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E-mail: deflo@unsam.edu.ar, jmazzi@physik.uzh.ch

Abstract: We perform the all orders resummation of threshold enhanced contributions

for the Higgs boson pair production cross section via gluon fusion, including finite top quark

mass (Mt) effects. We present results for the total cross section and Higgs pair invariant

mass (Mhh) distribution. We obtain results at next-to-leading logarithmic accuracy (NLL)

which retain the full Mt dependence, and are matched to the full next-to-leading order
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1 Introduction

The study of the properties of the Higgs boson discovered by the ATLAS and CMS collab-

orations is one of the main goals of the present and future runs of the LHC. Among the

different measurements that can help to distinguish between the Standard Model (SM) and

new physics scenarios, the measurement of the Higgs self coupling is one of particular in-

terest, as in the SM it is determined by the scalar potential, responsible for the electroweak

symmetry breaking mechanism.

The production of Higgs boson pairs provides a direct way of measuring the Higgs

trilinear coupling, and the high-luminosity upgrade of the LHC is expected to provide

constraints on its value by measuring the double Higgs production cross section [2, 3]. In

the SM, the main production mechanism is the fusion of gluons via a heavy quark (mainly

top quark) loop, and the corresponding cross section has been computed at leading order

(LO) in refs. [4–6]. The QCD corrections for this process have been computed first in

the heavy top-quark mass (Mt) limit (HTL), both at next-to-leading order [7] (NLO) and

next-to-next-to-leading order [8–12] (NNLO), and more recently the NLO corrections with

full Mt dependence also became available [13, 14], later also supplemented by transverse

momentum resummation [15] and parton shower effects [16, 17]. The size of the QCD

corrections was found to be large –about a 70% increase in the total cross section at

NLO for LHC energies–, and also the difference with respect to the HTL was found to be

significant, the latter being around 15% larger than the full NLO result at 14 TeV.

Very recently, an improved and fully differential NNLO prediction –labeled NNLOFTa

for full-theory approximation, see also refs. [18, 19]– was presented in ref. [1], which in

particular features the full loop-induced double-real corrections. This result predicts an

additional increase in the total cross section with respect to the full NLO calculation of

about 12% at the LHC, and a residual uncertainty due to missing finite-Mt effects estimated

to be about 2.5%.
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Besides the previously described fixed-order calculations, the all-orders resummation

of soft gluon emissions has also been performed –again within the HTL– at next-to-next-to-

leading logarithmic accuracy (NNLL) in refs. [20, 21]. The resummed contributions, which

account for the dominant effect of the missing higher-orders in the perturbative expansion

in the threshold limit, are found to further stabilize the cross section leading to smaller

theoretical uncertainties.

In this work we perform the resummation of the threshold enhanced contributions

including finite Mt effects. In particular, up to next-to-leading logarithmic accuracy (NLL)

we retain the full Mt dependence, therefore obtaining NLL+NLO results that represent the

most advanced prediction computed in the full theory. Finally, by performing matching to

the NNLOFTa cross section, we achieve the state of the art results for Higgs pair production

by reaching NNLL accuracy within the best available approximation for the Mt effects.

This work is organized as follows: in section 2 we collect all the analytical expressions

needed to perform threshold resummation up to NNLL, then in section 3 we present our

numerical predictions for the LHC and future colliders, and in section 4 we summarize the

results.

