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a b s t r a c t

In this study, we evaluated and compared optical and passive microwave index based retrievals of sur-
face conductance (Gs) and evapotranspiration (ET) following the Penman–Monteith (PM) approach. The
methodology was evaluated over the growing season at five FLUXNET sites in the USA and Australia
encompassing three forest types, deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF) and
evergreen broadleaf forest (EBF). A subset of Gs values were regressed against individual and combined
indices of NDWI, EVI, and FI (microwave frequency index), and used to parameterize the PM equation for
retrievals of ET (PM-Gs). For this purpose, we used MODIS (MYD09A1) and AMSR-E passive microwave
data to compute the VIs. Model performance was quantitatively evaluated through comparative analysis
of the regression coefficients (r2), and root mean square errors (RMSE). All indices correlated well with Gs
over deciduous broadleaf forests, explaining 40–60% of Gs variations, however, the optical-based models
had lower RMSE than the microwave FI model. In contrast, the FI model yielded the best performance to
estimate Gs in evergreen forests (EBF and ENF). Overall, a combined microwave-optical model resulted
in the best Gs estimates in these evergreen forests compared with the individual model approaches. In
general, the PM-models explained more than 70% of the variance in LE with RMSE lower than 20 W/m2.
Based on these results, we developed a new approach combining optical and passive microwave indices
based on their spatial vs. temporal synergies to generate Gs time series. This combined optical-microwave
approach produced the best ET estimates for evergreen forest and offered a robust approach for deciduous
forest without sacrificing precision.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The ability to monitor evapotranspiration (ET) from the land sur-
face is relevant for several applications requiring spatially-resolved
estimates of moisture availability over large areas (Cleugh et al.,
2007; Dodds et al., 2005; Meyer and Wayne, 1999). Remote sensing
cannot measure surface turbulent flux exchanges directly; how-
ever various methods have been developed using parameterization
techniques that vary from purely empirical to more physically
based approaches based on the energy balance equation and using
vegetation indices (VI) (Yebra et al., 2013) and land surface tem-
perature (LST) (Cleugh et al., 2007; Kalma et al., 2008; Moran and
Jackson, 1991).
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Among these models, the Penman–Monteith (PM) equation
(Allen et al., 1998; Monteith, 1985) is widely used. Cleugh et al.
(2007) and Mu (2007) showed that the PM equation is a bio-
physically sound and robust framework for estimating daily ET at
regional to global scales using remotely sensed data. ET estimations
from remote sensing data are generally based on parameterizations
of PM equation, which rely on the estimation of surface or canopy
conductance using measurements at visible (VIS), near-infrared
(NIR) and shortwave-infrared (SWIR) wavelengths (Glenn et al.,
2011, 2010; Leuning et al., 2008; Yebra et al., 2013). The relation
between canopy conductance and optical indices were analyzed by
several authors (Grant, 1987; Guerschman et al., 2009; Matsumoto
et al., 2005; Yebra et al., 2013).

Methods based on VI have been found useful as a monitoring tool
for ecosystem water use (Glenn et al., 2010). Applications in water
resource management require ET information over a range of tem-
poral and spatial resolutions, from hourly to monthly time steps
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and from field to global scales. Unfortunately, no single satellite
system affords global coverage at both high spatial and tempo-
ral resolution. So, methods are needed for combining information
at different wavelengths and spatial and temporal resolutions. A
higher spatial resolution can be achieved by Landsat (30–60 m),
but the frequency (16 days) is a limiting factor for several appli-
cations. MODIS products provide information at 250 m, 500 m and
1 km with a temporal resolution between 1 and 16 days, however
such optical data are severely limited by their sensitivity to clouds
and aerosols. In contrast, passive microwave sensors, although
at coarser spatial resolutions, have best temporal resolution (1–3
days) and less sensitivity to atmospheric conditions and thus can
be useful in larger scale ecosystem monitoring applications.

In principle, microwave emissivity (defined as the ratio between
brightness temperature and physical temperature measured at
microwave frequencies) is complex and dependent on both vege-
tation and soil properties (moisture and structure). However, over
forest ecosystems, where vegetation biomass is moderate to high,
the canopy contribution is dominant and the microwave signal
becomes sensitive mainly to vegetation moisture and structure
(Barraza et al., 2014a; Ferrazzoli and Guerriero, 1996; Min and
Lin, 2006). Based on this relation, Min and Lin (2006) found that
microwave indices, such as the Emissivity Difference Vegetation
Index (EDVI) were empirically sensitive to the evapotranspiration
and evapotranspiration fraction. Moreover, experimental work by
Li et al. (2009) found that fast changes of EDVI represents canopy
responses to changes of environmental conditions, such as vapor
pressure deficit (VPD), water potential and CO2 concentration, the
same variables that determine canopy resistance.

In an earlier study we evaluated vegetation and soil properties
that influence the microwave frequency index (FI) (Barraza et al.,
2014a) over different ecosystems. Among other results, we found
that day to day changes in FI (canopy scattering properties) com-
puted at vertical polarization, using Ka and X bands, for areas with
relatively high leaf area index (LAI) were sensitive to canopy mois-
ture and changes in LAI (LAI > 2). It has also been found that changes
in canopy (leaves + stems) water content can be monitored using FI
at LAI > 2 ecosystems (Barraza et al., 2014a). Since stomata con-
ductance is closely related to canopy moisture (Goldstein et al.,
2008, 1998; Pfautsch et al., 2010; Zhang et al., 2013) and struc-
ture ((Jarvis and McNaughton, 1986)), we foresee an indirect link
between surface conductance (Gs) and FI.

Several studies have been undertaken to relate microwave
indices with ET (Jones et al., 2012; Li et al., 2009; Min and Lin,
2006), but there are few studies involving multiyear datasets and
no direct attempt to estimate ET based on passive microwave and
optical data over different forest ecosystems. New studies that use
a synergy of sensors (microwave and optical) might be useful to
improve the characterization of land surface conditions at appro-
priate temporal and spatial scales and thus help to support regional
climate modeling applications (Pipunic et al., 2013).

