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The medial prefrontal cortex (mPFC) is known for its role in decision making and memory processing,
including the participation in the formation of extinction memories. However, little is known regarding
its contribution to aversive memory consolidation. Here we demonstrate that neural activity and protein
synthesis are required in the dorsal mPFC for memory formation of a conditioned taste aversion (CTA)

task and that this region is involved in the retrieval of recent and remote long-term CTA memory. In addi-
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tion, both NMDA receptor and CaMKII activity in dorsal mPFC are needed for CTA memory consolidation,
highlighting the complexity of mPFC functions.

© 2015 Elsevier Inc. All rights reserved.

Several studies in humans, non-human primates and rodents
describe the participation of the prefrontal cortex (PFC) in diverse
cognitive and executive functions, such as decision making, behav-
ioral control, error detection and working memory (Dalley,
Cardinal, & Robbins, 2004; Euston, Gruber, & McNaughton, 2012).
Besides these well-known functions, recent research efforts began
to show that the PFC also plays a role in the consolidation and
expression of a broad range of memories (Corcoran & Quirk,
2007; Runyan, Moore, & Dash, 2004; Zhang, Fukushima, & Kida,
2011).

In the conditioned taste aversion (CTA) paradigm, animals asso-
ciate a novel taste (conditioned stimulus, CS) with a visceral
malaise (unconditioned stimulus, US) and show a reduction of
the CS consumption as the conditioned response (Garcia,
Kimmeldorf, & Koelling, 1995). CTA memory consolidation
depends on protein synthesis and NMDA receptor (NMDATr) signal-
ing in the insular cortex (Moguel-Gonzalez, Goémez-
Palacio-Schjetnan, & Escobar, 2008; Rosenblum, Berman, Hazvi,
Lamprecht, & Dudai, 1997; Rosenblum, Meiri, & Dudai, 1993) and
the amygdala (De la Cruz, Rodriguez-Ortiz, Balderas, &
Bermudez-Rattoni, 2008; Lamprecht & Dudai, 1996; Yasoshima,
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Morimoto, & Yamamoto, 2000). The rodent medial PFC (mPFC)
projects to and receives inputs from these two brain structures
(Vertes, 2004). In addition, the mPFC is part of the brain circuit that
generates aversion (Lammel et al., 2012) and is activated during
taste memory formation together with the amygdala and the insu-
lar cortex (Uematsu, Kitamura, Iwatsuki, Uneyama, & Tsurugizawa,
2014). It is important to bear in mind that the mPFC is not a uni-
form brain territory, especially when considering the paucity of
studies exploring the role of the dorsal division of the mPFC in
CTA memory. A recent study showed that CTA acquisition is asso-
ciated with ERK and NMDAr NR1 subunit phosphorylation in the
prelimbic (PL) region of the PFC, suggesting a role of this cortex
in CTA behavior (Marotta et al., 2014). Nevertheless, most of the
previous work targeted the infralimbic (IL) region of the mPFC
and/or described its role in CTA extinction (Akirav et al., 2006;
Mickley, Kenmuir, Yocom, Wellman, & Biada, 2005; Mickley
et al., 2007), leaving aside the study of dorsal regions (PL and cin-
gulate cortices) of the mPFC and, importantly, its role in CTA mem-
ory. In this context and given that we recently showed that the
dorsal mPFC participates in aversive memory processing using an
inhibitory avoidance task (Gonzalez et al., 2013), we investigated
the involvement of the dorsal mPFC in CTA memory formation
and expression.

We utilized 3-month-old male Wistar rats (250-300 g) main-
tained under a 12-h light/dark cycle (lights on at 7:00 a.m.) at
23 °C with water and food ad libitum unless otherwise stated.
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One week before experimental manipulations, animals were anes-
thetized and bilaterally implanted with 22-G guide cannulas aimed
to the dorsal mPFC (Fig. 1G: AP+ 3.20/LL +£0.75/DV — 3.20 mm
from bregma, according to Paxinos & Watson, 1997). For the CTA
task, animals were deprived of water for 24 h and habituated to
drink water from a graduated tube (20 min each day, for 3 days).
In training session (CS-US association), water was substituted with
saccharin, (CS, 0.1% w/v) and 30 min later the animals were
injected intraperitoneally (ip) with LiCl (US, 0.15 M; 7.5 ml/kg).

