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ABSTRACT 

In the present work, mechanical spectroscopy measurements as a function of temperature and strain have 

been performed in (at.%) Ni50Mn37Sn13-xTix (x=0, 0.5 and 2) ferromagnetic shape memory alloys in order 

both to study martensitic transition phenomenon and also to determine its temperature of appearance. For 

mechanical spectroscopy measurements, a five elements piezoelectric device recently developed has been 

used. In addition, other characterization techniques as, differential thermal analysis and superconducting 

quantum interference magnetic spectroscopy, were also used. Besides, relaxation processes near the 

martensitic transition temperature have been also observed.  

Keywords: NiMnSn, ferromagnetic shape memory alloys, composite piezoelectric oscillator, short and 

brittle samples. 

1. INTRODUCTION 

Ni–Mn–X (X = Ga, In, Sn, Sb) alloys are currently attracting considerable attention due to the peculiar 

multifunctional properties that show as a result of coupling between structure and magnetism (namely giant 

magnetoresistance, magnetic shape memory effect or large magnetocaloric effect) [1-3]. In particular, these 

properties are linked to modification of the magnetic characteristics of the alloy as a consequence of the 

occurrence of a first-order martensitic transformation (MT) between magnetically ordered phases. In Ni–Mn–

Ga alloys the MT takes place from ferromagnetic austenite to a ferromagnetic martensite showing higher 

saturation magnetization [4]. In contrast, in Ni–Mn–Z alloys (Z = In, Sn, Sb) the ferromagnetism of the 

austenite vanishes at the MT, concurrently with the appearance of antiferromagnetic correlations, thus 

resulting in a martensitic phase with lower magnetic moment [5-7]. In this latter case, the metamagnetic 

character of the MT gives rise to new interesting phenomena, such as: the magnetic-field induction of the 

MT, the kinetic arrest of the martensite, the exchange bias or the observation of a peculiar isothermal 

character in the MT. These phenomena have also been widely studied in recent years [8-11]. 

On the other hand, the motion of magnetic domains also depends on their interaction with structural 

defects [12]. In addition, in recent works, the influence of defects on the MT and the interaction between twin 

boundary and defects has been studied [13,14]. 

In the present work, mechanical spectroscopy measurements as a function of temperature and strain 

have been performed in (at.%) Ni50Mn37Sn13-xTix (x=0, 0.5 and 2) ferromagnetic shape memory alloys in 
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order both to study martensitic transition phenomenon and also to determine its temperature of appearance. 

MS measurements as a function of temperature and strain were performed in a piezoelectric composite 

oscillator recently developed and assembled at the laboratory [15]. It should be highlighted that the here 

shown equipment is an important solution for measuring small and brittle samples, often involved in pilot 

development of new alloys, which cannot be matched in frequency. Other characterization techniques such as 

differential thermal analysis and superconducting quantum interference magnetic spectroscopy were also 

used in order to check the obtained results from MS. 

2. THEORETICAL BACKGROUND FOR THE NEW PIEZOELECTRIC EQUIPMENT 

The Marx-three component piezoelectric resonator requires that the lengths of the components are frequency-

matched to their half-wavelengths [16]. In these conditions, both the displacement and the strain waves 

exhibit a continuous behaviour through the composite oscillator, and the condition of zero strain and 

maximum displacement is satisfied at the end of each element [16-18]. From the equivalent electrical circuit 

of the Marx three component oscillator, the well-known equations for frequency, f, and damping, Q
-1

, have 

been obtained by Robinson [19] and Marx [16] 
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             wherein, mT, fT and Q
-1

T, are the total mass (mi), the oscillating frequency (resonant) and the 

damping of the whole oscillator, respectively. mi, fi and Q
-1

i are the mass, frequency and damping 

corresponding to the element “i”, respectively. i=1 to 3, correspond to crystal gauge, crystal driver and 

sample; respectively. As it can be easily inferred from equations (1) and (2) the squared frequency and 

damping of the whole oscillator are averaged values weighted by the total mass of their components [15-19]. 