In this work, our aim is to improve satellite-based ET retrievals
by combining passive microwave and optical vegetation indices
using the Penman–Monteith approach. We assessed individual
approaches and combined synergies among the indices over differ-
ent forest ecosystems in USA and Australia. The objectives were: (1)
to assess the capability of microwave and optical indices to estimate
Gs and ET; (2) to quantify ET with the PM equation using Gs esti-
mations and meteorological data; (3) to compare both approaches
(optical and microwave) and evaluate the error for Gs and ET esti-
mations independently, (4) to address the eddy covariance-remote
sensing footprint issues by comparing ET obtained at different
scales with in-situ observations, and (5) to propose new models
based on the combination of optical and microwave indices.

2. Methodology

2.1. Satellite microwave and optical vegetation indices data set

We used the Frequency Index (FI) (Ferrazzoli and Guerriero,
1996) for our analyses, calculated using the brightness tempera-
tures measured at 37 GHz (Ka Band) and 10.6 GHz (X band) (Paloscia
and Pampaloni, 1988) obtained from Advanced Microwave Scan-
ning Radiometer – EOS (AMSR-E/AQUA) (Kawanishi et al., 2003) in
ascending overpasses from 2002 to 2006. In Paloscia and Pampaloni
(1992) and Barraza et al. (2014a) it was shown that one can moni-
tor plant water status using the FI computed at these frequencies.
We used FI calculated at vertical rather than horizontal polariza-
tion since this yields a higher correlation with vegetation state
properties (Min and Lin, 2006). It was shown that for regions in
which vegetation biomass is moderate to high, FI depends mostly
on canopy condition (Ferrazzoli and Guerriero, 1996). Therefore, in
the above-mentioned cases, FI becomes a function of canopy struc-
ture (i.e. leaves and stems geometry) and canopy moisture content
(i.e., leaves and stems moisture content). Other passive microwave
indices, like the polarization index, are less sensitive to vegetation
moisture (Barraza et al., 2014a), and therefore not suitable for this
application.

The differential sensitivity of microwave indices to (i) vegeta-
tion moisture (Barraza et al., 2014b; Ferrazzoli et al., 1992; Min
and Lin, 2006) and (ii) soil moisture (Jackson, 1997) depend on the
frequency of the passive microwave sensor and the key geometri-
cal and dielectric characteristics of the land cover. In spite of this,
different passive microwave indices, which are mainly sensitive to
i or ii, could be applied for ET analysis. However, this sensitivity
will define the type of relation between these indices and ET (Bar-
raza et al., 2014a). Moreover, passive microwave indices sensitive
to vegetation moisture, canopy structure and biomass changes have
been applied for vegetation phenology analysis (Andela et al., 2013;
Jones et al., 2012; Min and Lin, 2006), vegetation drought response
(Frolking et al., 2011), potential growing season variability (Kimball
et al., 2006) and seasonal changes in canopy CO2 exchange (Min and
Lin, 2006).

FI is influenced by land surface properties, such as vegetation,
soil and snow. During the growing season, FI variations are gener-
ally related to vegetation properties. We excluded snow conditions
using air temperature (Ta), obtained from meteorological stations,
when Ta < 5 ◦C as a proxy to remove dormant season and snow peri-
ods. In this study, observations during precipitation events were
excluded from the analysis with the aid of in situ precipitation data.
The emission is strongly affected by the presence of rainfall during
an acquisition, due to the important contribution of cold raindrops
to the overall emissivity. As we calculated 8-day composite peri-
ods of FI (to align with MODIS time series composite criteria), we
expect that using these methodology the uncertainties associated
with precipitation to be negligible.

Yebra et al. (2013) found that no single Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) optical vegetation index
(VI) showed the best performance to estimate ET and Gs over
all land cover types analyzed. We computed two MODIS satellite
VIs (Table 2): the normalized difference water index (NDWI), a
canopy moisture-based vegetation index and the enhanced vegeta-
tion index (EVI), as a chlorophyll-based greenness index, using the
8-day Aqua-MODIS land surface reflectance product (MYD09A1)
with 500 m of spatial resolution from 2002 to 2006. Using the qual-
ity assessment (QA), information provided in this product, lower
quality data and data with partial or complete cloud cover were
removed from the analysis. The quality flags used were: MODLAND
QA bits (ideal quality – all bands), atm. corr. Performed (yes), cloud
state (clear) and cirrus detected (none). The VI products were aggre-
gated to two different spatial scales, 1 km and also 25 km in order
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to match the AMSR-E footprint from the same Aqua platform and
13.30 h overpass time. As the tower flux footprint is only a small
fraction of the AMSR-E footprint, scale inconsistencies may have a
certain effect on the evaluation of eddy covariance flux tower and
passive microwave indices, and for this reason, we conducted our
analyses using MODIS VIs at two different spatial resolutions.

AMSR-E data was downloaded from the National Aeronau-
tics and Space Administration (NASA) data depository (http://
reverb.echo.nasa.gov/). MODIS data was downloaded from Oak
Ridge National Laboratory Distributed Active Archive Center (ORNL
DAAC), MODIS subset land products, Collection 5. Available on-line
(http://daac.ornl.gov/MODIS/modis.html) from ORNL DAAC, Oak
Ridge, Tennessee, U.S.A. Accessed November 20, 2009.

2.2. FLUXNET data

We used in-situ measurements of ET from five FLUXNET for-
est sites. FLUXNET (http://fluxnet.ornl.gov/) is an international
ecosystem network linking eddy covariance flux towers across
different ecosystems. Original half-hourly measurements were
preprocessed to ensure consistency among sites and reduce uncer-
tainties in the computed fluxes (Restrepo-Coupe et al., 2013); this
included general quality control assessment, and removal of out-
liers. Furthermore, in order to avoid the influence of water on the
canopy, we used only daily data without precipitation during the
previous 24 h. We aggregated fluxes and other meteorological data
to daily values where at least 21–24 h of observations were avail-
able and then aggregated to 8-day time periods if at least 2–8 days
were available. From a more complete database of fluxes and mete-
orological variables, we sampled: latent energy flux (LE, W/m2), air
temperature (Ta, ◦C), mean daily precipitation (Prec, mm), relative
humidity (RH, %), short wave incoming radiation (SW, W/m2), long
wave incoming radiation (LW, W/m2), sensible heat (H, W/m2),
net radiation (Rn, W/m2). We determined top of the atmosphere
radiation (TOA, W/m2) following Goudriaan (1986).