Rats were tested for retention only once: 90 min, 3 days or 21 days
after training. We performed two control groups in the 90-min
retention experiments to exclude hydration or sickness effect on
behavior. In the hydration control group, rats were trained with
saccharin and 30 min later received an ip injection of saline. In
the sickness control group saccharin was associated with LiCl ip
injection and tested with water instead of saccharin.
Training and test sessions lasted 20 min. Saccharin consumption
percentage was calculated as follows: consumption in the test
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Fig. 1. Neural activity and protein synthesis are required in the dorsal mPFC for CTA memory consolidation. (A and D) Schematic representation of the experimental
protocols. CTA STM (90 min) or LTM (3 days) were evaluated after intra-mPFC infusions of vehicle (VEH), (B) muscimol (MUS) or (C) emetine (EME) administrated 15 min
before training. In another set of experiments, CTA LTM was also evaluated after intra-mPFC infusions of MUS (E) or EME (F) administrated 6 h after training. In all
experiments (except for MUS and EME treatments tested for LTM in panels B and C) there were significant differences in saccharin consumption between training and test
sessions (P < 0.05). (G) Schematic representation of drug infusion areas, showing rat brain sections at three rostrocaudal planes (+3.70, +3.20 and +2.70 from bregma) taken
from the atlas of Paxinos and Watson (1997). In shading, the extension of the area reached by the infusions in mPFC. Saccharin (SAC) consumption is expressed as mean

percentage + SEM relative to acquisition session. *** P < 0.001.
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session x 100/consumption in the training session. Placement of
the cannulas was histologically verified to exclude subjects with
misplaced cannulas from data analysis. Statistical analysis between
groups was performed using two-tailed Student’s t test or ANOVA
(Prism 4.01; GraphPad Software). P < 0.05 was considered signifi-
cant. Experimental procedures were performed in accordance with
the USA National Institutes of Health Guide for the Care and Use of
Laboratory Animals and were approved by the Animal Care and
Use Committees (CICUAL) of the University of Buenos Aires.

To establish the mPFC requirement in CTA memory consolida-
tion, we performed intra-mPFC infusions of the GABAa receptor
agonist muscimol (MUS; 0.1 pg/ul; 1 pl/side) or the protein syn-
thesis inhibitor emetine (EME; 50 pg/ul; 1 pl/side) 15 min before
training (Fig. 1A). Both treatments impaired CTA long-term mem-
ory (LTM) evaluated 3 days later (Fig. 1B: MUS vs. vehicle (VEH),
te)=4.573, P<0.0001, n=12, 16; Fig.1C: EME vs. VEH,
t34)=4.038, P=0.0003, n =14, 22) without affecting CTA short-
term memory (STM) evaluated 90 min after training (Fig. 1B:
MUS vs. VEH, t5y=1.562, P=0.1390, n=7, 12; Fig. 1C: EME vs.
VEH, t29)=0.6348, P=0.5305, n = 14, 17). The reduction in saccha-
rin consumption during STM retention test is not attributed to
hydration or sickness: CS-US: 1.67 +0.25%; hydration control
group: 107.21 + 10.79%; sickness control group: 100.69 +29.29%;
** P <0.0006, Tukey test after ANOVA, n = 8. No difference in sac-
charin consumption during the training session was observed
between groups (P> 0.05, ANOVA; mean 9.2 +0.5 ml). MUS or
EME infusion given 6 h after training did not impaired CTA 3-day
LTM (Fig. 1E: MUS vs. VEH, t1,=0.3424, P=0.7385, n=7, 6;
Fig. 1F: EME vs. VEH, t;11,=0.1254, P=0.9024, n=6, 7). These
results suggest that there is a critical time window where both
neural activity and protein synthesis in the dorsal mPFC are needed
for CTA consolidation. NMDAr-mediated neurotransmission is
known to be crucial for neural plasticity, learning and memory
(Cammarota et al., 2000; Morris, 2013; Morris, Anderson, Lynch,
& Baudry, 1986). Moreover, pharmacological inactivation of