On the other hand, the new composite oscillator here shown, involves a thin-flat driver, two spacer 

bars, a sample and crystal gauge assembled as shown in Figure 1. The spacer bars and sample are non-

matched in half-wavelength. The driver is a thin-plate commercial piezoelectric quartz crystal. The gauge is a 

typical 18.5º x cut α-quartz crystal gold plated on z faces. The length and mass of the driver are not 

significant in comparison to the other elements and then, they can be neglected. So, the driver will be 

assumed as an elastic membrane which generates a plane wave front. This assumption allows considering at 

the interface, the displacement and strain, maximum and nil, respectively [15]. 

Since each element of the oscillator has not the same resonance frequency, equation (1) and (2) cannot 

be used. Nevertheless, the resonance frequency can be calculated by means equation (3) for the five elements 

composite oscillator, such that [15,20,21] 
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where the sub-indexes sbi (with i = 1, 2) are related to the spacer bars, S corresponds to the sample, CG is for 

the crystal gauge and n is an integer. Spacer bars #1 and #2, hereafter, will be referred to upper bar and lower 

bar, respectively, see Figure 1. 

Thus, by assuming that the speed of sound in the spacer bars (for instance quartz or Pyrex) and the 

crystal gauge are known, the wavelength corresponding to the sample can be easily determined from equation 

(3). Then, the speed of sound in the sample can be obtained using v = f · , where f is the frequency imposed 

by the driver. Finally, the elastic modulus is E =  · v
2
,  being the density of the sample [15,22]. 

As said before, equation (2) cannot be used because of the unmatched frequencies of the elements of 

the oscillator. In consequence, a more general expression must be used [15]. 
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            wherein, WT is the storage energy of the whole oscillator, and 
-1

SQ , 
-1

CGQ , 
-1

sb1Q , 
-1

sb2Q  and 
-1

TQ  are 

the damping of the sample, the crystal gauge, the spacer bars (sb1 and sb2) and the total of whole oscillator, 

respectively. So, if the damping of each component is known, the damping of the sample from equation (4) 

can be calculated.  
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Figure 1: Five composite oscillator. The driver is a thin-flat power quartz crystal. The two spacer bars and the sample are 

out of the match in frequency. The crystal gauge is matched in frequency. Displacement wave, even continuous, exhibits 

peaked shape behaviour at the interface and then the strain is not continuous. 

The stored energy in each element is [15] 
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            where x is the position on the element from the origin and Ai, Ei, mi, i and ci are the area, the elastic 

modulus, the maximum oscillating strain, the wavelength and the phase angle for the element “i”, 

respectively. 

In order to calculate the equation (5) for each element, it is necessary to obtain firstly the phase-

constants, ci, and subsequently mi. The phase constants will be obtained from the displacements expressions. 

Strain expressions can be deduced easily from the derivative of the corresponding displacement, see Figure 1. 

Thus, by considering the origin of the coordinates system at the left end of the composite oscillator, the 

expressions for the displacement in each spacer bar and in the sample result [15], 
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By working mathematically, the constants c2 and c3 can be obtained, such that (see for more details 

Ref. [15])  
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Regarding the obtainment of mi terms. As it was pointed out above, the displacement at the interface 

of two adjacent elements of the composite oscillator must be the same. Then, we can write for the spacer bar 

#1 and the sample;  

   111 sbSsbsb ll    (11) 

By taking the derivative and working mathematically, we can write  
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Likewise, for the interface between the spacer bar #2 and the sample, we can obtain 
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Finally, the maximum strain in the spacer bar #2 can be obtained from the continuity condition of the 

strains between the crystal gauge (CG) and the bar, that is 

2
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The maximum strain in the crystal gauge CG Max is given by the well-known expression [16] 
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            where Ve is the excitation voltage, fc is the resonant frequency, Fc is the damping of the oscillator and 

lc, mc and R are the length and mass of the crystal and the resistance of the equivalent circuit; respectively.  

