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Comment on “Nonadiabatic couplings from the Kohn-Sham derivative matrix: Formulation
by time-dependent density-functional theory and evaluation in the pseudopotential framework”
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The issue of the ab initio evaluation of the first-order nonadiabatic couplings (NAC’s) is re-examined. In
particular, a recent derivation in Phys. Rev. A 82, 062508 (2010) of the NAC’s is corrected by performing an
extension of the derivation to the case of arbitrary values of the Kohn-Sham (KS) occupation factors. A single
expression for the nonadiabatic couplings, valid both for integer and fractional values of the KS occupation

factors, is provided.
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This Comment is aimed to correct and extend some results
derived in Ref. [1], concerning the important issue of the
ab initio calculation of the first-order nonadiabatic couplings
(NAC’s) [2-6], in the context of the Born treatment of the
coupled electrons-nuclei problem [7].

Following the notation in Refs. [1] and [6], the NAC’s
between the ground and excited electronic states are defined
as
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Here, W, (V) is the many-body electronic wave function of the
ground (/th excited state). R, is the nuclear coordinate with
W representing x, y, z components and the atom index, H is
the many-body Hamiltonian, and w; (>0) is the ground- —
excited-state excitation energy. Components of h,, and matrix
elements of S are given by
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where V., €5, and f;, are the electronic wave function,
eigenvalue, and occupation number for the single-particle ith
Kohn-Sham (KS) auxiliary state with spin o, and Af;jc =
fic = fjo» A€jic = Ejo — Eig. Ven is the potential from the
nuclear charge. It is important to note that if g;; < &j, <>

f,'g > fjo‘, then Af,'jUAé‘j,'J >0— Sij()"klf > 0. F[ is the
eigenvector of the Casida equations [8]
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with K being the KS matrix of the Hartree (H) and exchange-
correlation (xc) kernel A,
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The kernel A™*(r,r’) may be obtained from straightforward
application of density-functional perturbation theory (DFPT)
[9], as shown in Ref. [6]. The set of Egs. (1)—(6) defines the
so-called “h representation” of the NAC’s. It has the virtue that
the NAC’s as given and defined in a many-body framework
by the left-hand side (lhs) of Eq. (1) can be evaluated by
using quantities that may be obtained from linear-response
time-dependent DFT (LR-TDDFT) [10] [right-hand side (rhs)
of Eq. (1)]. For systems with a large number of electrons, the
computational cost of evaluating the rhs of Eq. (1) is much
lower than the lhs.

As a way to solve technical problems related to the practical
evaluation of the rhs of Eq. (1) in a pseudopotential numerical
framework, in Ref. [1] the so-called “d representation” of the
NAC’s has been introduced, according to which one has

(‘l’ola%m’l) = o, d,$"F,, @

n
instead of Eq. (1). Here,
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where HXS is the Kohn-Sham Hamiltonian, and V¢ is the
corresponding KS effective potential. Inserting Eq. (3) in
Eq. (7), one obtains the explicit expression
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Equation (7) [or Eq. (8)] is the main result of Ref. [1], and
in the remaining part of this Comment its correctness will be
disputed.

The crucial step in obtaining Eq. (7) is the derivation of
the relationship FIS~"/?h,, = F/@S'/?d,,, that is achieved in
Eq. (17) of Ref. [1], in several steps. Since this equation is
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the source of the problem in Eq. (7), the derivation of this
relationship will be repeated here,
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Here, D, ijo = d, ijo/A€jis, and in consequence the correct
fundamental link between the “h representation” and the
“d representation” is given by

h, =S"2@S7'?D,. (10)
Replacing Eq. (10) in Eq. (1), one obtains for the NACs
0 .
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which is different from the result in Ref. [1], as given in Eq. (7).
The difference between Egs. (7) and (11) may be made more
explicit by inserting Eq. (3) in equation above, obtaining
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For fractional values of the occupation numbers (fi, # 1,
fis #0), Egs. (8) and (12) are fundamentally different, with
the difference being particularly important for the quasiequal
occupancy situation fi, = fjs. It should be emphasized that
the d representation of the NAC’s as given in Eq. (11) is
valid both for fractional and integer values of the occupation
factors. Beyond its practical value for the evaluation of the
NAC’s in open-shell situations (just to give an example), it
provides a unified and consistent treatment of both situations,
with the integer occupation case being just a particular case
of the general situation with fractional occupation factors. The
present results suggest also a reconsideration of the application
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of the Slater transition method for NAC’s in doublet systems,
where equal occupancies (=1/2) are usually assumed for the
electron-hole pair in the midexcited state [1,11]. It should be
emphasized that the only way to arrive at the correct expression
for the NAC’s as given by Eq. (11) is by keeping the explicit
dependence on the occupation factors until the end of the
calculation (as made above), and only then take the integer
occupation limit Af;;, = 1 if needed.

The difference between Eqs. (8) and (12) [or between
Egs. (7) and (11)], comes from the dependence on the
occupation factors: (Af;,)"/? appears in the denominator of
Eq. (8), but it appears in the numerator of Eq. (12). The
two expressions become the same only under the ad hoc
assumption that Af;;, = 1, that seems to be the path followed
by the authors of Ref. [1] for the derivation of Eq. (7). The
situation is at least confusing regarding this issue, as in their
recent publication on the same topic (Ref. [6]), they quote again
the same result for the NAC’s in the d representation [Eq. (12)
in Ref. [6]], without giving any warning on the possible (or
assumed) values for the occupation numbers. Furthermore, it
should be pointed out that there is a typing error in the third
line of Eq. (17) of Ref. [1]: The product of three Kronecker &
functions should not exist and must be removed. Only after this
removal and the commented assumption on the occupations
number configuration is the final expression of Eq. (17) in
Ref. [1] correct.

Equation (11) (and its associated derivation) is the main
result of this Comment, and it corrects the result of Eq. (7).
They are equivalent only for the particular case of integer
values of the occupation factors. Equation (11) is the correct
expression for the NAC’s both for integer and fractional values
of the occupation factors. Based on this, it is suggested to
use the rigorous Eq. (11) for the ab initio evaluation of the
nonadiabatic couplings, instead of the approximated Eq. (7),
as has been done so far.
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