NMDATr in the insular cortex and the amygdala impairs the forma-
tion of the aversive taste memory trace (Escobar, Alcocer, &
Bermudez-Rattoni, 2002; Gutiérrez, Hernandez-Echeagaray,
Ramirez-Amaya, & Bermudez-Rattoni, 1999; Rosenblum et al,,
1997; Yasoshima et al, 2000). We set out to analyze the
involvement of dorsal mPFC NMDAr activity (and downstream bio-
chemical pathways) in CTA memory consolidation. We found that
intra-mPFC infusions of the NMDAr antagonist b,.-2-amino-5-
phosphonovaleric acid (APV; 1 pg/ul; 1 pl/side) 15 min before
training impaired CTA LTM evaluated 3 days later (Fig. 2B: APV
vs. VEH, t13y=2.643, P=0.0203, n=8, 7). This treatment appar-
ently did not disrupt CTA acquisition since animals showed intact
STM (Fig. 2B: APV vs. VEH, t(5)= 1.249, P=0.2670, n = 6, 6), indicat-
ing that CTA memory expression at very early stages relies on other
brain structures, possibly on the insular cortex or the amygdala
(Ma et al., 2011). NMDAr signaling is known to activate CaMKII
and PKA pathways, which are relevant for memory formation in
multiple systems (Abel & Nguyen, 2008; Cammarota et al., 2000;
Silva, Stevens, Tonegawa, & Wang, 1992). In order to assess the
potential contribution of these signaling pathways in the mPFC,
we treated animals with the inhibitor of CaMKII phosphorylating
activity KN-93 (25 pg/ul; 1 pl/side) and found that partially
impaired CTA LTM when infused 15 min pre-training (Fig. 2C:
KN-93 vs. VEH, t(36)=2.147, P=0.0413, n =15, 13); but treatment
with the inhibitor of PKA activation RP-cAMP (0.5 pg/pl; 1 pl/side)
had no effect on CTA LTM (Fig. 2D: RP-cAMP vs. VEH, t16)= 0.2577,
P=0.7999, n =8, 9). These findings suggest that NMDAr signaling
might be involved in CTA memory consolidation through a
CaMKII-dependent pathway in the dorsal mPFC.

The mPFC is also crucial for recent and remote memory retrieval
(Corcoran & Quirk, 2007; Gonzalez et al., 2013). To determine if the
dorsal mPFC is required for CTA memory expression we inactivated
this cortex with MUS infusions 15 min before a test session carried
out either 3 days or 21 days after training. Both recent and remote
LTM were disrupted (Fig. 3B: MUS vs. VEH, t(10)=3.317, P = 0.0034,
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Fig. 2. CTA memory consolidation requires NMDA receptor and CaMKII activity in the dorsal mPFC. (A) Schematic representation of the experimental protocol. (B) CTA STM
(90 min) or LTM (3 days) were evaluated after intra-mPFC infusions of vehicle (VEH) or the NMDA receptor antagonist, APV, administrated 15 min before training. LTM was
evaluated after intra-mPFC infusions of vehicle (VEH), a selective Ca?*/calmodulin-dependent protein kinase II inhibitor, KN-93 (C) or Rp-cAMP, a competitive inhibitor of the
activation of cAMP-dependent protein kinases by cAMP (D), administrated 15 min before training. In all experiments (except APV-treated group tested for LTM in panel B)
there were significant differences in saccharin consumption between training and test sessions (P < 0.001). Saccharin consumption is expressed as mean percentage + SEM

relative to acquisition session. * P < 0.05.
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Fig. 3. Activation of the dorsal mPFC is required for the expression of recent and
remote CTA LTM. (A) Schematic representation of the experimental protocol. (B)
CTA recent LTM (3 days) or remote LTM (21 days) were evaluated after intra-mPFC
infusions of vehicle (VEH) or muscimol (MUS) administrated 15 min before the test
session. In VEH-treated groups there were significant differences in saccharin
consumption between training and test sessions (P < 0.05). Saccharin consumption
is expressed as mean percentage + SEM relative to acquisition session. * P < 0.05,
**P<0.01.

n=11, 11; for recent LTM and ¢(;5)=2.407, P=0.0294, n=8, 7 for
remote LTM), indicating that dorsal mPFC neural activity is also
essential for CTA memory retrieval.

Our results demonstrate for the first time that the dorsal mPFC
is required for CTA memory consolidation. Together with previous
findings indicating that CTA training is accompanied by increases
in NMDAr and ERK phosphorylation in the mPFC (Marotta et al.,
2014) and those showing the role of this brain region in CTA mem-
ory retrieval (Reyes-Lopez, Nufiez-Jaramillo, Moran-Guel, &
Miranda, 2010), our present findings endorse the idea that dorsal
mPFC contributes to the formation and expression of CTA memory.
In this study, we used a pharmacological approach that targets
multiple components of the machinery involved in memory pro-
cessing, showing that neural activity, de novo protein synthesis,
NMDAr neurotransmission and CaMKII activity in this cortex are
essential for the normal storage of the taste aversive memory trace.
So far, only a small number of studies addressed the role of the
mPFC in CTA memory formation, all of them performing lesions
in this cortex or pharmacologically targeting the IL prefrontal sub-
division. The studies based on irreversible lesions of the region are
not consistent. While mPFC neurotoxin administration cause
acquisition and retention deficits (Hernadi et al., 2000), ablation
of frontal cortex do not impair CTA (Fresquet, Yamamoto, &
Sandner, 2003; Mogensen & Divac, 1993). These methodological
tools are no longer adequate for addressing the participation of
brain structures on memory processing since this kind of interven-
tion has several drawbacks (Izquierdo & Medina, 1998), including a
lack of discrimination between memory acquisition, consolidation
and/or expression. These facts strongly limit the interpretations
and conclusions reached by irreversible lesion studies. Regarding
studies with pharmacological approaches, Akirav and coworkers

