zt = zn
t +zs

t into its seasonal (zs
t ) and nonseasonal (zn

t ) components. Deterministic
seasonality can be modeled in terms of trigonometric functions:

zs
t =

6∑
𝑗=1

[
𝜉𝑗 cos(2𝜋𝑗

12
mt) + 𝜉∗𝑗 sin(2𝜋𝑗

12
mt)

]
,

where 2𝜋j∕12 are seasonal frequencies and 𝜉j and 𝜉∗𝑗 are parameters. The seasonal effect zs
t is the sum of six deterministic

cycles with periods of 12∕j months, for j = 1, 2, … , 6. The frequency 2𝜋∕12 corresponds to a period of 12 months and is
known as the fundamental frequency. The other frequencies represent waves with periods of less than a year.

Following Hannan (1964), we model stochastic seasonality by letting the parameters 𝜉j and 𝜉∗𝑗 evolve as a random walks.
Thus the stochastic seasonal component is given by

zs
t =

6∑
𝑗=1

[
𝜉𝑗t cos(2𝜋𝑗

12
mt) + 𝜉∗𝑗t sin(2𝜋𝑗

12
mt)

]
, (1)

where 𝜉jt = 𝜉jt− 1 + 𝜈jt and 𝜉∗𝑗t = 𝜉∗𝑗t−1 + 𝜈∗𝑗t for j = 1, 2, … , 6. The shocks 𝜈jt and 𝜈∗𝑗t are orthogonal and normally
distributed with variances 𝜎2

𝑗 and 𝜎∗2
𝑗 . When the seasonal cycle is dominated by a single seasonal peak and trough within

the year (only the fundamental frequency matters), the seasonality process collapses to

zs
t = 𝜉t cos(2𝜋

12
mt) + 𝜉∗t sin(2𝜋

12
mt), (2)

where 𝜉t and 𝜉∗t are two independent random walks.
Table 1 shows the results of three tests of the null hypothesis that seasonality in futures prices is deterministic for a

number of energy commodities (gasoil, gasoline, heating oil, and natural gas) and agricultural commodities (corn, soy-
bean, and wheat). The alternative hypothesis is that seasonal fluctuations are stochastic.2 We use Canova and Hansen's
(1995) nonparametric test for parameter stability and its spectral extension developed by Busetti and Harvey (2003). The
third is a parametric test also proposed by Busetti and Harvey. For most commodities and contract maturities, the tests
strongly reject the null hypothesis of deterministic seasonality.3

These results suggest that the common practice of imposing a deterministic seasonal model in commodity futures
(at least for those considered here) is flawed. Moreover, deseasonalizing the data prior to any empirical analysis is also
problematic for two reasons. First, extracting the seasonal component from each futures contract in isolation does not
guarantee that the seasonal factors are consistent across maturities.4 And second, by deseasonalizing the data prior to
any empirical analysis one is unable to measure the contribution of seasonal shocks to risk premia. We deal with both
concerns by imposing a common seasonal factor that affects futures prices of all maturities within the context of an affine
model of futures prices.

2.2 Number of factors in the cost-of-carry curve
To estimate an affine model of commodity futures we need to determine the number of risk factors. Researchers agree
that three factors capture most of the variation in bond yields and we follow this practice below. But less is known about
the factor structure in the cost-of-carry curve. The basic model of commodity futures assumes that a single factor drives
variations in the cost-of-carry. In this section we show that, in fact, we need at least three factors to properly account for
the dynamics of the cost-of-carry.

1A Wald test of significance of seasonal dummies in autoregressive models of futures prices strongly reject the null of lack of seasonality for all the
commodities considered below.
2The data are end-of-month log settlement futures prices on contracts with maturities up to 18 months ahead. Details of the sources and construction
of the data are given in the Supporting Information.
3The evidence is mixed when considering natural gas, which is often used as an example of a seasonal commodity.
4The Supporting Information shows that seasonal patterns extracted from univariate models are not synchronized across maturities.
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TABLE 1 Test of stochastic versus deterministic seasonality in futures prices

Contract maturity 𝜏 months
1 2 3 6 9 12

Energy
Gasoil

CH 3.7065*** 1.0628** 0.9536** 0.6203* 0.3104 0.6865*
BH (nonparam.) 4.4755*** 1.7076*** 1.9084*** 0.9575** 0.1455 0.5695
BH (param.) 11.738*** 1.3052*** 3.7776*** 7.5316*** 1.8639*** 1.2931***

Gasoline
CH 0.7967** 0.8284** 0.8368** 0.4411 0.8771** 2.2912***
BH (nonparam.) 1.155*** 1.3338*** 1.4022*** 0.1824 0.2539 2.244***
BH (param.) 3.8417*** 0.4951 1.7158*** 26.415*** 4.5124*** 0.4165

Heating oil
CH 0.8418** 0.768** 0.6652* 0.1954 0.8524** 1.4317***
BH (nonparam.) 1.0308** 1.2491*** 1.2211*** 0.2055 0.9599** 1.5977***
BH (param.) 5.303*** 11.162*** 15.177*** 9.5591*** 1.0832*** 15.704***

Natural gas
CH 1.542*** 0.3236 0.2023 0.4106 0.8064** 0.2779
BH (nonparam.) 3.5174*** 0.3736 0.283 0.7733** 0.4905 0.398
BH (param.) 4.2392*** 14.496*** 18.123*** 1.2262*** 13.781*** 6.514***

Agricultural
Corn

CH 8.1784*** 0.8555** 0.7226* 0.9563** 2.4234*** 2.5611***
BH (nonparam.) 18.572*** 1.2667*** 0.3207 1.0738*** 6.5478*** 7.4085***
BH (param.) 1.3201*** 7.0038*** 1.6591*** 6.8562*** 8.2679*** 8.3063***

Wheat
CH 5.9498*** 1.6014*** 0.4361 1.0749*** 1.0055** 0.2214
BH (nonparam.) 7.8489*** 3.061*** 0.3709 0.508 1.2175*** 0.2855
BH (param.) 1.5193*** 5.1433*** 1.6911*** 0.1694 1.3814*** 4.6131***

Soybean
CH 10.119*** 0.4443 0.5835 1.1623*** 2.8187*** 4.9593***
BH (nonparam.) 0.9757** 0.7387* 0.4419 0.4659 7.8844*** 11.549***
BH (param.) 4.3753*** 6.7288*** 2.0364*** 7.0118*** 9.9595*** 12.379***

Note. The table shows tests of deterministic versus stochastic seasonality in heating oil futures. 𝜏 stands for matu-
rity. CH denotes Canova and Hansen's (1995) test, while BH denotes Busetti and Harvey's (2003) parametric and
nonparametric tests. Under the null hypothesis of deterministic seasonality, the statistics are distributed as a gen-
eralized Von-Mises random variable with 2 degrees of freedom. Asterisks denote significance at ***1%, **5%, *10%
levels. For gasoil, data starts in August 1990; for gasoline, in January 1985; for natural gas, in April 1990; for all
other commodities, the sample starts on the last day of 1983. For all commodities the ending date is April 2017.