We focused our investigation on forest areas located in USA
and Australia, characterized by different vegetation types including
deciduous broadleaf forest (DBF), evergreen needle leaf forest (ENF)
and broadleaf deciduous forest (EDF). We selected sites with more
than four years of data and overlapping with AMSR-E 2002–2006
coverage, and sites with homogenous land cover (defined as pixels
with more than 50% of the area belonging to the same landcover in
both the 1 km MODIS pixels and AMSR-E 25 km pixels). The homo-
geneous pixels were identified using the 1 km resolution MODIS
(MOD12Q1) IGBP global land cover classification (Knowles, 2004).
The only exceptions are the Tumbarumba and Willow Creek sites,
in which the homogeneity of the land cover at 25 km is around 50%.

2.3. Land surface evapotranspiration retrieval

Remote sensing and flux tower observations were used to eval-
uate linear regression models, and the Penman–Monteith (PM)-Gs
approach to estimate ET (Fig. 1). The direct regression approach
combined flux tower measurements of ET with time-series of satel-
lite indices. The PM-Gs uses an empirical relationship between
Gs and different satellite indices to parameterize the conductance
term of the PM equation (Eq. (1)) (Monteith, 1964). The remotely
sensed-derived Gs (see Section 2.4) with other meteorological
drivers were used as inputs into the PM equation to estimate ET.

LE = �� × A + (Cp × �a/�)[es(Ta) − ea] × Ga

� + 1 + ( Ga
Gs )

� (1)

where ea is the vapor pressure in the air (kPa), es is the saturation
vapor pressure evaluated at the air temperature (kPa), � = s/� , in
which s is the slope of the saturation vapor pressure versus temper-

Fig. 1. Methodological flowchart. ET: evapotranspiration, PM: Penman–Monteith,
Gs: Surface conductance, VIs: Vegetation index, FI: Frequency index.

ature curve (kPa/◦C) and � is the psychrometric constant (kPa/◦C),
LE is latent energy (W/m2), �a is the mean air density at constant
pressure (kg/m3), Cp is the specific heat of the air (J/kg K), A (W/m2)
is the available energy absorbed by the surface (net absorbed radi-
ation minus soil heat flux), Gs (m/s) and Ga (m/s) are the surface
and aerodynamic (Eqs. (2) and (3)) conductance. ET (mm/day) is
calculated as the ratio of LE: lambda, where lambda is the latent
heat of vaporization (MJ/kg).

ra = 1
k2�

ln(
z − d

zo
)ln(

z − d

zoH
) (2)

Ga = 1
ra

(3)

where ra is the aerodynamic resistance (s/m), � the wind velocity
(m/s) measured height (z), d the zero-plane displacement at zo and
zoH the roughness lengths for momentum and heat respectively
(m). The quantities d, zo and zoH were estimated as d = 2 h/3 (m),
0.123 h and 0.0123 h respectively, where h is canopy height (see
Table 1).

Eq. (1) implies that the energy balance is closed, i.e. the avail-
able energy equals the sum of latent and sensible heat exchange.
This assumption is frequently not fulfilled by the eddy covariance
(EC) method (Leuning et al., 2012; Wilson et al., 2002), although
it is thought to be the most direct micrometeorological technique
for measuring surface fluxes (Meyers and Baldocchi, 2005). Given
the nature of the energy storage terms, a better energy closure can
be achieved on a daily or seasonal basis (over which timescales
the storage terms approach zero); however, as our 8-days Gs esti-
mates are based on hourly values, we removed those times that
may reflect an anomalous meteorological condition (e.g., advec-
tion) and will make the PM equation unstable. We used the energy
balance closure to select these times and removed values where
measurements of the turbulent energy exceeded linear regression
estimates by 3 standard deviations or more.

To perform an evaluation of the relation between
microwave/optical indices and LE observations, the coefficient
of regression (r2) using a linear regression type II between LE
estimation and observation; the root mean square error (RMSE);
the systematic root mean square error (RMSEs); and unsystematic
root mean square error (RMSEu) were chosen as evaluation met-
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Table 1
Spectral indices calculated from MODIS and AMSR-E, including their acronym, mathematical formulation and references. Where is the reflectance in MODIS band X (1: red,
2: near infrared, and 3: blue); l is the canopy background adjustment for correcting nonlinear, differential NIR and red radiant transfer through a canopy; c1 and c2 are the
coefficients of the aerosol resistance term (which uses the blue band to correct for aerosol influences in the red band). In the frequency index formulation, Tb is the brightness
temperature, and v suffixes indicate vertical polarization.

Index Formulation Reference

Frequency index FI = Tbv(Kaband) − Tbv(Xband)
Tbv(Kaband) + Tbv(Xband)

× 2 Ferrazzoli et al. (1995)

Enhanced vegetation index EVI = 2.5 × (�2 − �1)
(�2 + 6 × �1 − 7.5 × �3 + 1)

Huete et al. (2002)

Normalized difference water index NDWI = �2 − �5
�2 + �5

Hardisky (1983)

Table 2
Description of eddy covariance flux tower sites used in this study. Where h is canopy height, Z is measurement height, DBF is deciduous broadleaf forest, and ENF and EBF:
are evergreen needleaf and broadleaf forest respectively. IGBP is the International Geosphere–Biosphere Programme vegetation classification.

