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Abstract Amphibians have complex life cycles with
aquatic and terrestrial life and uncovered skins; there-
fore, they are exposed to chemical contamination, where
dermal exposure is a significant route for pesticide up-
take in both habitats. In this study, measurements in
blood samples such as levels of butyrylcholinesterase
(BChE), carboxylesterase (CbE), glutathione S-
transferases (GST), thiobarbituric acid reactive sub-
stances (TBARS), modified alkaline comet assay
(ACA) for detection of oxidized bases (FPG and Endo
III sites), as well as the ratio of heterophils and lympho-
cytes (H/L), were evaluated as non-destructive bio-
markers to monitor dermal pesticide exposure in male
toads of Rhinella arenarum. Toads were exposed to a
solution containing a nominal concentration of commer-
cial formulations of the insecticide chlorpyrifos (CPF,
10 mg/L), and herbicides 2,4-D and glyphosate (GLY)
(20 mg/L, respectively). After 48 h of exposure, the
levels of plasma B-sterases (BChE and CbE) were
inhibited (55 and 43 %, respectively) in toads exposed
to CPF. Also, the activity of GST was inducted for
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dermal exposure to 2,4-D, as well as the levels of
TBARS due to CPF exposure. Besides this, CPF and
2,4-D exposure induced oxidative DNA damage, and
the H/L ratio decreased for the both herbicide exposures.
Our results showed that exposure via dermal uptake to
CPF, 2,4-D, and GLY in the common toad R. arenarum
induced neurotoxicity, oxidative stress, and immunolog-
ical depression. Thus, some blood biomarkers employed
in our study (B-esterases, GST, levels of TBARS, ACA,
and H/L ratio) might be used as predictors in health and
ecological risk assessment of amphibian populations
exposed to OP insecticides and herbicides.

Keywords Amphibians - Dermal exposure -
Chlorpyrifos - 2,4-D - Glyphosate - Blood non-
destructive parameters

1 Introduction

The integrated use of measurable indicators, such as
cholinesterases (ChEs) and others, may be necessary
for biomonitoring programs for assessing the impact of
pesticides in amphibians living in agroecosystems
(Lajmanovich et al. 2008; Attademo et al. 2011). The
use of several biomarkers (i.e., pollutant-induced bio-
logical responses at the sub-individual level that are
measured in nonlethal methodologies) is one of the first
ecotoxicity phases in risk characterization of pollutants.
A pollutant stress normally triggers a cascade of biolog-
ical responses, each of which may, in theory, serve as
biological endpoints that could be described with a
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biomarker (Hook et al. 2014). Therefore, the measure-
ment of blood butyrylcholinesterase (BChE) activity,
such as and carboxylesterase (CbE) (for neurotoxicity),
glutathione S-transferases (GST) and thiobarbituric acid
reactive substances (TBARS) (for oxidative stress) is
used as a biomarker to monitor pesticide exposures in
wild species (Falfushinska et al. 2008; Poletta et al.
2012). The alkaline comet assay (ACA) is sufficiently
sensitive for detecting DNA damage in frogs (Dhawan
et al. 2009). Certainly, oxidative DNA damage is a
valuable tool for the measurement of oxidative stress
and may represent an optimal index for measurement of
the potential risk of amphibian pesticide exposures
(Ismail et al. 2014; de Lapuente et al. 2015).
Moreover, the use of the bacterial enzymes
Endonuclease III (Endo III) (to recognize oxidized py-
rimidines) and formamidepyrimidine-DNA glycosylase
(FPQG) (to recognize oxidized purines, including 7,8-
dihydro-8-oxo-guanine) were first described by Collins
et al. (1993). Furthermore, the ratio of two leukocyte
types, heterophils and lymphocytes (H/L ratio), has been
increasingly used by to analyze immune function in
amphibians exposed to pesticides (Davis et al. 2008).

In this sense, in vivo and in vitro research with the
terrestrial life stages of amphibians have shown that the
uptake of pesticides occurs rapidly through the permeable
skin and it is much higher if compared to mammals
(Quaranta et al. 2009). Dermal exposure presents a po-
tentially significant but insufficiently studied route for
pesticide uptake in terrestrial amphibians (Van Meter
et al. 2014). Furthermore, studies using terrestrial life-
stages of amphibians are really important because dermal
exposure is seen as main absorption way of pesticides for
adult and juvenile amphibians (Briihl et al. 2013).