A 𝜏-period futures contract entered into at time t is an agreement to buy the commodity at time t + 𝜏 at the settlement
price F(𝜏)

t . Let St denote the spot commodity price; 𝑓𝜏t = log(F(𝜏)
t ), the log of the futures price; and st = log(St), the log

of the spot price. The log-basis of a commodity futures is defined as 𝑓 (𝜏)
t − st. Following Miltersen and Schwartz (1998)

and Trolle and Schwartz (2009) we define the cost-of-carry curve (net of bond yields) at t as the value u(𝜏)
t (viewed as a

function of maturity 𝜏) such that the basis of the commodity futures can be written as

𝑓 (𝜏)
t − st = 𝜏(𝑦(𝜏)t + u(𝜏)

t ), (3)

where 𝑦(𝜏)t is the yield on a zero-coupon bond that matures in 𝜏 periods.
To infer the number of factors necessary to capture the variability of the cost-of-carry curve, we compute principal

components of log futures prices net of the contribution of the spot, seasonal, and yield curve factors. Based on Equation 3,
we subtract from futures prices the contribution of bond yields and define w(𝜏)

t = 𝑓 (𝜏)
t − 𝜏𝑦(𝜏)t . We use two procedures to

isolate the contribution of the spot and seasonal factors. In the first, we run a series of cross-sectional regressions (one for
each date) of w(𝜏)

t on a constant and sine and cosine waves according to

w(𝜏)
t = a0t + cos

(2𝜋
12

(t + 𝜏)
)

a1t + sin
(2𝜋

12
(t + 𝜏)

)
a2t + 𝜀(𝜏)t . (4)
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TABLE 2 Number of factors
in the yield curve and the
cost-of-carry curve

PC1 PC2 PC3
Yield curve
𝑦(𝜏)t 99.67 0.31 0.02

Energy
Gasoil
𝜀(𝜏),CS

t 45.52 19.84 11.28
𝜀(𝜏),KF

t 72.46 5.65 4.00
Gasoline
𝜀(𝜏),CS

t 35.24 28.08 13.61
𝜀(𝜏),KF

t 38.59 19.62 11.98
Heating oil
𝜀(𝜏),CS

t 50.59 20.10 12.04
𝜀(𝜏),KF

t 63.61 16.42 5.58
Natural gas
𝜀(𝜏),CS

t 80.55 7.96 5.15
𝜀(𝜏),KF

t 55.92 16.57 14.03
Agricultural
Corn
𝜀(𝜏),CS

t 25.31 16.60 12.41
𝜀(𝜏),KF

t 28.22 18.28 12.26
Wheat
𝜀(𝜏),CS

t 22.59 17.22 14.37
𝜀(𝜏),KF

t 35.48 19.59 10.79
Soybean
𝜀(𝜏),CS

t 16.07 14.10 13.25
𝜀(𝜏),KF

t 26.83 17.14 11.76

Note. The table reports the contri-
bution of the first three principal
components to the variabil-
ity of the yield curve and the
cost-of-carry curve. 𝜀(𝜏),CS

t refers to
the cost-of-carry curve obtained
from the cross-sectional regressions
and 𝜀(𝜏),KF

t is the cost-of-carry curve
estimated using the Kalman filter.

The estimated constant (â0t) is a common shifter that affects futures prices of all maturities and captures the role of the
spot factor. The coefficients associated with the sine and cosine waves (â1t and â2t) capture the seasonal variations in the
data, and the residuals 𝜀̂(𝜏)t are an estimate of (𝜏 times) the cost-of-carry curve. The second approach is to extract the spot
and seasonal factors using standard state-space techniques. We still use Equation 4 but now assume that the spot factor
(a0t) follows a first-order autoregressive process and the seasonal factors (a1t and a2t) follow independent random walks.
We estimate the factors using the Kalman filter and construct the cost-of-carry curve using the residuals of Equation 4.
Finally, we perform principal components analysis on the two ways of estimating the cost-of-carry curve.

Table 2 reports the contribution of the first three principal components to the variability of the two measures of the
cost-of-carry curve.5 The result is clear: We need at least three factors to properly account for the variability of the
cost-of-carry curve. The first three principal components account for about 90% of the variance of the cost-of-carry curve,
with the third principal component explaining between 5% and 14% of that variance. In light of these results, we aug-
ment the traditional affine model of commodity futures by assuming that fluctuations in the cost-of-carry are driven by
three factors.

5We extract principal components from the unbalanced panel of futures prices as in Stock and Watson (2002).
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3 AFFINE MODEL OF COMMODITY FUTURES

The risk factors are represented by a vector of state variables Xt ∈ Rn that evolves as

Xt+1 = 𝜇 + ΘXt + Γ𝜂t+1, (5)

where 𝜂t + 1 ∼ N(0, I) and Γ is lower triangular. Time periods are measured in months and the state vector includes factors
capturing the stochastic variation in seasonality, which we specify below.

Nominal cash flows received at time t + 1 are priced using the stochastic discount factor

Mt,t+1 = e−(rt+
1
2
Λ′

tΛt+Λ′
t𝜂t+1)

Λt = 𝜆0 + 𝜆1Xt,
(6)

where rt is the one-period interest rate and Λt ∈ Rn is the compensation for risk to shocks to the state vector 𝜂t + 1. The
spot interest rate rt is an affine function

rt = 𝜌0 + 𝜌′1Xt, (7)
where 𝜌0 is a scalar and 𝜌1 ∈ Rn. Since there is no evidence of seasonality in interest rates, we set to zero the loading of
𝜌1 on the seasonal factors.

3.1 Pricing government bonds
Let P(𝜏)

t be the price of a 𝜏-period zero-coupon bond. Absence of arbitrage implies that bond prices satisfy the pricing
condition P(𝜏)

t = Et[Mt,t+1P(𝜏−1)
t+1 ]. Using standard results (Ang & Piazzesi, 2003) one can show that log bond prices are

affine functions of the risk factors
log P(𝜏)

t = A𝜏 + B′
𝜏Xt, (8)

where the scalar A𝜏 and the vector of loadings B𝜏 satisfy the recursions

A𝜏 = A𝜏−1 − 𝜌0 + (𝜇 − Γ𝜆0)′B𝜏−1 +
1
2

B′
𝜏−1ΓΓ

′B𝜏−1, (9)

B𝜏 = (Θ − Γ𝜆1)′B𝜏−1 − 𝛿1, (10)
with initial conditions A0 = 0 and B0 = 0. The yield on a 𝜏-period zero-coupon bond at date t is thus

𝑦(𝜏)t = − log P(𝜏)
t ∕𝜏 = a𝜏 + b′

𝜏Xt. (11)

3.2 Spot price and implied cost-of-carry
Consider a storable commodity with spot price St and with a net cost-of-carry of ct, expressed as a continuously com-
pounded rate of the spot price. The net cost-of-carry represents the storage and insurance costs of physically holding the
commodity net of any convenience yield on inventory. It is the analog of the negative of the dividend yield of a stock and
can be derived from equilibrium models such as Routledge, Seppi, and Spatt (2000).

To capture seasonality in the spot price and the cost-of-carry, we assume that their loadings on Xt are periodic functions
of time. Let {mt} be a periodic sequence mapping the time t into the set of months {1, 2, … , 12}. We initialize the sequence
by setting mt = t for t = 1, 2, … , 12, and let mt + 12k = mt for every t and k. We often use m̃ when referring to a generic
month and impose the convention that m̃ + 1 = 1 when m̃ = 12.

Assume that the log spot commodity price is given by

st = 𝛾0 + 𝛾
mt′
1 Xt, (12)

where 𝛾mt
1 depend on the season mt. Since the payoff from holding the commodity between t and t + 1 is e−ct+1 St+1, the

principle of no arbitrage implies that the spot price St satisfies

St = Et
[
Mt,t+1e−ct+1 St+1

]
. (13)

Following Casassus and Collin-Dufresne (2005), the next proposition (proved in the Supporting Information) states
that there exists an affine and seasonal cost-of-carry process ct such that the pricing condition (Equation 13) is satisfied
given the evolution of the spot price (Equation 12).
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Proposition 1. (Cost-of-carry process) The net cost-of-carry consistent with the commodity price (Equation 13) is an
affine and periodic function of the state variables ct = 𝜓

mt
0 + 𝜓mt′

1 Xt, where the scalar 𝜓 m̃
0 and the vector 𝜓 m̃

1 satisfy

𝜓 m̃+1
1 = 𝛾m̃+1

1 −
[
(Θ − Γ𝜆1)−1]′ (𝛾m̃

1 + 𝜌1
)
,

𝜓 m̃+1
0 =

(
𝛾m̃+1

1 − 𝜓 m̃+1
1

)′ (𝜇 − Γ𝜆0) +
1
2
(
𝛾m̃+1

1 − 𝜓 m̃+1
1

)′ΓΓ′ (𝛾m̃+1
1 − 𝜓 m̃+1

1
)
− 𝜌0.