Code Name Country Lat Lon h(m) Z(m) IGBP Years References

US-Ha1 MA – Harvard Forest EMS Tower (HFR1) United States 42.54 −72.17 22 31 DBF 2000–2006 Urbanski et al. (2007)
US-MMS IN – Morgan Monroe State Forest United States 39.32 −86.41 25 48 DBF 2000–2005 Schmid et al. (2000)
US-WCr WI – Willow Creek United States 45.81 −90.08 24 30 DBF 2000–2006 Cook (2008)
US-Ho1 ME – Howland Forest (main tower) United States 45.2 −68.74 20 29 ENF 2000–2004 Hollinger et al. (2004)
AU-Tum Tumbarumba Australia −35.66 147.15 40 70 EBF 2001–2006 Leuning et al. (2005)

rics. A good model was considered to have a high r2 value, a low
total RMSE and RMSEs ≈ 0. Our results were compared to other
published studies in the discussion. These studies provided RMSE
estimates against mean flux tower LE estimates in W/m2.

2.4. Surface conductance retrieval

The surface conductance (Gs) plays an active role in limiting ET
and is in itself a function of vegetation and environmental vari-
ables, including Ta, VPD, water potential, photosynthetic active
radiation (PAR), and ambient carbon dioxide concentration (CO2)
(Monteith, 1985; Monteith, 1985). In this framework, two different
approaches were tested to estimate surface conductance (Gs) over
the growing season using FI and vegetation optical indices (VIs):
single-sensor vs. multi-sensor (Table 1 and Fig. 2). Using meteoro-
logical and flux tower data we calculated Gs under the PM-equation
(Eq. (4)) needed for the calibration and validation analysis with
satellite indices.

Gs = � LE × Ga

� × A − (� + 1) × LE + ( Cp.×�aGa[es(Ta)−ea]
� )

� (4)

For the individual approaches, we used an exponential equa-
tion to estimate Gs from VIs as in Yebra et al. (2013) (equation:
Gs = a × e ˆ (b × VIs) + c, where c is the intercept, a and b are the par-
tial regression coefficients). and a polynomial regression (equation:
Gs = a × FI + b × FI ˆ 2 + c, where c is the intercept, a and b are the
partial regression coefficients) to estimate Gs from the microwave
index (Li et al., 2009).

Two multivariable models were developed using the optical and
passive microwave indices at 25 km to estimate Gs. The aim of
these approaches was to improve Gs estimations based on multi-
ple observations that combine two important variables (vegetation
moisture and leaf photosynthesis). One methodology was based
on a stepwise multiple linear regression that fits an observed
dependent data set (Gs) using a linear combination of independent
variables (equation: Gs = a × Gs (VIs) + b × Gs (FI) + c, where c is the
intercept, a and b are the partial regression coefficients, Gs (VIs) is
the surface conducted estimated using optical indices and Gs (FI) is
the surface conducted estimated using passive microwave index).

The second multivariable model was based on a strategy for
combining GsVI and GsFI indices as follows (Fig. 2): we used the
best upscale GsVI, GsFI or GsVI–FI model as a default value dependent
upon; if GsVI or GsVI-FI was the default value and a VI observa-

tion was missing at a time when an AMSR-E observation exist, we
replaced the missing GsVI or GsVI–FI data with GsFI.

To evaluate the relation between satellite indices and Gs obser-
vations, we calculated the coefficient of regression (r2) using a
linear regression type II from a pool of data to calibrate the equa-
tion between satellite indices and Gs observations. The pooled
dataset contained 185 8-days observations (randomly selected)
that were used to calibrate the relationships between the veg-
etation indices (optical and passive microwave indices) and Gs.
The rest, 618 8-days observations, were used to validate these
approaches. Adjusted coefficient of regression (r2

adj) was calcu-
lated for the stepwise multiple linear regression. We also calculated
the r2 and the root mean square error (RMSE) between Gs estima-
tion and observation, with the calibration dataset and with the rest
of the sample (validation dataset). A good model was considered to
have a high r2 value, and a low total RMSE (RMSE ≈ 0).

3. Results

3.1. Calibration of surface conductance (Gs) models

3.1.1. Relation between optical indices and Gs at 1 km
The relation between Gs and vegetation optical indices are

shown in Table 3 (see Supplementary material Fig. S01). As reported
in Yebra et al. (2013), there was a nonlinear relation between Gs and
both optical indices (EVI and NDWI). The regression results showed
non-significant relations between the VIs and Gs at Tumbarumba,
due to the lack of EVI and NDWI seasonality in the calibration and
validation dataset (Table 3). At Howland Forest and Harvard For-
est, the VIs also showed a low and non-significant regression with
Gs. The others sites presented a better fit, r2 > 0.4 for all VIs for
calibration and validation dataset.

The EVI and NDWI models presented the similar coefficient of
determination (higher than 0.5) and the RMSE was lower than
4.0 mm/s across two of the deciduous forest areas (Morgan Monroe
State Forest (MMS) and Willow Creek (WCr)) for calibration and val-
idation (Table 3). For the other deciduous forest site, Harvard Forest
(Ha1), and for the mixed evergreen needleleaf and broadleaf forests
of Howland Forest (Ho1), the NDWI and EVI model explained only
20% of the Gs variation. These results showed that both VIs could
explain the variation of Gs over deciduous forests.
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Fig. 2. Methodology flowchart for the Surface conductance (Gs) output dataset resulting from combining optical and passive microwave indices. PM: Penman–Monteith,
EVI: enhanced vegetation index, NDWI: Normalized difference water index, FI: Frequency index. Input dataset: MODIS VIs and AMSR-E FI indices, QA: quality assessment.

Table 3
Summary of the relation between optical indices and surface conductance (Gs). Where r2

VI-Gs is coefficient of determination between satellite indices and Gs observations,
r2

Gso-Gse is coefficient of determination and RMSE root mean square error between Gs observation and estimations. A logarithmic transformation has been made over the
nonlinear relation between optical indices and Gs.