2 Threshold resummation

We consider the hadronic production of Higgs boson pairs via gluon fusion. The hadronic

cross section for a collider center-of-mass energy sH , differential in the Higgs pair system

invariant mass Mhh, can be expressed in the following way

M2
hh

dσ

dM2
hh

(sH ,M
2
hh) ≡ σ(τ,M2

hh) =
∑
a,b

∫ 1

0
dx1 dx2 fa/h1(x1, µ

2
F ) fb/h2(x2, µ

2
F ) (2.1)

×
∫ 1

0
dz δ

(
z − τ

x1x2

)
σ̂0 z Gab(z;αS(µ2

R),M2
hh/µ

2
R;M2

hh/µ
2
F ) ,

where τ = M2
hh/sH , µR and µF are the renormalization and factorization scales respec-

tively, and σ̂0 represents the Born level partonic cross section. The parton densities of the

colliding hadrons are denoted by fa/h(x, µ2
F ) with the subscripts a, b labeling the type of

massless partons (a, b = g, qf , q̄f , with Nf = 5 different flavours of light quarks). The hard

coefficient function Gab can be computed in perturbation theory, expanding it in terms of

powers of the (MS renormalized) QCD coupling αS(µ2
R) as:

Gab(z;αS,M
2
hh/µ

2
R;M2

hh/µ
2
F ) =

+∞∑
n=0

(αS

2π

)n
G

(n)
ab (z;M2

hh/µ
2
R;M2

hh/µ
2
F ) . (2.2)

We introduce now the notation needed to perform the soft gluon resummation in Mellin

space [22, 23]. We start by considering the Mellin transform of the hadronic cross section,

σN (M2
hh) ≡

∫ 1

0
dτ τN−1 σ(τ,M2

hh) , (2.3)

– 2 –
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which takes the following factorized form

σN−1(M2
hh) = σ̂0

∑
a,b

fa/h1, N (µ2
F ) fb/h2, N (µ2

F ) Gab,N (αS,M
2
hh/µ

2
R;M2

hh/µ
2
F ) . (2.4)

Here we have introduced the N -moments of the hard coefficient function and parton dis-

tributions, specifically

fa/h,N (µ2
F ) =

∫ 1

0
dx xN−1 fa/h(x, µ2

F ) , (2.5)

Gab,N =

∫ 1

0
dz zN−1 Gab(z) . (2.6)

Once all the ingredients in N -space are known, we can obtain the physical cross section

via Mellin inversion,

σ(τ,M2
hh) = σ̂0

∑
a,b

∫ CMP +i∞

CMP−i∞

dN

2πi
τ−N+1 fa/h1, N (µ2

F ) fb/h2, N (µ2
F )

× Gab,N (αS,M
2
hh/µ

2
R;M2

hh/µ
2
F ) , (2.7)

where the constant CMP defining the integration contour in the N -plane is on the right of

all the possible singularities of the integrand [24].

We will perform the all-order summation of the threshold enhanced contributions,

which corresponds to the limit z → 1 or equivalently N →∞ in Mellin space, and appear

as αnS lnmN terms with 1 ≤ m ≤ 2n. We will therefore consider (for the resummed

contributions) only the gluon-initiated configuration, given that it is the only partonic

channel that is not suppressed in this limit. The soft-gluon contributions in the large-N

limit can be organized in the following all-order resummation formula for the partonic

coefficient function in Mellin space,

G
(res)
gg,N (αS,M

2
hh/µ

2
R;M2

hh/µ
2
F ) = Cgg(αS,M

2
hh/µ

2
R;M2

hh/µ
2
F )

·∆N (αS,M
2
hh/µ

2
R;M2

hh/µ
2
F ) +O(1/N) . (2.8)

All the large logarithmic corrections are exponentiated in the Sudakov factor ∆N , only

depending on the dynamics of soft gluon emissions from the initial state partons. It can

be expanded as

ln ∆N

(
αS, lnN ;

M2
hh

µ2
R

,
M2
hh

µ2
F

)
= lnN g(1)(β0αS lnN) + g(2)(β0αS lnN,M2

hh/µ
2
R;M2

hh/µ
2
F )

+ αS g
(3)(β0αS lnN,M2

hh/µ
2
R;M2

hh/µ
2
F )

+

+∞∑
n=4

αn−2
S g(n)(β0αS lnN,M2

hh/µ
2
R;M2

hh/µ
2
F ) . (2.9)

The term lnN g(1) resums all the LL contributions αnS lnn+1N , g(2) collects the NLL terms

αnS lnnN , αS g
(3) contains the NNLL terms αn+1

S lnnN , and so forth. The perturbative

– 3 –
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coefficients g(n) needed to perform NNLL resummation are known and only depend on

the type of incoming partons, and their explicit expression can be found, for instance, in

refs. [25, 26].