3.3 Pricing commodity futures
A 𝜏-period futures contract entered into at time t is an agreement to buy the commodity at time t + 𝜏 at the settlement price
F(𝜏)

t . Entering into a futures contract involves no initial cash flow and a payoff of St+𝜏 −F(𝜏)
t at time t + 𝜏. Therefore, if we

let Mt,t + 𝜏 denote the stochastic discount factor for nominal payoffs received 𝜏 periods ahead, the principle of no-arbitrage
implies

Et

[
Mt,t+𝜏(St+𝜏 − F(𝜏)

t )
]
= 0.

In Appendix A we show that log-futures prices satisfy

𝑓 (𝜏)
t = Cmt

𝜏 + Dmt′
𝜏 Xt, (14)

where Cm̃
𝜏 = Gm̃

𝜏 − A𝜏 and Dm̃
𝜏 = Hm̃

𝜏 − B𝜏 , A𝜏 and B𝜏 solve Equations (9) and (10) ), and Gm̃
𝜏 and Hm̃

𝜏 solve the recursions

Gm̃
𝜏 = Gm̃+1

𝜏−1 − 𝜌0 + (𝜇 − Γ𝜆0)′Hm̃+1
𝜏−1 + 1

2
(

Hm̃+1
𝜏−1

)′ΓΓ′Hm̃+1
𝜏−1 , (15)

Hm̃
𝜏 = (Θ − Γ𝜆1)′Hm̃+1

𝜏−1 − 𝜌1, (16)

with initial conditions Gm̃
0 = 𝛾0 and Hm̃

0 = 𝛾m̃
1 for m̃ = 1, 2, · · ·, 12.6,7

3.4 Risk premia in commodity futures
In this section we express different notions of risk premia in terms of the components of the affine model. Since all
the strategies that we consider cost zero when they are entered into, ex ante expected return entirely reflects expected
risk premia.

The 1-period log holding return (open a position on a 𝜏-period futures at time t and close it at time t + 1) is 𝑓 (𝜏−1)
t+1 − 𝑓 (𝜏)

t .
The time t conditional expectation of this strategy is

Et[𝑓 (𝜏−1)
t+1 − 𝑓 (𝜏)

t ] = Jmt+1
𝜏−1 + Dmt+1′

𝜏−1 ΓΛt, (17)

where Jmt+1
𝜏−1 = 1

2
[B′

𝜏−1ΓΓ
′B𝜏−1 −Hmt+1′

𝜏−1 ΓΓ′Hmt+1
𝜏−1 ] is a periodic Jensen inequality term. The second term, Dmt+1′

𝜏−1 ΓΛt, captures
the stochastic variation in expected risk premia over time.

The spot premium is the expected return of holding a 1-period futures contract until maturity. It is the particular case
of the expected return (Equation 17) evaluated at 𝜏 = 1:

Et[st+1 − 𝑓 (1)
t ] = Jmt+1

0 + 𝛾mt+1′
1 ΓΛt, (18)

where we use that a 0-period futures is equivalent to the spot price, st+1 = 𝑓 (0)
t+1.

The term premium is defined as the 1-period expected holding return of a 𝜏-period futures contract in excess of the spot
premium. In terms of the affine model, the term premium is

Et[(𝑓 (𝜏−1)
t+1 − 𝑓 (𝜏)

t ) − (st+1 − 𝑓 (1)
t )] = Jmt+1

𝜏−1 − Jmt+1
0 + (Dmt+1′

𝜏−1 − 𝛾mt+1′
1 )ΓΛt. (19)

6Alquist, Bauer, and Diez de los Rios (2013) study an affine model of oil futures using a setup different from ours. While we price commodity futures by
discounting dollar cash flows—as usually done in the literature—they assume that there are oil denominated bonds and introduce two pricing kernels:
one expressed in dollars to price dollar bonds and the other in units of oil to price oil bonds. Moreover, they do not consider seasonal fluctuations.
7Some authors claim that no-arbitrage restrictions only matter for the cross-section of bond yields and that they do not affect the time series dynamics
of the factors (Duffee, 2011). Nevertheless, our model has several features such as unobserved factors, stochastic seasonality, and restrictions in the
physical and risk-neutral measures that, when considered together, should be addressed within an arbitrage-free model.
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Another strategy is to open a position on a 𝜏-period futures at time t and sell it as a 𝜏 − h-period futures at time t + h.
The ex post h-period log holding return of this strategy can be expressed as a sum of 1-period holding returns:

𝑓 (𝜏−h)
t+h − 𝑓 (𝜏)

t = [𝑓 (𝜏−h)
t+h − 𝑓 (𝜏−h+1)

t+h−1 ] + [𝑓 (𝜏−h+1)
t+h−1 − 𝑓 (𝜏−h+2)

t+h−2 ] + · · · + [𝑓 (𝜏−1)
t+1 − 𝑓 (𝜏)

t ].

Therefore, the expected h-period log holding return follows from using the expected 1-period returns and the law of iterated
expectations:

Et[𝑓 (𝜏−h)
t+h − 𝑓 (𝜏)

t ] =
h∑

i=1
Jmt+i
𝜏−i +

h∑
i=1

Dmt+i′
𝜏−i ΓEt[Λt+i−1]. (20)

4 A REPRESENTATION OF THE AFFINE MODEL OF COMMODITY
FUTURES

Here we extend results in Christensen et al. (2011) to the commodity futures literature by showing that a single stochas-
tic discount factor can be used to simultaneously price bonds and commodity futures displaying stochastic seasonality
in such a way that the yield curve and the cost-of-carry curve adopt augmented Nelson and Siegel functional forms.
This representation of the model is simple, yet flexible enough to match the different shapes of the cost-of-carry and
yield curves.

We first write the log-basis (Equation 3) emphasizing the contribution of the seasonal factors as

𝑓 (𝜏)
t = 𝛽0t + 𝜏(𝑦(𝜏)t + ũ(𝜏)

t ) + e−𝜔𝜏
[
𝜉t cos

(2𝜋
12

mt+𝜏

)
+ 𝜉∗t sin

(2𝜋
12

mt+𝜏

)]
, (21)

where we interpret 𝛽0t as the deseasonalized spot commodity factor and ũ(𝜏)
t as the cost-of-carry curve net of any stochastic

seasonal component.8 The last term on the right-hand side reflects the contribution of the seasonal factors to futures
prices of different maturities. When 𝜏 = 0 the futures price is the spot commodity price and Equation 21 becomes

st = 𝛽0t + 𝜉t cos
(2𝜋

12
mt

)
+ 𝜉∗t sin

(2𝜋
12

mt

)
. (22)

To extract the seasonality of a futures contract with 𝜏 months to maturity, we compute the expected seasonal component
at time t + 𝜏 conditional on information at time t, and then multiply the resulting expression by a discounting factor e−𝜔𝜏 .

There is agreement in the bond pricing literature that three factors are sufficient to summarize the evolution of the yield
curve over time. Thus we parametrize the yield curve 𝑦(𝜏)t using a dynamic Nelson and Siegel model as in Christensen
et al. (2011):

𝑦(𝜏)t = a𝜏 + 𝛿1t +
(

1 − e−𝜁1𝜏

𝜁1𝜏

)
𝛿2t +

(
1 − e−𝜁1𝜏

𝜁1𝜏
− e−𝜁1𝜏

)
𝛿3t, (23)

where 𝛿1t, 𝛿2t, and 𝛿3t are latent variables interpreted as level, slope, and curvature factors, and the parameter 𝜁1
determines the shape of the loadings on the factors 𝛿2t and 𝛿3t.