By knowing MaxCG , the strain values of Maxsb2 , SMax  and Maxsb1  can be obtained through 

equation (12) to (14). In addition, if the cross section, the modulus and the length of each component of the 

oscillator are known, the storage energies for the spacer bars ( 21, sbsb WW ), the sample ( SW ) and the crystal 

gauge ( CGW ) can be calculated from equation (5). See for more details Ref. [15]. 

3. MATERIALS AND METHODS 

Polycrystalline ingots of nominal composition (at.%) Ni50Mn37Sn13-xTix (x=0, 0.5 and 2), called hereafter Ti0, 

Ti05 and Ti2, respectively, were prepared from high-purity elements by arc melting under a protective Ar 

atmosphere. The addition of titanium is performed in order to refine the grain size. The ingots were remelted 

several times and then homogenized in vacuum quartz ampoules at 1273 K for 2 h. After homogenization, 

samples were annealed at 1173 K in ampoules under Ar for 30 min, followed by quenching in iced water. 

The composition of the elaborated alloys was analyzed by energy-dispersive spectroscopy in a JEOL JSM-

5610LV scanning electron microscope. Samples were parallelepiped shape with dimensions 6.82 mm x 8.12 

mm x 5.34 mm, 4.98 mm x 4.40 mm x 1.9 mm and 4.82 mm x 5.74 mm x 1.5 mm for Ti0, Ti05 and Ti2, 

respectively. 

Samples were cemented to the oscillator components by using high alumina cement, as it is detailed in 

Ref. [15]. After the cementing process, the entire composite oscillator was placed into the vacuum chamber 

of the device in order to dry the cemented parts. The system was evacuated at a vacuum better than 90 mTorr 

during 72 hours at RT. Spacer bars were cylinders of fused quartz of 6 mm diameter and 160 mm and 140 

mm length for the sb1 and sb2, respectively. 
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For the damping measurement (Q
-1

T in equation (4)) the usual expression for calculating the damping 

from the slope of the straight line which results from the least squares fitting of the natural logarithm of the 

decaying areas versus time was used [17,23],  

n Q  - )
0

(Aln   )
n

(Aln -1
T  (16) 

where An is the area of the n
th

 decaying oscillation, A0 is the initial area of the starting decaying oscillation 

and n is the period number, see Figure 2. For damping measurements the same initial and end values of the 

decaying areas were used for eliminating some possible distortion due to the appearance of amplitude 

dependent damping effects [23]. Once Q
-1

T was measured, by coupling equations (4) to (15), the damping of 

the sample can be calculated.  

The measurements were performed under a pure Ar protective atmosphere, and the heating rates 

employed in the tests were 1K/minute controlled by means of a PID (Novus N480D) temperature controller.  

The ultrasonic wave was generated by a thin-flat power commercial piezoelectric quartz driver, 

produced by Apple Vista Technology Ltd. It was excited by a synthesized waveform generator Rigol DG 

1022 plus a power amplifier of plane response with low harmonic distortion. The diameter, thickness and 

weight of the driver were 25 mm, 1 mm and 4.55 g, respectively. The crystal gauge (see Figure 1) was a 

quartz piezoelectric crystal of high quality factor manufactured by Bliley Electric Company. The dimensions 

of the crystal gauge were 5.00mm x 5.00mm x 56.10mm and a weight of 4.10g, with gold deposited faces. 

The decaying was finally recorded by a high-speed digital storage oscilloscope Rigol DS 1052 E. For data 

analysis the oscilloscope was connected to a personal computer. 

The new piezoelectric equipment was also prepared for working in the amplitude dependent damping 

regime. As a consequence of measuring in free decay mode, the amplitude dependent damping (ADD) 

behaviour promoted by the appearance of non-linear effects (the double of stress does not lead to the double 

of strain) can be easily measured by taking the derivative of the decaying oscillations regarding the period 

number [23-26]. In fact, the damping as a function of the maximum strain on the sample, 0, was calculated 

from equation (17) 

dn

) )
n

(Aln  ( d1
)

0
(T

1-Q


   (17) 

The decaying of the oscillations were performed at constant temperature (T  0.5 K). Polynomials 

were fitted to the curve of the decaying areas of the longitudinal vibrations as a function of the period number 

by means of Chi-square fitting. Subsequently the equation (17) was applied. Polynomials of degree higher 

than 1 indicate that QT
-1

 is a function of 0, leading to the appearance of ADD effects, as it can be inferred 

easily. This procedure allows obtaining the damping as a function of the maximum strain (0) from free 

decaying oscillations [23-26]. 