Name IGBP Calibration Validation

EVI NDWI EVI NDWI

r2
VI-Gs r2

Gso-Gse RMSE (mm/s) r2
VI-Gs r2

Gso-Gse RMSE (mm/s) r2
Gso-Gse RMSE (mm/s) r2

Gso-Gse RMSE (mm/s)

Tum EBF 0.00 0.02 4.72 0.00 0.01 4.73 0.01 4.10 0.00 3.03
Ho1 ENF 0.22 0.19 2.35 0.24 0.19 2.33 0.10 2.74 0.07 3.43
Ha1 DBF 0.14 0.23 3.03 0.22 0.22 3.05 0.21 2.76 0.30 2.62
MMS DBF 0.80 0.50 3.22 0.80 0.46 3.34 0.44 3.32 0.39 3.54
WCr DBF 0.73 0.75 2.52 0.71 0.67 2.93 0.63 3.29 0.50 3.94

Fig. 3. Relation between Gs (surface conductance, mm/s) and vegetation indices.
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Table 4
Parameter estimates as well as coefficient of determination (r2) for the models using the calibration dataset. Where a–c are the parameters of each equations, r2

VI-Gs is
coefficient of determination between optical indices and Gs observations, r2

FI-Gs is coefficient of determination between passive microwave indices and Gs observations, and
r2

adj is the adjusted coefficient of determination. A logarithmic transformation was made over the nonlinear relations between optical indices and Gs.

Name IGBP EVI NDWI FI
Gs= a × e ˆ (b × EVI) + c Gs = a × e ˆ (b × NDWI) + c Gs = a × FI + b × FI2̂ + c

a b c r2
VI-Gs a b c r2

VI-Gs a b c r2
FI-Gs

Tum EBF 7.07 0.13 7.76 0.05 -3.72e5 3.71e5 3.12e-5 0.12 616.03 0.18e4 11.63 0.28
Ho1 ENF 6.45 −1.16e4 −27.31 0.33 −1.43e5 1.43e5 1.25e-4 0.14 1.14e3 −3.42e4 −2.77 0.20
Ha1 DBF 5.41 0.05 6.46 0.71 −2.88e5 2.88e5 2.15e-4 0.30 −231.44 −2.16e4 6.91 0.79
MMS DBF 63.22 −65.61 −0.27 0.64 −8.58e5 8.58e5 3.12e-5 0.40 −250.79 −5.51e3 −2.78 0.69
WCr DBF 46.63 −54.28 −0.94 0.69 −9.85 22.87 3.29 0.41 −1.45e3 1.52e4 30.68 0.64

Name IGBP EVI, FI NDWI, FI
Gs = a × Gs (EVI) + b × Gs (FI) + c Gs = a × Gs (NDWI) + b × Gs (FI) + c

a b c r2
FI, VI-Gs r2

adj a b c r2
FI, VI-Gs r2

adj

Tum EBF 1.1 1.76 −11.29 0.2 0.18 0.82 0.73 −4.88 0.11 0.1
Ho1 ENF 0.83 1 8.02E-08 0.19 0.17 0.3 1 8.02E-08 0.2 0.17
Ha1 DBF 0.47 1 1.25E-07 0.22 0.21 1 0.47 −5.52E-10 0.27 0.25
MMS DBF 1 0.24 −8.03E-08 0.44 0.43 1 0.19 0 0.46 0.45
WCr DBF 1 0.22 1.41E-10 0.67 0.67 1 0.25 0 0.68 0.67

3.1.2. Relations between microwave and optical indices with Gs
at 25 km

Fig. 3 shows the relation between Gs and optical (using the
aggregated VIs at 25 km) and passive microwave indices. Table 4
shows the parameters estimates as well as coefficients of determi-
nation (r2) derived from the linear regression between VIs and FI
indices using the calibration dataset. The EVI models derived from
the PM-Gs approach had consistently a better fit than NDWI, with
r2 > 0.60 for all deciduous forests. The NDWI model showed a bet-
ter fit than EVI for Tum explaining only 10% of the Gs variance;
however the FI model explained more than 20%. We also found
that the combined EVI-FI model performed well for Tum, and the
NDWI-FI model performed better for Ho1. For the other sites, the
multiple regression analysis did not provide more information than
the individual models.

Using the parameters mentioned in Table 4 we evaluated the
accuracy of all models over the calibration and validation datasets
based upon their RMSE and r2 between estimated and observed Gs
(Table 5). For the individual optical indices, the EVI model explained
between 30 and 60% of the variance of Gs for DBF, with a RSME
between 2.5–3.0 mm/s for validation and calibration dataset. For
deciduous forests, FI model showed similar r2 with high RSME com-

pare to the optical indices. However, the optical indices had better
regression coefficients and less RMSE than the microwave model
(Table 5). The NDWI models showed the best performance for ever-
green forests, but only explained less than 10% of the variance of Gs
for both datasets. For the evergreen needleleaf forests, the FI model
presented better performance compared to the optical indices.

The multiple regression models improved the estimations of Gs
for the evergreen forest. For Ha1, in spite of the higher determi-
nation coefficient of the multiple regression models the RMSE was
higher than individual approach. All these results shows that there
was not a unique index that performed best for all the deciduous
and the evergreen forest. This made the PM-Gs methodology a land
cover depended algorithm.

Interestingly, the multivariable model using EVI and FI improved
the estimation of Gs for Tum, explaining 20% of the variance in Gs
(for calibration and validation analysis) with the lowest RMSE. At
Tumbarumba site, the Eucalyptus forest is moderately open and
has an average tree height of roughly 40 m. The canopy is roughly
divided into two layers. There is also significant ground cover of
shrubs and grasses (Jupp et al., 2009; Strahler et al., 2008). To eval-
uate if this improvement was related to the presence of other layers
(shrubs and grasses), we estimated Gs using NDWI at different win-

Table 5
Summary of the comparison between Gs estimation and observation using Gs (VIs) model, Gs (FI) model, and multivariable model (Gs (VIs, FI)). Where the coefficient of
determination (r2

Gso-Gse) and root mean square error (RMSE) were calculated between Gs estimations and observations.