Section 2 shows that we need at least three factors to properly characterize the nonseasonal component of the
cost-of-carry curve ũ(𝜏)

t . Therefore, we also look for conditions under which the cost-of-carry curve adopts an augmented
dynamic Nelson and Siegel form:

ũ(𝜏)
t = gmt

𝜏 + 𝛽1t +
(

1 − e−𝜁2𝜏

𝜁2𝜏

)
𝛽2t +

(
1 − e−𝜁2𝜏

𝜁2𝜏
− e−𝜁2𝜏

)
𝛽3t, (24)

where 𝛽1t, 𝛽2t, and 𝛽3t are level, slope, and curvature factors. Even though ũ(𝜏)
t is independent of seasonal shocks, rendering

the Nelson and Siegel parametrization arbitrage free still requires the term gmt
𝜏 to depend on the season (month) mt,

although in a deterministic fashion.
We now show that Nelson and Siegel parametrization belongs to the family of affine models described in Section 3.

Although it is known that one can impose restrictions on an affine model of bond prices to obtain a Nelson and Siegel
representation of the yield curve (Christensen et al., 2011), the extension to the commodity futures literature has not been
proved so far.

8The Supporting Information shows that the pair of seasonal factors associated with the fundamental frequency is enough to characterize seasonality
in heating oil and soybean futures. Thus from now on we assume that seasonal fluctuations follow the process of Equation 2.
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The vector of risk factors is Xt =
[
𝛿1t, 𝛿2t, 𝛿3t, 𝛽0t, 𝛽1t, 𝛽2t, 𝛽3t, 𝜉t, 𝜉∗t

]′. Our task is to find parameters 𝜆0, 𝜆1, 𝜌0, 𝜌1, 𝛾0,
and 𝛾mt

1 such that the yield curve and the cost-of-carry curve adopt the functional forms of Equations 23 and 24. These
conditions are summarized in the following proposition.

Proposition 2. (Nelson and Siegel representation) Consider parameters of the risk-neutral measure:

ΘQ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 e−𝜁1 𝜁1e−𝜁1 0 0 0 0 0 0
0 0 e−𝜁1 0 0 0 0 0 0
1 1−e−𝜁1

𝜁1

1−e−𝜁1
𝜁1

− e−𝜁1 1 1 1−e−𝜁2
𝜁2

1−e−𝜁2
𝜁2

− e−𝜁2 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 e−𝜁2 𝜁2e−𝜁2 0 0
0 0 0 0 0 0 e−𝜁2 0 0
0 0 0 0 0 0 0 e−𝜔 0
0 0 0 0 0 0 0 0 e−𝜔

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and 𝜇Q ∈ Rn, where 𝜁1, 𝜁2, 𝜔 > 0. Let 𝜆0 = Γ−1 (𝜇 − 𝜇Q), 𝜆1 = Γ−1 (Θ − ΘQ), 𝜌0 = 0, 𝛾0 = 0,

𝜌1 =
[

1, 1 − e−𝜁1

𝜁1
,

1 − e−𝜁1

𝜁1
− e−𝜁1 , 0, 0, 0, 0, 0, 0

]′
,

and 𝛾̃1 =
[
0, 0, 0, 1, 0, 0, 0, cos(2𝜋

12
m̃), sin(2𝜋

12
m̃)

]′
for m̃ = 1, 2, · · ·, 12. Then, the yields and futures prices adopt the parametrization of Equations 21, 23, and 24.

5 ESTIMATION METHOD

We estimate the model by maximum likelihood using the Kalman filter to evaluate the prediction error decomposition of
the likelihood function and to handle missing observations, a common feature in the market of commodity futures. The
state variables evolve as in Equation 5, and the observation equation consists of futures prices and bond yields that satisfy
Equations 11 and 14 augmented with measurement errors 𝜀(𝜏𝑦)𝑦t and 𝜀(𝜏𝑓 )

𝑓 t :

𝑦
(𝜏𝑦)
t = a𝜏𝑦 + b′

𝜏𝑦Xt + 𝜀
(𝜏𝑦)
𝑦t , (25)

𝑓
(𝜏𝑓 )
t = Cmt

𝜏𝑓
+ Dmt′

𝜏𝑓
Xt + 𝜀

(𝜏𝑓 )
𝑓 t (26)

Bond yields are observed for a set of maturities 𝜏𝑦 ∈ 𝑦, and futures prices may be observed for a different set of
maturities 𝜏𝑓 ∈ 𝑓 . We use bond yields for maturities up to 5 years to properly estimate the shape of the yield curve and
futures contracts with maturities from 1 to 18 months.

The intercept and factor loadings satisfy the functional forms of Equations 21, 23, and 24. Namely, Cmt
𝜏 = Gmt

𝜏 − A𝜏 ,
Dmt
𝜏 = Hmt

𝜏 − B𝜏 , a𝜏 = −A𝜏∕𝜏, b𝜏 = −B𝜏∕𝜏,

Hmt
𝜏 =

[
0, 0, 0, 1, 𝜏, 1 − e−𝜁2𝜏

𝜁2
,

1 − e−𝜁2𝜏

𝜁2
− 𝜏e−𝜁2𝜏 , e−𝜔𝜏 cos(2𝜋

12
(mt + 𝜏)), e−𝜔𝜏 sin(2𝜋

12
(mt + 𝜏))

]′
,

B𝜏 =
[
−𝜏,−1 − e−𝜁1𝜏

𝜁1
,−

(
1 − e−𝜁1𝜏

𝜁1
− 𝜏e−𝜁1𝜏

)
, 0, 0, 0, 0, 0, 0

]′
,

and A𝜏 and Gmt
𝜏 satisfy Equations 9 and 15. In addition, stochastic seasonality enters into Equation 26 as a periodic loading

on the factors 𝜉t and 𝜉∗t .9

9Since 𝜇Q′ D𝜏−1 is a scalar, we can only identify a single parameter in 𝜇Q′ . We thus set 𝜇Q = [𝜇Q
1 , 0, 0, 0, 0, 0, 0, 0, 0]′. Also, note that 𝜁1 and 𝜁 2 are identified

because 𝜁 2 appears only in Equation 26 whereas 𝜁 1 appears in both Equations 25 and 26.
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TABLE 3 Estimates of the model with stochastic seasonality

Parameters of the VAR(1) process for the yield, the spot and cost-of-carry factors
𝜇𝛿( × 1000) 𝛩𝛿𝛿 Γ𝛿𝛿( × 1000)⎡⎢⎢⎢⎢⎢⎢⎣

0.1305
(0.048)
0.0064
(0.0593)
0.0255
(0.1072)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0.964 0.006 0.026
(0.012) (0.019) (0.011)
−0.005 0.945 0.031
(0.014) (0.021) (0.014)
−0.004 0.016 0.936
(0.023) (0.028) (0.016)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

0.313 0 0
(0.011)
−0.267 0.218 0
(0.014) (0.008)
−0.167 −0.027 0.646
(0.021) (0.026) (0.022)

⎤⎥⎥⎥⎥⎥⎥⎦
𝜇𝛽 ( × 100) 𝛩𝛽𝛽 Γ𝛽𝛽 ( × 100)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0134
(0.9908)
−0.0654
(0.0229)
−0.01864
(0.4807)
0.5343
(0.3542)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9908 0.1691 0.8391 −0.0085
(0.012) (1.045) (0.199) (0.242)
0.0004 0.8876 0.0185 0.0238
(0.0002) (0.025) (0.005) (0.007)
0.0002 −0.8541 0.8254 0.5384
(0.0044) (0.555) (0.072) (0.102)
0.0007 1.2311 −0.2151 0.3386
(0.0028) (0.428) (0.067) (0.091)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9.634 0 0 0
(0.04)
−0.141 0.139 0 0
(0.012) (0.009)
−0.971 −0.004 2.915 0
(0.197) (0.309) (0.323)
−0.143 −0.488 −2.006 1.138
(0.175) (0.287) (0.255) (0.069)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Volatility of seasonal process
𝜎𝜉 = 0.0029(0.0002)𝜎𝜉∗ = 0.0017(0.0001)
Other parameters and log-likelihood
𝜁1 = 0.053(0.0006)𝜁 2 = 0.416(0.021)𝜔 = 0.0096(0.0014) Log-likelihood = 51270.95

6 EMPIRICAL RESULTS

We estimate two versions of the model: one with stochastic seasonaliy (SS) and one with deterministic seasonality (DS).10

In this section we focus on the case of heating oil futures. (The Supporting Information shows results for soybean futures.)
Table 3 reports the estimates of the model with stochastic seasonality.11 The Akaike information criterion favors the

model with stochastic seasonality (−102,383 vs. −97,850), and the Scharwz and Hannan–Quinn criteria give similar
results. The estimated commodity factors in the SS model are radically different from those in the DS model (Figure 1),
with the cost-of-carry factors showing clear signs of seasonality in the latter but not in the former.12 Furthermore, the SS
model also dominates the DS model in terms of pricing errors (Table 4).