All the contributions that are constant in the large-N limit are contained in the function

Cgg(αS). They originate in non-logarithmic soft contributions and hard virtual corrections,

and can be expanded in powers of the strong coupling:

Cgg(αS,M
2
hh/µ

2
R;M2

hh/µ
2
F ) = 1 +

+∞∑
n=1

(αS

2π

)n
C(n)
gg (M2

hh/µ
2
R;M2

hh/µ
2
F ) . (2.10)

In particular, in order to perform NiLL resummation we need up to the C
(i)
gg coefficient.

At the same time, this coefficient can be obtained from the NiLO fixed order computation;

even more, given that the soft gluon contributions in C
(i)
gg are universal, the only process

dependence enters via the virtual corrections. The explicit (universal) relation between

C
(i)
gg and the loop corrections has been derived up to i = 2 in ref. [27], and later at one

order higher in ref. [28], and reads (for µR = µF = Mhh)

C(1)
gg = CA

4π2

3
+ 4CAγ

2
E +

σ̂
(1)
fin

σ̂0
, (2.11)

C(2)
gg = C2

A

(
− 55ζ3

36
− 14γEζ3 +

607

81
+

404γE
27

+
134γ2

E

9
+

44γ3
E

9
+ 8γ4

E

+
67π2

16
+

14γ2
Eπ

2

3
+

91π4

144

)
+ CANf

(
5ζ3

18
− 82

81
− 56γE

27
−

20γ2
E

9
−

8γ3
E

9
− 5π2

8

)
+β2

0

11π4

3
+ CA

σ̂
(1)
fin

σ̂0

(
4π2

3
+ 4γ2

E

)
+
σ̂

(2)
fin

σ̂0
, (2.12)

where ζn represents the Riemann zeta function, γE is the Euler number and β0 = (11CA−
2Nf )/12π. The infrared-regulated one and two-loop corrections σ̂

(1)
fin and σ̂

(2)
fin can be ob-

tained from the corresponding matrix elements after applying the corresponding subtrac-

tion operator. The explicit formulas can be found in ref. [27]. For the particular case of

Higgs boson pair production, their explicit expression valid in the HTL can be found in

ref. [21], while for the NLL resummation with full Mt dependence we can obtain numerical

results for σ̂
(1)
fin , and therefore C

(1)
gg , using the publicly available grid interpolation of the

two-loop NLO virtual corrections [16].

Finally, in order to fully profit from the knowledge of the fixed order calculation, we

implement the corresponding matching. As usual, we expand the resummed NiLL cross

section to O(αis),
1 add the full NiLO cross section, and subtract the expanded result of the

resummed one to avoid a double counting of logarithmic fixed order effects, as

σNiLL+NiLO(sH ,M
2
hh) = σNiLL

res (sH ,M
2
hh)− σNiLL

res (sH ,M
2
hh)
∣∣∣
O(αi

s)
+ σNiLO(sH ,M

2
hh) .

(2.13)

1Relative to the LO α2
S power, which is always understood.
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√
s NLO (µ0 =Mhh/2) NLL (µ0 =Mhh/2) δNLL

NLO (µ0 =Mhh/2) δNLL
NLO (µ0 =Mhh)