Calibration

Name IGBP Gs (EVI) Gs (NDWI) Gs (FI) Gs (EVI, FI) Gs (NDWI, FI)

r2
Gso-Gse RMSE (mm/s) r2

Gso-Gse RMSE (mm/s) r2
Gso-Gse RMSE (mm/s) r2

Gso-Gse RMSE (mm/s) r2
Gso-Gse RMSE (mm/s)

Tum EBF 0.01 4.07 0.02 1.05 0.03 4.88 0.20 4.61 0.11 4.85
Ho1 ENF 0.10 2.65 0.12 2.63 0.17 2.62 0.25 2.77 0.20 2.77
Ha1 DBF 0.35 2.49 0.31 2.57 0.23 3.44 0.25 3.55 0.30 3.46
MMS DBF 0.45 3.06 0.38 3.25 0.38 3.30 0.44 3.28 0.50 3.19
WCr DBF 0.66 3.19 0.55 3.69 0.59 4.65 0.68 4.07 0.69 4.03

Validation

Name IGBP Gs (EVI) Gs (NDWI) Gs (FI) Gs (EVI, FI) Gs (NDWI, FI)

r2
Gso-Gse RMSE (mm/s) r2

Gso-Gse RMSE (mm/s) r2
Gso-Gse RMSE (mm/s) r2

Gso-Gse RMSE (mm/s) r2
Gso-Gse RMSE (mm/s)

Tum EBF 0.07 4.04 0.10 4.08 0.10 3.89 0.20 3.77 0.12 3.89
Ho1 ENF 0.02 3.61 0.10 3.02 0.20 2.65 0.14 5.75 0.23 3.38
Ha1 DBF 0.27 2.79 0.40 2.93 0.36 2.49 0.41 4.36 0.50 5.01
MMS DBF 0.44 3.39 0.46 3.32 0.43 3.17 0.47 3.17 0.49 3.40
WCr DBF 0.63 3.46 0.59 4.31 0.57 4.12 0.65 3.73 0.58 5.62
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Table 6
Summary of the relation between predicted versus measured 8-day latent heat (LE (W/m2)) directly derived from optical and passive microwave indices. Where r2

VI–LE is the
coefficient of determination between optical indices and LE measures, r2

FI–LE is the coefficient of determination between passive microwave indices and LE measures, and
RMSE the root mean square error, RMSEs the systematic root mean square error and RMSEu unsystematic root mean square error for the best models.

Name IGBP VI FI

r2
VI-LE RMSE (W/m2) RMSEu (W/m2) RMSEs (W/m2) r2

FI-LE RMSE (W/m2) RMSEu (W/m2) RMSEs (W/m2)

Tum EBF 0.36(NDWI) 24.66 14.85 19.68 0.04 31.27 2.52 31.17
Ho1 ENF 0.51 (EVI) 17.57 12.56 12.29 0,30 22.07 11.22 19.01
Ha1 DBF 0.56 (EVI) 20.51 15.41 13.52 0.30 26.25 14.30 22.01
MMS DBF 0.72 (EVI) 20.73 17.60 10.92 0.75 20.32 17.78 10.22
WCr DBF 0.62 (EVI) 19.33 15.26 11.87 0.47 22.56 15.52 16.35

Fig. 4. Relation between surface conductance estimations using the NDWI and sur-
face conductance (Gs) observation at different windows size (from 1 to 25 km). r2

is the coefficient of determination and RMSE root mean square error between Gs
observation and estimations, and the fraction of forest inside the pixel size. The frac-
tion of forest was calculated using the MODIS (MOD12Q1) IGBP global land cover
classification product (Knowles, 2004).

dow sizes (Fig. 4). In spite of the decrease of the forest cover, the
optical approach did not improve.

For our final analysis we used PM-Gs methodology, combining
optical and passive microwave data to obtain a complete time series
(multivariable model II, Fig. 2). For evergreen forests, the FI- model
and the multivariable model showed higher r2 and lower RMSE
compared to the optical model. Interestingly, for deciduous forests
the optical model showed the best approach, but with the lowest
number of samples.

3.2. Evapotranspiration model performance evaluation

We compared and evaluated two methodologies to estimate
ET: (1) direct regression and (2) PM-Gs approach. In the direction
regression method, EVI had a good performance at almost all for-
est sites; with the exception of Tumbarumba, where NDWI had
a higher accuracy (Table 6). At Tumbarumba, the VIs and FI did

not exhibit a clear seasonality (low amplitude annual cycle), thus
reducing the correlation between ET and VI compared to the other
forests. The r2 values were lower than 0.7 and the RMSE greater than
20 W/m2 for all VIs and FI. In general, the RMSEs was greater than
RMSEu. Fig. 5 shows the relation between vegetation indices and
LE, and the relation between observed and estimated LE. In sum-
mary, VI–LE relations showed a lower RMSE and higher r2 than
the FI–LE approach. However, both direct approaches underesti-
mates at large LE values as shown in Fig. 6. Furthermore, there was
a tendency to overestimate at lower values of LE.

Overall, we observed a good agreement between estimated and
observed LE for both optical and passive microwave indices using
the PM-Gs approaches (Table 7). For the optical model we used EVI
and NDWI as shown in Table 5. In general, PM-Gs (VI) and PM-
Gs (FI) approach explained more than 70% of the variance of ET.
However, PM-Gs (FI) had higher RMSE values than the optical data.
In general, systematic differences (RMSEs) between model predic-
tions and observations were lower than the non-systematic error
(RMSEu). Since RMSE was mostly composed of RMSEu, the model
RMSE was probably as low as possible, and their values were similar
with those reported previously (Li et al., 2009; Yebra et al., 2013).

Fig. 8 shows the relation between observed and estimated LE as a
function of Gs relative error (%) for all the sites together and Gs esti-
mations versus Gs observations, showing the overall uncertainties
(r2 and RMSE) for LE and Gs. The ensemble of PM-Gs (VIs) accounted
for 69% of the variance of LE (RSME = 22.60 W/m2). PM-Gs (FI)
accounted for 70% of the variance of LE with RSME = 22.65 W/m2.
Combining optical and passive microwave vegetation models (mul-
tivariable model II) resulted in the best performance (high r2, lower
RMSE and high n) (Fig. 8). Furthermore, the coupled model II incor-
porated a higher number for samples compared to the individual
PM-Gs approach without sacrificing the precision.