Figure 2 (top panel) displays the estimated seasonal components. The seasonal peak is attained at the beginning of the
winter season and the trough, at the beginning of the summer season. The peaks and troughs of the seasonal pattern in
the SS model change over time (possibly depending on the severity of the winter season) and there is a drop in seasonal
fluctuations at the end of the sample. This drop may be due to a change in the composition of demand: While the residen-
tial use of heating oil has decreased (which is mostly seasonal) and exports increased, its use as transportation fuel has
increased over time (a mostly nonseasonal use).13 Moreover, this finding is also consistent with anecdotal evidence sug-
gesting a vanishing seasonality in oil prices.14 As a result, the DS model underestimates the seasonality at the beginning
of the sample and overestimates it at the end of it.

The model with deterministic seasonality also distorts the estimated factors (Figure 1). The DS model is unable capture
all seasonal fluctuations from futures prices and erroneously attributes those cycles to fluctuations in the cost-of-carry
factors. Moreover, since 𝛽1t and 𝛽2t determine the variations of the cost-of-carry curve at the short and long end of the
curve, spurious fluctuations in these factors lead to spurious fluctuations in estimated risk premia.

The shape of the cost-of-carry curve depends on the parameter 𝜁2, which is more than twice as large in the model with
stochastic seasonality (0.416 versus 0.197). The parameter 𝜁2 also determines the evolution of the risk factors under the

10In the model with deterministic seasonality we set 𝜎𝜉 = 𝜎𝜉∗ = 0 and estimate 𝜉0 and 𝜉∗0 as free parameters.
11The Supporting Information contains the estimates of the model with deterministic seasonality.
12The estimated matrix Θ̂𝛽𝛽 in the DS model contains complex roots corresponding to a cycle of about 12 months.
13According to EIA (2017), the share of heating oil consumption for residential use has decreased by more than two-thirds from the beginning to the
end of the sample, whereas the share of transportation distillate use increased by over 50% over the same period. Moreover, the US distillate exports
grew to 1.5 million barrels per day in 2017, whereas they had been stable at around 0.2 million barrels per day from the beginning of our sample up to
the end of 2005.
14For instance, the US Energy Information Administration (EIA, 2013) notes that “looking at data for the last 13 years, it is apparent that the traditional
northern hemisphere winter spike in demand [for oil] has become increasingly less pronounced.”
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FIGURE 1 Spot, cost-of-carry, and seasonal factors. Notes: Estimates of commodity factors of the models with stochastic and deterministic
seasonality: deseasonalized spot 𝛽0t; factors of the cost-of-carry, 𝛽1t, 𝛽2t, and 𝛽33t; and seasonal factors 𝜉t and 𝜉∗t [Colour figure can be viewed
at wileyonlinelibrary.com]

risk-neutral measure and, therefore, the associated market prices of risk. The lower is 𝜁2, the higher is the persistence of
the level and slope factors 𝛽1t and 𝛽2t under the risk-neutral measure, and the lower is the impact of the past curvature
𝛽3t on the current slope 𝛽2t. The estimated 𝜁2 in the model with deterministic seasonality implies more persistent factors
and a weaker relation between the lagged curvature and the current slope. Therefore, the seasonal cycles leaked into the
estimated cost-of-carry factors affect the dynamics of risk premia.

Finally, the model with stochastic seasonality is able to match the different shapes of the futures curve observed in our
sample (Figure 3). On some dates, it is not even clear whether the futures curve is upward sloping or inverted unless one
strips out the seasonal component. Furthermore, the amplitude of the seasonal factor depends on the particular dates
that we choose. This observation is inconsistent with the predictions of a model with deterministic seasonality.

6.1 Seasonality and the theory of storage
It is of interest to determine the source of the moderation of the seasonal component. The theory of storage relates
the stock of inventories to the cost-of-carry.15 We compare the seasonal component extracted from data on heating oil

15In the traditional model, the convenience yield measures the option value of holding inventories when there is a positive probability of stock-outs
(Deaton & Laroque, 1992; Gorton, Hayashi, & Rouwenhorst, 2013; Routledge et al., 2000). However, the relation between inventories and convenience
yields also exists without stock-outs but allowing for other frictions in the production and storage process, such as adjustment costs (Evans & Guthrie,
2017). Since we do not aim to identify the precise interpretation of this relation, any of those models could be consistent with the observed relation.

http://wileyonlinelibrary.com
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TABLE 4 Pricing errors

RMSPE MAPE
Maturity SS DS SS DS

1 0.673 1.996 6.847 12.659
3 0.210 0.593 3.905 6.760
6 0.416 0.582 5.696 6.759
9 0.431 0.648 5.750 7.229
12 0.364 0.691 5.171 7.446
16 0.245 0.825 4.391 8.183

Note. The table compares the pricing errors in the
models with stochastic (SS) and deterministic (DS)
seasonality. RMSPE is the root mean square pricing
error and MAPE is the mean absolute pricing error.
All entries are multiplied by 100.

FIGURE 2 Seasonal component and heating oil inventories. Notes: The upper panel displays the implied seasonal component
𝜉t cos( 2𝜋

12
mt) + 𝜉∗t sin( 2𝜋

12
mt) in the models with stochastic and deterministic seasonality. The figure also displays the months in circles in the

model with stochastic seasonality. Most seasonal peaks are in December (D) and troughs in June (J). The bottom left panel displays the
seasonal component of log-inventories and the implied seasonal component of the spot commodity price, both standardized. The bottom
right panel shows the cost-of-carry level factor 𝛽1t and the nonseasonal component of log-inventories, both standardized [Colour figure can
be viewed at wileyonlinelibrary.com]

inventories with the estimated seasonal component of the affine model. The bottom left panel of Figure 2 shows a striking
similarity between the two series: the peaks and troughs are well aligned and the decline in the amplitude of the seasonal
components is similar in the two series. This result suggests that the moderation in seasonal components of heating oil
prices is capturing the same phenomenon in the stock of heating oil inventories. Furthermore, also consistent with the
theory of storage, the estimated level factor of the cost-of-carry 𝛽1t is highly correlated with the nonseasonal component
of the stock of heating oil inventories (bottom right panel of Figure 2).

http://wileyonlinelibrary.com
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FIGURE 3 Fitted log-futures curves. Notes: The figure shows fitted log-futures curves, deseasonalized fitted log-futures curve, and actual
log-futures prices on selected dates [Colour figure can be viewed at wileyonlinelibrary.com]

6.2 Risk premia in heating oil futures markets
Since entering into a futures contract costs zero, any expected return is a risk premium. Here we analyze the risk associated
with holding futures contracts for one period and that associated with holding the contract to maturity. We find that risk
premia in heating oil futures markets declined over time and that it has been positive on average until 2005 and negative
afterwards. The change in the risk premium coincides with an abrupt increase in heating oil spot prices and with an
increased participation by financial investors in commodity futures markets.16 In addition, we find that the contribution
of the spot, cost-of-carry, and yield curve factors to the time variation of risk premia is substantial, while seasonal factors
play a modest role.