Figure 2 shows the logarithm of the decaying oscillations as a function of the period number for the 

case of non linear effects. Upper inset shows the decaying oscillations recorder by the system and the lower 

inset shows the damping against 0 obtained from equation (17). 

Then, as said before, by coupling equations (4) to (15), the damping of the sample can be obtained at 

each maximum strain; for the whole temperature range of the test. In addition, the strength of ADD effects 

can be measured through S parameter, such that [23-26], 

0

1






SQ
S  (18) 

The frequency during the free decaying of oscillations of the composite oscillator was calculated from 

the recorded decaying oscillation, see upper inset in Figure 2. Besides, the frequency (f) and wavelength () 

for each one of the components satisfy the well-known relationship, f ·  = v; where v is the speed of sound in 

each component. Thus, by knowing the speed of sound (or wavelength) of all elements of the oscillator, the 

elastic modulus, E, can be obtained from  · v
2
 = E; as it was explained above. 
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Figure 2: Logarithm of the decaying areas (ln(An)) vs period number which presents non-linear effects (open circles). 

Dashed line represents the linear regression of the curve. Upper inset: oscillation decay. Lower inset: damping as a func-

tion of maximum strain on the sample obtained from equation (17). 

In the case that the speed of sound is unknown, the changes which appears in the frequency of the 

whole oscillator can be used in order to infer the frequency changes which occurs in the sample as a 

consequence of the changes in the elastic modulus, see for more details Ref. [15]. 

Differential Thermal Analysis (DTA) measurements were carried out at a heating/cooling rate of 

10K/min in a conventional calorimeter with stainless steel crucibles, under argon protective atmosphere at 

normal pressure. 

Magnetic measurements were performed in a QD MPMS XL-7 SQUID magnetometer under constant 

applied magnetic fields of 100 Oe. Measurements were made on cooling–heating cycles at 1 K/min. 

4. RESULTS AND DISCUSSION 

DTA and SQUID measurements were performed in order to determine the MT temperature for three different 

compositions. Figures 3 show the thermal behaviour, after the base-line subtraction, and magnetic response 

for (a) Ti0, (b) Ti05 and (c) Ti2. As it can be seen from Figure 3, the MT temperatures for the three alloys, 

Ti0, Ti05 and Ti2, are 330 K, 340 K and 360 K, respectively. In addition, in Ti2 sample (see Figure 3(c)), it 

can be detected another process just below the MT temperature; which can be inferred by the appearance of 

both the peak in the SQUID spectrum and the hump in the low temperature tail in the DTA reaction peak. 

In order to study the MT from the mechanical point of view, mechanical spectroscopy measurement 

has been also performed. Figures 4 show the temperature dependence of the damping and frequency for the 

three FSMA around the MT zone. The damping peak (Figure 4(a)) and the step down in the squared 

frequency (Figure 4(b)) (proportional to elastic modulus reveal that the MT for Ti0, Ti05 and Ti2 is around 

335 K, 340 K and 345 K, respectively. These temperatures are in agreement with the temperatures obtained 

from SQUID and DTA, except for Ti2 where there appears a discrepancy in the MT temperatures among 

different techniques. 
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Figure 3: SQUID (open circles, left axis) and DTA (full circles, right axis) measurement as a function of temperature for 

the ferromagnetic shape memory alloys (a) Ti0, (b) Ti05 and (c) Ti2, around the MT. 
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Figure 4: Damping (full symbols) and resonant frequency (empty symbols) curves as a function of temperature for the 

ferromagnetic shape memory alloys Ti0 (circles), Ti05 (squares) and Ti2 (triangles), around the martensitic transfor-

mation (MT). Dashed line is a guide for the eyes. Inset: MT damping peak after background subtraction for the three 

alloys. 