7 TeV 5.773 +16.2%
−15.1% fb 6.121 +10.9%

−10.3% fb 6.0% 21.3%

8 TeV 8.342 +15.7%
−14.6% fb 8.801 +10.9%

−10.2% fb 5.5% 20.1%

13 TeV 27.78 +13.8%
−12.8% fb 28.92 +10.7%

−10.1% fb 4.1% 16.7%

14 TeV 32.88 +13.5%
−12.5% fb 34.18 +10.7%

−10.1% fb 3.9% 16.3%

27 TeV 127.7 +11.5%
−10.4% fb 131.3 +10.4%

−9.9% fb 2.8% 13.4%

100 TeV 1147 +10.7%
−9.9% fb 1166 +11.0%

−9.6% fb 1.7% 10.2%

Table 1. Fixed order NLO and resummed NLL+NLO predictions for the Higgs boson pair pro-

duction total cross section, for different collider energies. The scale uncertainties are indicated as

superscript/subscript. We also present the size of the resummed contribution relative to the NLO

result, for both µ0 = Mhh/2 and µ0 = Mhh.

3 Numerical results

In this section we present the numerical predictions for the LHC and future hadron colliders.

We use the values Mh = 125 GeV and Mt = 173 GeV for the Higgs boson mass and the

top quark pole mass, respectively. We do not consider bottom quark contributions, whose

contribution at LO is below 1% [29]. We use the PDF4LHC15 sets [30–35] for the parton

densities and strong coupling, evaluated at each corresponding perturbative order. The

fixed order cross sections are obtained from the implementation of ref. [1], which is based

on the publicly available computational framework Matrix [36].

In the first place, we present in section 3.1 the NLL+NLO predictions. It is worth

to point out that, even if more advanced predictions have been obtained for this process

(specifically the so-called NNLOFTa defined in ref. [1]), these results represent the most

advanced prediction computed in the full theory, i.e. with full Mt dependence.

Based on the knowledge of the threshold enhanced contributions at NLL with full

Mt dependence, and in particular on the O(α2
S) of its expansion, we can also provide an

improved fixed order (approximated) NNLO prediction. This is presented in section 3.2.

Finally, we combine the full NLL calculation with the NNLL contributions computed in

the heavy top limit. This is presented in section 3.3.

3.1 NLL+NLO with full Mt dependence

The results for the total cross section are shown in table 1 for different center-of-mass

energies. We use as the central scale µ0 = Mhh/2, though we also present results for µ0 =

Mhh. Scale uncertainties are obtained via the usual 7-point variation, that is µR,F = ξR,F µ0

with ξR,F = (2, 2), (2, 1), (1, 2), (1, 1), (1, 0.5), (0.5, 1), (0.5, 0.5), i.e. omitting antipodal

variations.

We can observe that the size of the threshold effects goes down for larger collider

energies, as expected from the fact that more energy is available and therefore soft gluon

– 5 –
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√
s NLO(µ0=Mhh/2)

NLO(µ0=Mhh) − 1 NLL(µ0=Mhh/2)
NLL(µ0=Mhh) − 1

7 TeV 17.9% 3.0%

8 TeV 17.1% 2.9%

13 TeV 14.7% 2.3%

14 TeV 14.3% 2.2%

27 TeV 11.7% 1.3%

100 TeV 7.7% −0.6%

Table 2. Ratio between the µ0 = Mhh/2 and µ0 = Mhh predictions, at NLO and NLL.

contributions become less dominant. As it was also observed in the heavy Mt limit, we can

appreciate that the size of the threshold corrections is much larger for µ0 = Mhh, ranging

from 21.3% at 7 TeV to 10.2% at 100 TeV. The corresponding values for µ0 = Mhh/2 are

6.0% and 1.7%, respectively. For LHC energies, the soft gluon resummation effects are

of the order of 4% for the central scale µ0 = Mhh/2. We can observe a reduction in the

scale uncertainties (except for the 100 TeV predictions, where fixed-order and resummed

results are comparable), this reduction being stronger for smaller center-of-mass energies.

In fact, the NLL relative scale uncertainties remain practically unchanged when varying

the collider energy, being always about ±10%.