Figure 4 shows the 1-month expected holding return for futures contracts that mature in 1 month and 18 months ahead.
Commodity factors (spot and cost-of-carry) explain most of the evolution of risk premia. Yet the contribution of the yield
curve factors is also substantial, particularly at the beginning of the sample when interest rates are high. As interest rates
drop over time, so does the importance of the yield curve factors. The contribution of the seasonal shocks is about 0.6
percentage points at the beginning of the sample and becomes smaller as the seasonal component gets smaller over time
(Figure 2).

The estimated loading of expected returns on the yield curve level factor (𝛿1t) is negative and its importance increases
with the maturity of the contract. Furthermore, the loading on the slope factor (𝛿2t) is positive when the yield curve is
upward sloping, negative when the yield curve is inverted, and its importance decreases for longer maturity contracts.
The upper right panel of Figure 4 is consistent with those observations. The contribution of the yield curve factors to the
risk premium of the 18-month futures contract tracks closely the negative of the level factor (𝛿1t), whereas that of the
1-month contract is smoother and highly correlated with the slope factor (𝛿2t).

16The increased entry of noncommercial traders coincides with an increase in open interest and trading volume over the last decade. The EIA reports
that the average daily volume of futures contracts on petroleum products was four times larger in 2017 than the 2000–2006 average (see https://www.
eia.gov/finance/markets/products/financial_markets.php). Hamilton and Wu (2014) document a similar shift in crude oil risk premia in 2005 and also
attribute it to the entry of noncommercial traders into that market.

http://wileyonlinelibrary.com
https://www.eia.gov/finance/markets/products/financial_markets.php
https://www.eia.gov/finance/markets/products/financial_markets.php
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FIGURE 4 Expected 1-month holding futures returns. Notes: This figures shows the expected 1-month holding returns of a 1-month and a
18-month futures contract. Returns are expressed in percentage points and on an annualized basis. The upper left panel displays the total
expected return. The other panels display the contribution of the different factors. The upper right panel also shows the negative of the level
factor of the interest rates, and the bottom left panel adds the level of the cost-of-carry factor [Colour figure can be viewed at
wileyonlinelibrary.com]

The bottom left panel of the figure shows that commodity factors are very volatile and that their impact on risk premia
is large. It shows that the importance of the cost-of-carry level factor (𝛽1t) increases with the maturity of the contract and
that this factor is negatively correlated with the component of expected return accounted for by the commodity factors
(−0.82 and −0.76 for the 18-month and 1-month contracts, respectively).

Figure 5 displays the expected risk premia of holding an 18-month futures contract for 1 and 18 months. As the holding
period increases, the owner of the contract is exposed to longer-term risks. As a result, the spot commodity factor (𝛽0t)
and the slope factor of the yield curve (𝛿2t) become more relevant risk factors. For instance, during periods of inverted
yield curves, shorter-term futures contracts tend to be more valuable than longer-term contracts (Equation 3). Therefore,
expected returns of longer-term contracts increase.

The upper right panel of Figure 5 shows that the contribution of the slope yield curve factor increases with the holding
period: Long holding returns tend to follow more closely the slope of the yield curve than short holding returns. Moreover,
periods with inverted yield curves are roughly associated with higher total expected risk premia (top panels). In addition,
the bottom left panel shows that the contribution of the commodity factors tends to follow the short- and medium-term
movements of the spot commodity factor. Interestingly, the longer-term movements are negatively correlated: Periods
when the spot factor is relatively high are periods when expected risk premia are negative.

6.3 The zero lower bound on interest rates
From December 2008 to December 2015, the US Federal Reserve set the policy interest rate to 0.25 percentage points,
virtually hitting the zero lower bound (ZLB) on interest rates. If one imposes the ZLB constraint, the model ceases to be
affine in the risk factor, which causes analytical and econometric challenges. In this section we explore to what extent
our results are distorted by ignoring the ZLB on interest rates.

http://wileyonlinelibrary.com
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FIGURE 5 Expected holding futures returns of an 18-month futures contract. Notes: Expected 1-month and 18-month holding returns of
an 18-month futures contract. Returns are expressed in percentage points and on an annualized basis. The upper left panel displays the total
expected return. The other panels display the contribution of the different factors. The upper right panel also shows the negative of the level
factor and the slope of the interest rates, and the bottom left panel adds the commodity spot factor [Colour figure can be viewed at
wileyonlinelibrary.com]

The model is similar to that described in Section 3 but replacing the interest rate process (Equation 7) with an affine
shadow interest rate of the form

zt = 𝜌0 + 𝜌′1Xt.

The short-term interest rate is the maximum of the shadow rate zt and a lower bound r = 0:
rt = max(zt, r).

The stochastic discount factor and the market prices of risk are still given by Equations 5 and 6, and the parameters 𝜆0
and 𝜆1 still satisfy the restrictions imposed in Proposition 2.

This modification renders the model nonlinear. While we could approximate the solution using numerical techniques,
estimating the parameters becomes challenging because each evaluation of the likelihood function requires numerically
solving the model and performing a nonlinear filtering procedure. Instead, we adapt the methodology proposed by Wu
and Xia (2016) and use an approximate solution whereby the yield on a 𝜏-period zero coupon bond can be written as

𝑦(𝜏)t = r + 1
𝜏

𝜏∑
𝑗=0
𝜎Q
𝑗 g

(
ã𝑗 + b̃′

𝑗Xt − r

𝜎Q
𝑗

)
. (27)

Here, ã𝑗 = 𝜌0 + 𝜌′1

(∑𝑗−1
i=0 ΘQi

)
𝜇Q − 0.5𝜌′1

(∑𝑗−1
i=0 ΘQi

)
ΓΓ′

(∑𝑗−1
i=0 ΘQi

)′
𝜌1; b̃′

𝑗 = 𝜌′1(Θ
Q)𝑗 ; 𝜎Q

𝑗 =[
𝜌′1

(∑𝑗−1
i=0 (Θ

Qi)ΓΓ′(ΘQi)′
)
𝜌1

]1∕2
; and g(x) = xΦ(x) + 𝜙(x), where Φ is the standard normal cumulative distribution and

𝜙 is the associated density.17 The function g(x) is nonnegative, increasing, approaches zero as x decreases, and approaches
g(x) = x as x increases.

17The Supporting Information contains a detailed description of the model and the estimation procedure. Wu and Xia (2016) actually solve the model
in terms of one-period forward interest rates. To make it comparable with the previous section, we chose to compute bond yields by adding one-period
forward interest rates.
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Let 𝑦(𝜏)t =  (𝜏)(Xt), where  (𝜏)(Xt) is defined as the right-hand side of Equation 27. With this notation, the observation
equations of the state-space system are

𝑦
(𝜏𝑦)
t =  (𝜏𝑦)(Xt) + 𝜀

(𝜏𝑦)
𝑦t ,

𝑓
(𝜏𝑓 )
t = 𝛽0t + 𝜏𝑓

(
 (𝜏𝑓 )(Xt) + ũ(𝜏𝑓 )

t

)
+ e−𝜔𝜏

[
𝜉t cos(2𝜋

12
mt+𝜏) + 𝜉∗t sin(2𝜋

12
mt+𝜏)

]
+ 𝜀(𝜏𝑓 )

𝑓 t ,
(28)

where 𝜀(𝜏𝑦)𝑦t and 𝜀(𝜏𝑓 )
𝑓 t are measurement errors, 𝜏𝑦 ∈ 𝑦, 𝜏𝑓 ∈ 𝑓 , and ũ(𝜏𝑓 )

t is given by Equation 24. As before, the state
variables evolve according to Equation 5. To estimate the parameters of the model, we use the the extended Kalman filter
to evaluate the likelihood function. Details of the algorithm and the estimated parameters are described in the Supporting
Information.