Fig. 8 shows LE estimations versus LE observations for evergreen
and deciduous forests. For evergreen forests, we obtain a higher r2

and lower RMSE compared to the individually derived (VI or FI)

Fig. 5. Relationship between Gs (surface conductance, mm/s) and vegetation indices.
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Fig. 6. Predicted versus measured 8-day latent heat (LE (W/m2))directly derived from (a) optical indices (see Table 7 for VIs) and (b) FI.

Table 7
Summary of the relation between predicted versus measured 8-day latent heat (LE (W/m2)) within the PM framework. Where r2

LEo-LEe is the coefficient of determination
between LE measures and LE estimations, RMSE the root mean square error, RMSEs the systematic root mean square error and RMSEu unsystematic root mean square error
for the best models. n is the number of 8-day periods with valid tower, MODIS and AMSR-E derived measurements.

Name IGBP VI

n r2
LEo-LEe RMSE (W/m2) RMSEu (W/m2) RMSEs (W/m2)

Tum EBF 136 0.71 26.67 19.39 18.32
Ho1 ENF 37 0.27 25.82 20.40 15.85
Ha1 DBF 40 0.61 18.80 17.56 6.73
MMS DBF 70 0.75 19.93 19.77 2.55
WCr DBF 47 0.87 9.45 9.36 1.28

FI

Tum EBF 175 0.69 26.59 25.42 7.78
Ho1 ENF 62 0.37 20.59 17.68 10.55
Ha1 DBF 53 0.72 16.71 13.63 9.66
MMS DBF 86 0.73 21.81 20.83 6.47
WCr DBF 40 0.74 14.98 13.91 5.56

VI–FI

Tum EBF 230 0.72 24.55 23.81 6.00
Ho1 ENF 62 0.37 20.58 17.68 10.55
Ha1 DBF 108 0.72 17.71 13.44 11.54
MMS DBF 118 0.71 21.68 18.56 11.20
WCr DBF 100 0.70 17.36 14.26 9.89

LE. Interestingly, the multivariable model II resulted in the best
performance for evergreen forests (Fig. 8a–c). However, the vari-
ability in modeled LE estimates from Fig. 8 showed scatter along
the 1:1 line, with a tendency to overestimate at higher LE ranges.
For deciduous forests, the individual methodology presented a bet-
ter performance (Fig. 8d and e); however the numbers of samples
increased to 50% using the multivariable-model II (Fig. 8f).

Fig. 9 shows direct comparison between observed and estimated
LE as a function of time for both growing seasons between 2002 and
2006. The predicted LE using these three approaches captures the
seasonal variation very well in the transient periods and during
stable state of the growing season. It implies that these models
could represent the seasonality of vegetation state. However, for
Tumbarumba there was an overestimation during the stable state
of the growing season.

4. Discussion

This study applied the Penman–Monteith (PM) model and direct
regressions to estimate ET from forest ecosystems at 8-day time
scales using optical and passive microwave indices. In our analysis,
we considered 5 forest sites, representing three forest types: DBF,
EBF and ENF. The PM-Gs approach provided ET estimates that were

better than estimates derived from direct regressions between VIs
and FI and measured LE. An underestimation effect was observed
in both LE–VIs and LE–FI relationship for large LE values across
the forest cover types, as shown by the higher values of RMSE
compared to RMSEu. However, we found consistencies between
independent satellite (optical and passive microwave indices) and
in situ tower GS relationships, and then with LE. In general, the
PM-models explained more than 70% of the variance in LE with
RMSE lower than 20 W/m2. RMSE values found in this study are
commensurate with those reported previously (Kalma et al., 2008;
Li et al., 2009; Yebra et al., 2013). The mean difference between
estimated and observed LE was ∼30%, which agreed with errors
reported in the literature. It is relevant to mentioned that for these
study areas LE was driven primarily by surface meteorology. For
these reasons, the performance of the LE model was much better
than for Gs model. However, overestimates of Gs in some biomes
result in overestimates of LE even if other inputs such as the mete-
orological data are relatively accurate (Fig. 8). In this case, better
estimations of Gs would improve the retrieval of LE.

Optical and passive microwave index approaches provided
independent estimations of Gs at the same time (AMSR-E and
MODIS sensors are both on the AQUA platform) based on different
biophysical processes. Optical vegetation indices are mainly sen-
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Fig. 7. Predicted versus measured 8-day and latent heat (LE (W/m2)) derived from optical indices showing in Table 5 (a), FI (b) and both indices (c) combined with
meteorological data within the PM framework. Colorbar represent % relative error of Gs. n is the number of 8-day periods with valid tower, MODIS and AMSR-E derived
measurements.

Fig. 8. Predicted versus measured 8-day latent heat (LE (W/m2)) derived from optical indices showing in Table 4 (a and d), FI (b and e), and both indices (c and f) model
combined with meteorological data within the PM framework for evergreen and deciduous forest. Colorbar represent % relative error of Gs. n is the number of 8-day periods
with valid tower, MODIS and AMSR-E derived measurements.

sitive to seasonal changes of vegetation foliage while microwave
indices provide unique information about the forest canopy water
content, including greater penetration and sensitivity to both the
leafy and woody components.

Satisfactory agreements were obtained between 8-day Gs and
passive microwave and optical indices. We have shown that NDWI
and EVI correlate well with Gs for deciduous forest, allowing the
use of remote sensing observations to estimate this parameter
under the PM framework. However, in contrast to Yebra et al.
(2013) there was not a significant difference in the performance

of EVI and NDWI. Since Gs is closely related to leaf chlorophyll
concentration (Matsumoto et al., 2005) and the leaf turgor and
structure (Bowman, 1989), a good correlation between Gs and
EVI was expected. Good correlations were also expected between
NDWI and Gs, which was reported to be sensitive to leaf water
content (Guerschman et al., 2009).