In table 2 we present the ratio of the central values for the predictions corresponding

to µ0 = Mhh/2 and µ0 = Mhh, both for the fixed-order and resummed results. We can

observe that the variation is substantially smaller in the resummed case, pointing towards

a clear improvement in the stability of the cross section when taking into account the

all-orders soft gluon effects.

More details about this stabilization can be observed in figure 1, where we present

the dependence of the total cross section on the renormalization and factorization scales,

both for independent and simultaneous variations. We can observe that the resummed

contributions generate a strong change in the µF dependence at fixed µR, which partially

compensates the variation of the latter when varying both scales at the same time, leading

therefore to a much smaller variation for µR = µF , and in general to a smaller scale

uncertainty.

We also present NLL predictions (with µ0 = Mhh/2) for the Higgs pair invariant mass

Mhh, at 7 TeV, 13 TeV (figure 2), 27 TeV and 100 TeV (figure 3). The lower plots show

the ratio to the NLO result. We can see that the effect of the resummed contributions

becomes larger as the invariant mass of the system increases, which again is expected due

to the fact that less energy is available for extra emission. The increase in the Sudakov

factor is however partially compensated by a suppression at large Mhh in the NLO virtual

corrections entering in C
(1)
gg , leading to a rather mild increase in the tail. Also here we can

clearly observe that the resummation effects decrease with the collider energy.

It is interesting to compare our results with the ones obtained in the heavy-Mt limit [21].

In order to do so, we present in figure 4 the ratio between the NLL and NLO predictions

– 6 –
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NLO

NLL

0.25 0.5 1

24

26
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30

32

μ/Mhh

σ
(f
b
)

s = 13 TeV, μR=μF=μ

NLO

NLL

0.25 0.5 1

μR /Mhh

s = 13 TeV, μF=Mhh /2

NLO

NLL

0.25 0.5 1

μF/Mhh

s = 13 TeV, μR=Mhh /2

Figure 1. Scale dependence of the total cross section at NLO (blue dashed) and NLL+NLO (red

solid), for a collider energy of 13 TeV.

LO
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NLL
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s = 7 TeV, μ0=Mhh/2
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NLO

NLL
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h
(f
b
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e
V
)

s = 13 TeV, μ0=Mhh/2
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N
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ti
o
to

N
L
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Figure 2. Higgs pair invariant mass distribution at LO (green dotted), NLO (blue dashed)

and NLL+NLO (red solid), for collider energies of 7 TeV (left) and 13 TeV (right). The lower panel

shows the ratio to the NLO result. The bands indicate the NLO and NLL+NLO scale uncertainties.

as a function of Mhh for different collider energies, both in the full theory and in the HTL.

We can observe that there are clear differences in the shape, with the results with full Mt

dependence growing faster for lower invariant masses but showing a relative suppression

with respect to the large-Mt results in the tail. Still, this difference in the Mhh spectrum

between the two predictions is of the order of ±1%, and it is moderate compared to the

overall effect of the resummed contributions. This indicates certain stability in the Mt

dependence of the threshold effects, and therefore the lack of full Mt dependence at NNLL

should lead to a rather small residual uncertainty due to missing finite-Mt effects.
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Figure 3. Higgs pair invariant mass distribution at LO (green dotted), NLO (blue dashed) and

NLL+NLO (red solid), for collider energies of 27 TeV (left) and 100 TeV (right). The lower panel

shows the ratio to the NLO result. The bands indicate the NLO and NLL+NLO scale uncertainties.

7 TeV

13 TeV

27 TeV

100 TeV

300 400 500 600 700 800
1.00

1.02

1.04

1.06

1.08

1.10

Mhh (GeV)

N
L
L
/N

L
O

Full Mt dependence

Heavy Mt limit

μ0=Mhh/2

Figure 4. Ratio between the NLL+NLO and NLO predictions, as a function of the Higgs pair

invariant mass and for different collider energies. The solid curves show the results with full Mt

dependence, while the dashed ones correspond to the large Mt limit.