Figure 6 compares results from the affine model with those of the model that imposes the ZLB on interest rates. The
upper left panel displays the short-term interest rate rt in the baseline model and the shadow interest rate imposing
the ZLB. Both lines are almost identical except between mid-2013 and the end of 2015, when the shadow rate becomes
negative while the short rate in the baseline model is roughly zero. The upper right and middle left panels compare the
level and slope yield curve factors (𝛿1t and 𝛿2t). Again, they are very similar even during the zero lower bound period.
The curvature factor (𝛿3t) differs between models but it only explains a negligible fraction of the variation in bond yield
and risk premia. The level factors of the cost-of-carry (𝛽1t) are indistinguishable even during the zero lower bound period

FIGURE 6 Comparing models with and without imposing the zero lower bound on interest rates. Notes: The figure compares some results
for the baseline model (solid lines) with those estimated imposing the zero lower bound (dashed lines) on interest rates (ZLB) [Colour figure
can be viewed at wileyonlinelibrary.com]
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(middle right panel). Although not shown in the figure, the same pattern is true for the other cost-of-carry factors (𝛽2t
and 𝛽3t), the spot factor 𝛽0t, and the seasonal factors 𝜉t and 𝜉∗t . Lastly, the bottom panels display the spot premium and the
expected return from holding an 18-month contract to maturity. Both measures of risk premia are very similar between
models and their pairwise correlation is 0.97 for the former and over 0.99 for the latter.

From these results we conclude that the baseline model performs very well even during the periods in which the interest
rates were at the zero lower bound. The commodity factors, which are the main drivers of risk premia, are virtually
identical in both models. This is because the periods in which interest rate factors differ the most (when the ZLB is binding)
are precisely those periods in which changes in interest rates have the lowest impact on futures prices (Equation 28).

6.4 Decomposing risk premia during the 1997–1998 oil price shock
We now look at the evolution of the futures curve, and the spot and term premia around the 1997–1998 oil price shock.
This was a period with large movements in commodity prices, which is particularly interesting because the futures curve
was in backwardation before the 1997 peak and in contango at the 1998 trough. Falling oil prices were associated with
the emergence of a contango in the futures market, which led to the usual time spread strategies (long a futures contract
and short a contract with a different maturity).

To assess the risk inherent in time spread strategies, it is useful to decompose the expected 1-month holding return of
a 𝜏-period contract into a spot premium (expected return of holding a 1-month contract) and a term premium (expected
1-month return of a 𝜏-period contract in excess of that of a 1-month contract):

Et[𝑓 (𝜏−1)
t+1 − 𝑓 (𝜏)

t ]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

1-month expected holding return

= Et[st+1 − 𝑓 (1)
t ]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
spot premium

+Et[(𝑓 (𝜏−1)
t+1 − st+1) + (𝑓 (1)

t − 𝑓 (𝜏))
t ]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
term premium

.

Heating oil prices reached a peak in January 1997 and the associated spot premium was large and positive (Figure 7).
The reason is that periods of backwardation are usually associated with a drop in stocks of heating oil inventories and

FIGURE 7 Spot and term premium: a case study. Notes: The upper left panel displays the spot price (solid line) and all futures prices
(dotted lines). The upper right panel displays the spot and term premium during the peak and trough months of heating oil prices. The
bottom panels display the fitted and actual futures curves on the same dates [Colour figure can be viewed at wileyonlinelibrary.com]
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increases in the spot price. In the 1998 trough, the spot premium was negative and large, consistent with the futures curve
being in contango, accumulation of inventories, and an expected fall in the spot price.

The risk inherent in the abnormally high commodity price of 1997 was reflected in a negative and decreasing term
premium (top left panel). As prices were too high, investors demanded a lower premium to hold long contracts because
they expected an eventual drop in the price and hence were willing to accept a negative premium. In effect, the
downward-sloping futures curve of January 1997 reflected the expectation of lower spot price in the future. The futures
curve switched from backwardation to contango in April 1997 while at the 1998 trough, as heating oil prices were expected
to recover, the term premium turned positive and hump-shaped as investors demanded a positive premium for holding
long-dated contracts.

7 CONCLUDING REMARKS

In this paper we document that seasonal fluctuations in futures contracts for a group of energy and agricultural commodi-
ties are stochastic. In addition, we show evidence that properly accounting for the variability in the cost-of-carry curve
for the same group of commodities requires at least three factors. These observations motivate the main contribution of
the paper: developing and estimating a multifactor affine model of commodity futures and bond prices that allows for
stochastic variations in seasonality. We show that there is single pricing kernel that prices bonds and commodity futures
in such a way that the yield curve and the cost-of-carry curve adopt Nelson–Siegel functional forms.

We estimate the model using data on heating oil futures and US bond prices. We observe a decline in the amplitude
of seasonal fluctuations in the futures prices that coincides with a similar moderation in the amplitude of the seasonal
pattern of stocks of heating oil inventories. This observation is consistent with the theory of storage. Next, we measure
the contribution of the different factors to risk premia. We find that most high-frequency fluctuations in risk premia are
due to variations in the spot price factor and other factors associated with the cost-of-carry curve. Correctly specifying
seasonality in futures prices as stochastic is important mostly to avoid erroneously assigning those fluctuations to other
risk factors. In addition, in contrast to usual claims in the literature, we find that factors associated with bond yields have
a significant contribution to risk premia in commodity futures, mostly at medium and lower frequencies.

Finally, we estimate a nonlinear version of the model that imposes the zero lower bound on interest rates. Although
the zero lower bound constraint is important for bond pricing, it has a minor impact on futures prices and risk premia.
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APPENDIX A : PROOFS

Rewrite the pricing condition of a futures contract that matures in 𝜏 periods as

F(𝜏)
t Et[Mt,t+1] = Et[Mt,t+𝜏St+𝜏]. (A.1)

The price of a contract written at time t + 1 with settlement date at t + 𝜏 is

F(𝜏−1)
t+1 Et+1[Mt+1,t+𝜏] = Et+1[Mt+1,t+𝜏St+𝜏].

Multiply both sides of this expression by Mt,t + 1, use Mt,t + 1Mt + 1,t + 𝜏 = Mt,t + 𝜏 , and take expectations conditional on
information at time t to obtain

Et[Mt,t+𝜏St+𝜏] = Et

[
Mt,t+1F(𝜏−1)

t+1 Et+1[Mt+1,t+𝜏]
]
.

Incorporating this equation into Equation A.1, and noting that Et[Mt,t+𝜏] = P(𝜏)
t and Et[Mt+1,t+𝜏] = P(𝜏−1)

t+1 , gives

V (𝜏)
t = Et[Mt,t+1V (𝜏−1)

t+1 ], (A.2)

where V (𝜏)
t = F(𝜏)

t P(𝜏)
t . Conjecture a solution of the form log V (𝜏)

t = Gmt
𝜏 + Hmt′

𝜏 Xt. Incorporating Equations 5 and 6 into
Equation A.2 and evaluating the conditional expectation gives

Gmt
𝜏 + Hmt′

𝜏 Xt = Gmt+1
𝜏−1 + Hmt+1′

𝜏−1 (𝜇 − Γ𝜆0) +
1
2

Hmt+1′
𝜏−1 ΓΓ′Hmt+1

𝜏−1 − 𝜌0 +
(

Hmt+1′
𝜏−1 (Θ − Γ𝜆1) − 𝜌′1

)
Xt.
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Fix a month m̃ and match coefficients to obtain

Gm̃
𝜏 = Gm̃+1

𝜏−1 + Hm̃+1′
𝜏−1 (𝜇 − Γ𝜆0) +

1
2

Hm̃+1′
𝜏−1 ΓΓ′Hm̃+1

𝜏−1 − 𝜌0,

Hm̃
𝜏 = (Θ − Γ𝜆1)′Hm̃+1

𝜏−1 − 𝜌1.

Also, note that V (0)
t = F(0)

t = St. Therefore, the conjecture and Equation 12 imply

Gmt
0 + Hmt′

0 Xt = 𝛾0 + 𝛾
mt′
1 Xt.

Thus Gm̃
0 = 𝛾0 and Hm̃

0 = 𝛾m̃
1 for m̃ = 1, 2, · · ·, 12. Finally, note that

𝑓𝜏t = log(V (𝜏)
t ∕P(𝜏)

t ) = Gmt
𝜏 − A𝜏 + (Hmt

𝜏 − B𝜏)′Xt.