showed that protein synthesis inhibition in the mPFC-IL subdivi-
sion is required for extinction but not consolidation of CTA mem-
ory (Akirav et al., 2006). This study is in line with previous work
demonstrating an involvement of the IL cortex in memory extinc-
tion (Maroun, Kavushansky, Holmes, Wellman, & Motanis, 2012;
Mickley et al., 2005; Xin et al., 2014; but see Reyes-Lopez et al.,
2010). It has been already proposed that the different subregions
of mPFC, the IL and the PL, have opposite effects on the modulation
of fear memories (Vidal-Gonzalez, Vidal-Gonzalez, Rauch, & Quirk,
2006). While the mPFC-IL is crucial for fear extinction learning
(Herry et al., 2010; Pape & Pare, 2010; Peters, Dieppa-Perea,
Melendez, & Quirk, 2010), the PL region of the mPFC would be
involved in the expression of conditioned fear (Gonzalez et al.,
2013; Sierra-Mercado, Padilla-Coreano, & Quirk, 2011). However
it is not yet clear in which specific manner the IL and PL regulate
CTA task, an aversive experience not driven by fear.

Recently, Uematsu et al. (2014) showed that during CTA
learning, PL neuronal activity synchronizes with the amygdala
and insular cortex, brain regions essential for CTA acquisition and
memory processing. In this context and considering the results
presented here, we propose that the dorsal mPFC is part of the
brain network recruited during CTA storage. In a more general
view, this work supports recent evidence pointing to the dorsal
mPFC as an important component of a neural circuit involved in
aversion (Bravo-Rivera et al., 2014; Euston et al., 2012; Gonzalez
et al., 2014; Lammel et al., 2012; Lee, Vogt, Rubenstein, & Sohal,
2014). This network includes the dopaminergic neurons from the
VTA (Pignatelli & Bonci, 2015) and their inputs from the lateral
habenula (Lammel et al., 2012), and several targets of the dorsal
mPFC such as the amygdala, the insular cortex or the nucleus
accumbens (Vertes, 2004, 2006). Therefore, it is tempting to sug-
gest that mPFC may participate in CTA by signaling the aversive
component and the saliency of the experience.

The findings presented here contribute to elucidate the basic
mechanisms underlying CTA memory consolidation in the dorsal
mPFC. Previous works focusing on the insular cortex demonstrated
a major role for glutamatergic neurotransmission on CTA memory
formation, since blockade of NMDAr around the time of acquisition
inhibited taste aversion memory consolidation (Gutiérrez et al.,
1999). In the present study, we demonstrate that CTA memory
consolidation involves NMDAr-dependent mechanisms in the dor-
sal mPFC which are, at least in part, likely mediated by CaMKII
activity. Given that high doses of KN-93 could also inhibit other
CaMK isoforms (Gao et al., 2013), we cannot rule out the possible
involvement of CaMKI or CaMKIV in CTA memory formation.
However, we can exclude the possibility that the PKA signaling
pathway in PFC is involved in CTA memory formation since the
dose of 0.5 pig of Rp-cAMPS was previously shown to impair differ-
ent memory tasks (Barros et al., 2000; Kobori, Moore, & Dash,
2015; Souza et al., 2002; Vianna et al., 2000).

In agreement with previous works that show that the mPFC is
involved in recall of recent contextual fear and inhibitory avoid-
ance memories (Einarsson & Nader, 2012; Gonzalez et al., 2013;
Holloway & McIntyre, 2011) our results show that the dorsal mPFC
is also required for CTA memory expression, regardless of the age
of the memory trace.

This study identifies the dorsal mPFC as a new player in the
circuitry that leads to the normal storage of the aversive taste
memory trace. The diverse (and many times, opposite) roles of
the different divisions of the mPFC on memory processing
reminds us of the intricacies of top-down interactions modulating
complex behaviors. Further studies dissecting the cellular and
molecular mechanisms involved will be required to better under-
stand the influence of mPFC activity in aversive memory
processing.
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