3.2 Improved NNLOFTa

As it was mentioned in the previous section, the NLL+NLO results represent the most

advanced prediction available for double Higgs production in the full theory. However,

higher order corrections are still sizeable and therefore they need to be included in order to

obtain accurate results, even if they are known only in an approximated way. The best fixed

order prediction available in the literature is the so-called NNLOFTa [1], which is obtained

by working in the heavy Mt limit but improved via a reweighting technique in order to

– 8 –
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√
s 7 TeV 8 TeV 13 TeV 14 TeV 27 TeV 100 TeV

NNLOFTa [fb] 6.572 +3.0%
−6.5% 9.441 +2.8%

−6.1% 31.05 +2.2%
−5.0% 36.69 +2.1%

−4.9% 139.9 +1.3%
−3.9% 1224 +0.9%

−3.2%

NNLOFTa−i [fb] 6.547 +3.4%
−6.9% 9.406 +3.2%

−6.5% 30.95 +2.9%
−5.5% 36.57 +2.7%

−5.3% 139.5 +2.4%
−4.3% 1221 +2.0%

−3.2%

NNLLFTa−i [fb] 6.633 +3.8%
−3.8% 9.515 +3.7%

−3.7% 31.18 +3.3%
−3.6% 36.83 +3.3%

−3.5% 140.1 +3.0%
−3.3% 1223 +2.4%

−2.8%

δNNLLFTa-i

NNLOFTa-i
1.3% 1.2% 0.8% 0.7% 0.4% 0.1%

Table 3. Total Higgs boson pair production cross sections at hadron colliders at NNLOFTa,

NNLOFTa−i and NNLL+NNLOFTa−i (labeled NNLLFTa−i for brevity), for different center of mass

energies. All the results correspond to the central scale µ0 = Mhh/2.

account for finite Mt effects. In particular, the NNLOFTa includes the full double-real loop

induced squared matrix elements.

Before presenting combined NNLL+NNLOFTa predictions in the following section, it

is worth to discuss possible improvements to the approximated NNLO result of ref. [1]

based on the knowledge of the full NLL+NLO result. Expanding the NLL+NLO results

to O(α2
S) –where an overall α2

S from the Born cross section is understood–, we can obtain

the exact threshold enhanced contributions proportional to α2
S ln2N .2 Even if it features

the full double-real corrections, these contributions are obtained only within the (Born-

improved) heavy Mt limit in the NNLOFTa, because of the approximation performed in

the real-virtual piece of the calculation. Therefore, we can define an improved NNLOFTa

(denoted as NNLOFTa−i) in the following way3

σNNLO
FTa-i = σNNLO

FTa +
(
σNLL − σNLL

HTL

) ∣∣∣
only O(α2

S)
. (3.1)

In table 3 we show the comparison between the NNLOFTa and NNLOFTa−i predictions

for the total cross section. We can observe that the difference is very small, being always

below 0.5%. Even if this does not represent a proof of the accuracy of the NNLOFTa, the

smallness of this effect points in this direction, and the difference is largely included within

the estimated Mt uncertainty reported in ref. [1].

In figure 5 we present the Higgs boson pair invariant mass distribution for both NNLO

approximations, for a collider energy of 13 TeV. We can observe that the difference between

them is again very small in the whole invariant mass range, slowly growing with Mhh but

always within the scale uncertainties. This behavior is not surprising since the NNLOFTa

is expected to be less accurate for large values of Mhh, and also because the difference

between NNLOFTa and NNLOFTa−i is only in threshold enhanced terms, which become

more relevant for larger invariant masses. We can also observe that the scale uncertainties

are larger for the NNLOFTa−i in the tail, being the central value corresponding to µ0 =

2Contributions proportional to α2
S ln3N and α2

S ln4N are already obtained in an exact way at LL, and

are also reproduced with full Mt dependence by the NNLOFTa.
3Besides having the full Mt dependence in the α2

S ln2N term, the NNLOFTa−i differs from the NNLOFTa

result also in the term proportional to α2
S lnN , though in this case the full Mt dependence is only in those

contributions generated by the NLL resummation.
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Figure 5. Higgs pair invariant mass distribution at NLO (blue dashed), NNLOFTa (black solid)

and NNLOFTa−i (orange dotted), for a collider energy of 13 TeV. The lower panel shows the ratio

to the NNLOFTa result. The bands indicate the NNLOFTa and NNLOFTa−i scale uncertainties.