Equation 14 follows by setting Cmt
𝜏 = Gmt

𝜏 − A𝜏 and Dmt
𝜏 = Hmt

𝜏 − B𝜏 .

Proof of Proposition 2: Nelson and Siegel representation
Log-bond prices and log-futures prices are affine functions of the state 𝑝(𝜏)t = A𝜏 + B′

𝜏Xt and 𝑓 (𝜏)
t = Cm̃

𝜏 + Dm̃′
𝜏 Xt. Given

the proposed parameters of the affine model, set B0 = 0 and Hm̃
0 = 𝛾m̃

1 , and let the factor loadings B𝜏 and Hm̃
𝜏 satisfy the

recursions
B𝜏 = ΘQ′B𝜏−1 − 𝜌1 (A.3)

Hm̃
𝜏 = ΘQ′Hm̃+1

𝜏−1 − 𝜌1, (A.4)

and define Cm̃
𝜏 = Gm̃

𝜏 − A𝜏 and Dm̃
𝜏 = Hm̃

𝜏 − B𝜏 . Now partition the matrix 𝛩Q as

ΘQ =
⎡⎢⎢⎢⎣
ΘQ
𝛿𝛿

ΘQ
𝛿𝛽

ΘQ
𝛿𝜉

ΘQ
𝛽𝛿

ΘQ
𝛽𝛽

ΘQ
𝛽𝜉

ΘQ
𝜉𝛿

ΘQ
𝜉𝛽

ΘQ
𝜉𝜉

⎤⎥⎥⎥⎦
where the size of the submatrices conforms to the size of the vectors 𝜹t, 𝜷 t, and 𝝃t.

We begin with the recursion for bonds. The Nelson and Siegel parametrization implies that bond prices depend only
on 𝜹t (i.e., B𝜏 = −[𝜏, 1−e𝜁1𝜏

𝜁1
, 1−e𝜁1𝜏

𝜁1
− 𝜏e−𝜁1𝜏 , 01×6]′). Therefore, the nonzero elements of Equation A.3 satisfy

⎡⎢⎢⎢⎣
−𝜏

− 1−e𝜁1𝜏

𝜁1
1−e𝜁1𝜏

𝜁1
− 𝜏e−𝜁1𝜏

⎤⎥⎥⎥⎦ = ΘQ′
𝛿𝛿

⎡⎢⎢⎢⎣
−(𝜏 − 1)
− 1−e𝜁1 (𝜏−1)

𝜁1
1−e𝜁1 (𝜏−1)

𝜁1
− (𝜏 − 1)e−𝜁1(𝜏−1)

⎤⎥⎥⎥⎦ −
⎡⎢⎢⎢⎣

1
− 1−e𝜁1

𝜁1
1−e𝜁1
𝜁1

− e−𝜁1

⎤⎥⎥⎥⎦
which, in turn, implies

ΘQ
𝛿𝛿

=

[ 1 0 0
0 e−𝜁1 𝜁1e−𝜁1

0 0 e−𝜁1

]
.

This condition for the arbitrage-free Nelson–Siegel model in discrete time was obtained by Hong, Niu, and Zeng
(2016).18

Consider the parameters associated with the commodity factors. The Nelson–Siegel parametrization implies that the
first three elements of Hm̃

𝜏 are zero. Thus Equation A.4 imposes

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜏

1−e𝜁2𝜏

𝜁2
1−e𝜁2𝜏

𝜁2
− 𝜏e−𝜁2𝜏

e−𝜔𝜏 cos( 2𝜋
12
(m̃ + 𝜏))

e−𝜔𝜏 sin( 2𝜋
12
(m̃ + 𝜏))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

[
ΘQ
𝛽𝛽

ΘQ
𝛽𝜉

ΘQ
𝜉𝛽

ΘQ
𝜉𝜉

]′

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜏 − 1

1−e𝜁2 (𝜏−1)

𝜁2
1−e𝜁2 (𝜏−1)

𝜁2
− (𝜏 − 1)e−𝜁2(𝜏−1)

e−𝜔(𝜏−1) cos( 2𝜋
12
(m̃ + 1 + 𝜏 − 1))

e−𝜔(𝜏−1) sin( 2𝜋
12
(m̃ + 1 + 𝜏 − 1))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(A.5)

18Joslin, Singleton, and Zhu (2011) show that the arbitrage-free Nelson–Siegel model imposes a single restriction on their maximally flexible (identified)
model. In particular, the unconstrained case replaces the 1 in the ΘQ

𝛿𝛿
matrix with a free parameter.
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and

⎡⎢⎢⎢⎣
1

1−e𝜁1𝜏

𝜁1
1−e𝜁1𝜏

𝜁1
− 𝜏e−𝜁1𝜏

⎤⎥⎥⎥⎦ =
[
ΘQ′
𝛽𝛿

ΘQ′
𝜉𝛿

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
𝜏 − 1

1−e𝜁2 (𝜏−1)

𝜁2
1−e𝜁2 (𝜏−1)

𝜁2
− (𝜏 − 1)e−𝜁2(𝜏−1)

e−𝜔(𝜏−1) cos( 2𝜋
12
(m̃ + 1 + 𝜏 − 1))

e−𝜔(𝜏−1) sin( 2𝜋
12
(m̃ + 1 + 𝜏 − 1))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (A.6)

It is easy to verify that Equation A.5 implies ΘQ
𝜉𝛽

= 02×4, ΘQ
𝛽𝜉

= 04×2:

ΘQ
𝜉𝜉

=
[

e−𝜔 0
0 e−𝜔

]
and ΘQ

𝛽𝛽
=
⎡⎢⎢⎢⎣

1 1 1−e−𝜁2
𝜁2

1−e−𝜁2
𝜁2

− e−𝜁2

0 1 0 0
0 0 e−𝜁2 𝜁2e−𝜁2

0 0 0 e−𝜁2

⎤⎥⎥⎥⎦
while Equation A.6 implies ΘQ

𝜉𝛿
= 02×3 and

ΘQ
𝛽𝛿

=
⎡⎢⎢⎣

1 1−e−𝜁1
𝜁1

1−e−𝜁1
𝜁1

− e−𝜁1

0 0 0
0 0 0

⎤⎥⎥⎦ .
Lastly, Equations A.3 and A.4 and Dm̃

𝜏 = Hm̃
𝜏 − B𝜏 imply ΘQ

𝛿𝛽
= 03×4 and ΘQ

𝛿𝜉
= 03×2.

APPENDIX B : RISK PREMIA

The (realized) 1-period holding return of a 𝜏-month contract is

𝑓𝜏−1
t+1 − 𝑓𝜏t = Cmt+1

𝜏−1 + Dmt+1′
𝜏−1 Xt+1 − Cmt

𝜏 − Dmt′
𝜏 Xt.

Using Equations 5, 9, 10, 15, and 16, the time-t expected 1-period holding return can be written as

Et[𝑓𝜏−1
t+1 − 𝑓𝜏t ] =

1
2
[B′

𝜏−1ΓΓ
′B𝜏−1 − Hmt+1′

𝜏−1 ΓΓ′Hmt+1
𝜏−1 ] + Dmt+1′

𝜏−1 ΓΛt.

The spot premium is the 1-period holding return of a futures contract with settlement date in the next month. Using
𝑓 0

t+1 = st+1, B0 = 0 and Hmt+1
0 = Dmt+1

0 = 𝛾
mt+1
1 , the spot premium is

Et[st+1 − 𝑓 1
t ] = −1

2
[𝛾mt+1′

1 ΓΓ′𝛾
mt+1
1 ] + 𝛾mt+1′

1 ΓΛt.

The term premium and the h-period holding returns follow from simple manipulations of the 1-period holding returns
and the spot premium, as described in the text.
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