We expected a better accuracy of Gs estimations using optical
indices at 1 km due to the better spatial resolution. Optical VIs
(at 25 km) showed similar r2 to FI, however, lower RMSE. Scale
inconsistencies have certain effects on the evaluation and com-
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Fig. 9. Time series of predicted and measured 8-day latent heat (LE (W/m2)) derived from optical indices shown in Table 4 (LE VIs), FI (LE FI), and both indices (LE VIs and FI)
model combined with meteorological data within the PM framework.

parison of the satellite and surface data: (1) there are common
errors associated with these measurements (Moncrieff et al., 1996;
Richardson et al., 2006), though we dealt with these uncertainties
by using a Type II regression, (2) eddy covariance fluxes and meteo-
rological sensors (radiation, temperature, humidity have different
footprints), and (3) the tower flux footprint is only a small frac-
tion of the footprint of passive microwave systems (AMSR-E). To
address the eddy covariance- remote sensing footprint issues, we
evaluated optical indices with tower Gs estimations at different
windows sizes (see Tables 3 and 5 and Supplementary material
Fig. S02). Comparing these results, the RMSE was lower and the
r2 was higher at coarse spatial scales, indicating a spatial scaling
effects. However, at AMSR-E spatial scales this methodology was
able to capture subtle variations in Gs. The biophysical variables
defining the homogeneity of optical indices for an area are not the
same as those that define the homogeneity of passive microwave
indices, which is a possible explanation of the observed discrep-
ancies between optical and passive microwave model results for
similar window size (Table 5).

Although some variances shown in this study may be explained
by scale-inconsistence and observation uncertainties, more than
40% of variations in Gs are explained using microwave index time
series, as it was also shown by Min and Lin, (2006). Microwave
indices – EDVI in the case of Li et al. (2009) and FI for the current
study (Barraza et al., 2014a) – are sensitive to vegetation moisture
(water content in woody and leaf), which is an important com-
ponent of the vegetation-atmosphere interaction. As FI is directly
linked to vegetation moisture, the changes of FI represent canopy
response to the changes of environmental conditions across differ-

ent forest ecosystem. This is the key biophysical link that allows us
to estimate Gs and ultimately accurately estimate LE based on a PM
equation approach. Furthermore, over evergreen forest FI model
performed better than optical indices. In this context, it is impor-
tant to note that microwave radiation has much more penetration
in vegetated areas than optical wavelengths, and overall canopy
emission is an integration of microwave radiation from the whole
canopy’s vertical profile weighted by its transmission. This could be
a reason of the improved performance of FI model over evergreen
forest.

In this study we presented two different ways of using optical
and passive microwave remote sensing: (1) stepwise multiple lin-
ear regressions and, (2) a combined Gs product of both VIs and FI
(coupled model II). These multivariable models use an approach
to estimate Gs at large scale that is based on different biophysical
information from passive microwave and optical indices (vegeta-
tion moisture, leaf chlorophyll concentration, and leaf turgor and
structure). At the evergreen forests, the multi-linear regression
model showed the best performance compared to individual VIs
models. For the other sites, this approach did not provide new
information compared to independent models.

In spite of the better accuracy of VIs-Gs approach compared to
FI-Gs for the other forest sites, Fig. 7 shows positive relative error,
due to noise data. In some situations, quality flags (MODIS QA) are
insufficient to reduce the noise in the MODIS products (Demarty
et al., 2007). Smoothing filters can reduce the noise but this intro-
duces artificial values (Mu et al., 2011). Passive microwave index is
less affected than optical systems by atmospheric conditions, and
in this study we showed a complementary approach to provide a
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complete Gs time series. We developed a strategy for combining
GsVI and GsFI estimations based on gap filling of low quality and
noisy VI data. This last model (Figs. 7 and 8) that merged Gs prod-
uct of both VIs and FI indices is feasible (in terms of higher r2 and
lower RMSE) and would decrease the amount of data gaps. These
consistencies lend confidence to both datasets and offer oppor-
tunities for more extensive regional scaling of tower fluxes with
satellite data. Consequently, the best LE and Gs performance was
obtained by combining both time series (Figs. 7 and 8). In com-
parison to the Global canopy conductance (Gc) product, based on
Yebra et al. (2013) methodology, using MODIS reflectance from
MCD43C4 product and three vegetation indices (NDVI, EVI and
crop factor (Kc)) at 0.05◦ and every 8 days, (https://data.csiro.au/
dap/landingpage?pid=csiro%3A5946), our results presents a better
accuracy (see Supplementary material Fig. S03 and Table S01). Since
Gc is derived from PM equation, we could relate Gs observation
with Gc product (Yebra et al., 2013). In spite of the scales prob-
lems between flux tower and passive microwave index (25 km),
the results presented in this article shows an improved approach
of Gs estimations for these forests.

Finally, it is important to mention that these results could be
relevant in the context of land surface modeling, since time series
of remotely-sensed Gs can be integrated with land surface models
that use the PM approach. Furthermore, both estimations could
present different applications depending on the scale resolution
(e.g. ecological vs. climate applications). Further work is needed in
order to evaluate how best to integrate spatially extensive satellite
data with local tower measures from multiple sites for regional
scaling and modeling of ET.

5. Conclusions

When MODIS VIs and passive microwave index were combined,
the disadvantages of both sensors can be reduced in the context of
ET estimations. Indices were combined to make use of the advan-
tages of both sensors. This study shows that the estimation of Gs
using either satellite optical or microwave indices has a number of
advantages and disadvantages. The most important disadvantage
of passive microwave is the lower spatial resolution. Optical data
presents some limitations related to the low temporal resolution
due to cloud and aerosol contamination. But optical indices have
the advantages of: (i) high spatial resolution, (ii) sensitivity to the
leafy part of the vegetation, while microwave indices advantages
are: (i) higher temporal resolution at daily and hourly scales, (ii)
day and nighttime measurements (Barraza et al., 2014a,b; Li et al.,
2009), and (iii) sensitivity to the leafy and woody parts of the vege-
tation. Using a combined index-model integration approach leads
to superior ET estimates.
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