Mhh/2 in the middle of the uncertainty band, while for the NNLOFTa it is located close

to the upper limit. This fact reflects in the slightly larger scale uncertainties for the

NNLOFTa−i total cross section that can also be observed in table 3.

In summary, both for the total cross section and the invariant mass distribution we

find that the differences between the NNLOFTa and NNLOFTa−i predictions are well within

the estimated uncertainties inherent to these approximations.

3.3 NNLL resummation

We present now the NNLL predictions. In order to account for the NLL contributions with

full Mt dependence, we add the difference between the full theory and HTL predictions at

NLL. Specifically, defining

σNNLL’ = σNNLL
HTL + σNLL − σNLL

HTL , (3.2)

we have that our NNLL+NNLOFTa−i cross section is given by

σNNLL+NNLO
FTa-i = σNNLL’ − σNNLL’

∣∣∣
O(α2

S)
+ σNNLO

FTa-i . (3.3)

For the sake of brevity, we will denote this result NNLLFTa−i. Note that the NNLL result

is matched to the NNLOFTa−i prediction instead of NNLOFTa, though as it was seen in the

previous section the difference between the two is very small.

As an alternative to the approach introduced in eq. (3.2) for the combination of the

NLL with full Mt dependence with the NNLL in the HTL, we could define a new NNLL

– 10 –
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√
s NNLOFTa-i(µ0=Mhh/2)

NNLOFTa-i(µ0=Mhh) − 1 NNLLFTa-i(µ0=Mhh/2)
NNLLFTa-i(µ0=Mhh) − 1

7 TeV 7.4% −1.3%

8 TeV 7.0% −1.3%

13 TeV 5.9% −1.3%

14 TeV 5.6% −1.4%

27 TeV 4.5% −1.6%

100 TeV 2.8% −2.1%

Table 4. Ratio between the µ0 =Mhh/2 and µ0 =Mhh predictions, at NNLOFTa−i and NNLLFTa−i.

prediction by directly using the resumation formula evaluating C
(1)
gg with full Mt depen-

dence and C
(2)
gg in the large-Mt limit. This different prescription has the same logarithmic

accuracy as the one defined by eq. (3.2), and of course agrees with it in the Mt →∞ limit.

We have found that these two approaches agree in the µ0 = Mhh/2 central prediction for

the total cross section at the sub-per mille level for all the energies under consideration,

being the only noticeable difference the shape of the upper uncertainty band, this one be-

ing slightly larger for the prediction defined by eq. (3.2), which therefore we choose in the

following in order to be more conservative.

In table 3 we present the NNLLFTa−i predictions for the total cross section, for µ0 =

Mhh/2. We can observe that the resummed contributions result in a small increase with

respect to the NNLOFTa−i result, ranging from 1.3% at 7 TeV to 0.1% at 100 TeV, and being

around 0.8% at the LHC. Again, the effect is much larger for the central scale µ0 = Mhh,

where for instance the increase in the total cross section at 13 TeV is above 8%.

From table 3 we can also compare the NNLL predictions with the NNLOFTa results of

ref. [1]. We can observe that the increase due to the resummed contributions is partially

compensated with the existing decrease from the NNLOFTa to the NNLOFTa−i predictions,

accidentally making the difference between the NNLOFTa and NNLLFTa−i results even

smaller. The largest difference between these two predictions is in the scale uncertainties,

which are comparable in size but turn out to be more symmetric for the NNLLFTa−i result.