It should be highlighted that, the main differences between the three alloys were: (i) the dependence of 

the MT temperature as a function of the concentration of titanium and (ii) the increase of the MT damping 

peak height (after background subtraction, see inset in the Figure 4(a)) as the concentration of titanium 

increases. In addition, another relaxation process seems to appear at around 365 K just above the MT in Ti0 

sample. Moreover, different relaxation processes were also detected below MT temperature as a hump in the 

low temperature tail of the martensitic peak and by the two stage modulus change in Ti2 sample (see dashed 

arrows in Figure 4(b)). This behaviour is in agreement with both the peak in SQUID spectrum and the hump 

in DTA peak, and it could be related with the magnetic relaxation process. Besides, from the comparison of 

the damping curves, another remarkable difference in the shape of the spectrum can be also detected. In fact, 

the spectra of samples Ti05 and Ti2 exhibit damping values for the background in the martensite phase lower 

than in the austenite phase. This behaviour above MT temperature could be related with the damping values 

corresponding to a low temperature tail of a relaxation peak at higher temperatures. The behaviour of the 

squared frequency is in agreement with the beginning of the relaxation process. Measurement at higher 
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temperatures should be performed, but thermal treatment could deteriorate the memory effect by means of 

the decomposition of the matrix. In contrast, in sample Ti0, damping values for background in martensite 

phase are higher than in austenite phase. This latest case in the mechanical spectroscopy spectrum in FSMA 

is the expected usually. 

In order to explore the movement of twin boundaries in NiMnSn alloy without doping, the appearance 

of ADD has been checked through the S parameter for Ti0 sample. Figure 5 shows the S values (see equation 

(18)) as a function of temperature for the damping spectrum corresponding of the Ti0 sample in Figure 4(a). 

The S values differ from zero for temperatures below MT, where the martensitic phase occurs. Non-linear 

anelasticity is selectively related to the motion of linear/planar defects and therefore is an efficient tool of 

studying pinning-related phenomena [17,23,27]. At higher temperatures than the MT temperature the S 

values become null, indicating the appearance non-linear effect in the martensite range. The ADD effect is 

related with the movement of the twin boundary and their interaction with defect as point defects or 

dislocations [17]. 

Figure 5 also shows the damping spectrum as a function of temperature for different maximum strain 

in the sample. Below the MT temperature, as higher the maximum strain in the sample, higher are the 

damping values. 
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Figure 5: Amplitude dependent damping curves as a function of temperature in the zone of the martensitic phase (Cir-

cles: 5 × 10−5, Squares: 4 × 10−5, Rhombuses: 3.5 ×10−5) and strength of the amplitude dependent damping (S= ΔQ-1/Δε0) 

for Ti0 alloy. 

5. CONCLUSIONS 

Mechanical spectroscopy measurements as a function of temperature and strain has been performed in 

NiMnSnTi ferromagnetic shape memory alloys, by means of a piezoelectric composite oscillator recently 

developed. This new equipment was a good solution to perform mechanical spectroscopy measurement in 

small and brittle samples. 

An increase of both the martensitic transformation temperature and the martensitic transformation 

peak height with the addition of Ti has been detected. On the other hand, the damping spectra for samples 

Ti05 and Ti2 exhibit background values which are lower in the martensite phase than in the austenite one.  

In Ti2 sample an additional relaxation process near the martensitic transition temperature has been 

observed. It is probably related to a magnetic relaxation process, as can be inferred from SQUID 

measurements. However, the values of MT temperatures obtained from the different techniques shows a 

discrepancy between MS, DTA and SQUID. In fact, this discrepancy could be promoted by the appearance 

of micro-pores into these samples, generating zones with internal stresses and/or micro-cracks which are 
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more sensitive to MS tests, than thermal/magnetic measurements. It highlights the requirement to evaluate 

the MT temperature through different techniques. 

The appearance of non-linear damping as a function of the oscillating strain has been detected in the 

martenistic range for all the studied alloys by means of S parameter. 
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