In table 4 we compare the fixed order NNLOFTa−i and resummed NNLLFTa−i pre-

dictions for the scale choices µ0 = Mhh/2 and µ0 = Mhh. In accordance with what was

observed at NLO and NLL, we can see that the fixed order results present a larger variation

in the central value when changing the renormalization and factorization scales, while the

resummed results show a better stability. Again, this effect is less strong when we increase

the collider energy.

Finally, in figures 6 and 7 we present the Higgs pair invariant mass distribution at dif-

ferent collider energies. We can see again that the threshold effects increase with Mhh by

comparing the NNLOFTa−i and NNLLFTa−i curves. We observe that also at a differential

level that the difference between the NNLOFTa and NNLLFTa−i predictions is very small,

being below or around 1% in the mass range under study. The difference in the scale un-

certainty bands between these two predictions can also be appreciated, specially in the tail.
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Figure 6. Higgs pair invariant mass distribution at NNLOFTa (black dotted), NNLOFTa−i

(orange solid) and NNLLFTa−i (red dashed), for a collider energy of 7 TeV (left) and 13 TeV (right).

The lower panel shows the ratio to the NNLOFTa result. The bands indicate the NNLOFTa and

NNLLFTa−i scale uncertainties.
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Figure 7. Higgs pair invariant mass distribution at NNLOFTa (black dotted), NNLOFTa−i

(orange solid) and NNLLFTa−i (red dashed), for a collider energy of 27 TeV (left) and 100 TeV

(right). The lower panel shows the ratio to the NNLOFTa result. The bands indicate the NNLOFTa

and NNLLFTa−i scale uncertainties.

In conclusion, the difference between the resummed NNLLFTa−i prediction and the

NNLOFTa result turns out to be small for µ0 = Mhh/2 compared to the size of the theo-

retical uncertainties, except only for the effect in the shape of the scale uncertainty bands.

The small impact of the all orders soft gluon resummation is an indication of the good

control over the perturbative expansion.
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4 Summary

In this work we have computed the threshold resummation for Higgs boson pair production

at hadron colliders via gluon fusion, including finite Mt effects. We presented results both

at NLL and NNLL accuracy, consistently matched to the corresponding fixed order cross

sections.

Our NLL+NLO predictions retain the full Mt dependence, and represent the most

advanced prediction for this process computed in the full theory, i.e. not relying on the

large-Mt limit. We found that at 13 TeV the NLL+NLO cross section is larger than the

NLO result by about 4.1% for the central scale µ0 = Mhh/2, while this effect goes up to

16.7% for µ0 = Mhh. The size of the resummed contributions decreases with the energy,

going down to 2.8% and 1.7% at 27 and 100 TeV respectively, again for µ0 = Mhh/2. We

observed clear differences in the shape of the corrections as a function of Mhh with respect

to the large-Mt result, but moderate compared to the overall size of the threshold effects.

Using the knowledge of the full NLL contributions, we have defined an improved NNLO

approximation, NNLOFTa−i. We found that the difference with respect to the NNLOFTa

of ref. [1] is very small, always below 0.5% for all the collider energies under consideration

and well within the estimated Mt uncertainties of the approximation, pointing towards the

reliability of the NNLOFTa result.

Finally, we have also consistently combined our full NLL predictions with the NNLL

resummation computed in the large-Mt limit, and matched it to the NNLOFTa−i result,

thus providing a prediction for the Higgs boson pair production cross section with the

most advanced ingredients available to date. We found that the effect of the resummed

contributions is small at this order, being about 0.8% at the LHC and smaller for larger

collider energies. The effect is again larger for µ0 = Mhh, being around 8.1% at 13 TeV.

The small size of the threshold resummation effects at NNLL, specially for µ0 = Mhh/2, is

an indication of the fact that the perturbative expansion is under good control, and that no

sizeable higher order effects are expected beyond the order reached within this calculation.
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