In Argentina, after the prohibition of organochlorine
(OC) and organophosphate (OP) pesticides (endosulfan
and malathion), the use of alternative insecticides like
chlorpyrifos (CPF) rapidly increased. CPF is widely
used in grain cultivation and in numerous non-
agricultural situations. CPF is one of the most frequently
detected insecticides in our country, found in sediments,
suspended particles, and in water (Jergentz et al. 2005).
In addition, Loewy et al. (2011) detected CPF in surface
water and sub-surface drains in the pome-fruit-growing
region of Neuquén River Valley in 73 % of the samples.
CPF caused severe birth defects in children exposed in
utero (Sherman, 1996) and some effects on wild fauna
through several diverse mechanisms (Chaturvedi et al.
2013). Mainly, CPF inhibits the ChEs enzymes, affects
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the nervous system of organisms (Sun and Chen 2008),
and increases DNA damage in toads (Yin et al. 2009; Li
et al. 2015). In some cases, the CPF formulated was
found to be more toxic than the active ingredient, par-
ticularly to aquatic organisms (Ali et al. 2009). Several
studies have documented an apparent connection be-
tween the presence of CPF residues and reductions in
amphibian populations, at both local (Fellers et al. 2004)
and landscape scales (Davidson et al. 2001).While some
organophosphates are readily absorbed through the skin,
studies in humans suggest that skin absorption of CPF is
more limited (Hayes and Laws 1991).

The 2,4-dichlorophenoxyacetic acid (2,4-D) is a
phenoxy herbicide that is related to the growth hormone
indoleacetic acid. 2,4-D was developed during World
War 1II and is composed of 50 % Agent Orange
(EXTOXNET, 1996). In Argentina, in the main agricul-
tural region, Humid Pampa, about 2200 tons of 2,4-D
are annually applied in different crops (particularly, corn
and soybean 2,4-D tolerant), comprising a total area of
3.4x10° ha (Merini et al. 2008). Despite the fact that this
herbicide has a negative ecotoxicological profile and is a
potent clastogen (Bukowska 20006), the effects of 2,4-D
exposure on adult amphibians are poorly understood
(Ryan et al. 2006).

Glyphosate (GLY) is the world’s most widely used
herbicide. It is used in horticulture, parks, and home
gardens, but the largest use is in agriculture on the
genetically modified glyphosate-resistant crop varieties
(GMOs) (James 2008). In March 2015, GLY was clas-
sified as probably carcinogenic to humans for the
International Agency for Research on Cancer (IARC)
(Guyton et al. 2015). Although this news is relatively
recent, several studies were alerting on the adverse
consequences of DNA damage effects of GLY formula-
tions on wildlife (i.e., in earthworms, snails, spiders,
fish, amphibians, and reptiles) and mammals, including
humans (Poletta et al. 2009; Benamu et al. 2010;
Guilherme et al. 2012; Wagner et al. 2013; Braz-Mota
et al. 2015; Gress et al. 2015).

The main part of ecotoxicological research for am-
phibians was done on aquatic life stages. As part of a
continuing study to assess the adverse effect of pesti-
cides on populations of anurans in Argentina, the pur-
pose of this research was to evaluate some non-
destructive biomarkers (BChE, GST, TBARS, ACA,
and H/L ratio) under dermal exposure in male of
R. arenarum toads to estimate the risk of CPF, 2,4-D,
and GLY under laboratory conditions.
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2 Materials and Methods
2.1 Reagents

2-Thiobarbituric acid (TBA), and Trichloroacetic acid
(TCA), and Butylhydroxytoluene (BHT) were obtained
from Merck® (USA) and Sigma-Aldrich® (Germany).
Sodium dodecyl sulfate (SDS) was purchased from
Calbiochem® (Canada). Butyrylthiocholine iodide
(BuSCh), 5,5'-dithiobis-2-nitrobenzoic acid (DTNB),
o-naphthyl acetate («x-NA), and Fast Red ITR salt were
obtained from Sigma-Aldrich® (Germany). Reduced
glutathione (GSH) and 1-chloro-2, 4-dinitrobenzene
(CDNB) were obtained from Acros Organics (USA).
All the other chemicals used in this study were acquired
from Biopack® (Argentina). Dimethyl sulphoxide
(DMSO) was purchased from Fluka. RPMI-1640 medi-
um was purchased from HyClone. Low melting point
agarose (LMPA), normal melting point agarose
(NMPA) and the rest of reagents for ACA and general
laboratory chemicals were provided by Sigma.

2.2 Pesticides Selection

The commercial formulations of pesticides used in ex-
periments were: CPF (48 % active ingredient [a.i.], O,0-
diethyl-O-(3,5,6-trichloro-2-pyridinyl) phosphorothio-
ate; log Kow=4.7;, NUFARM®, Nufarm S.A.
Argentina), 2,4-D (60.2 % a.i., 2,4-Dichlorophenoxy
acetic acid dimethyl amine salt; log Kow=0.65; ASI
MAX 50®; CHEMOTECNICA S.A, Argentina), and
GLY (74.7 % a.i., N (phosphonomethyl) glycine; log
Kow=-3.4; Roundup Ultra-Max®, Monsanto Co.,
Argentina). As the active ingredients are not expected
to have similar mechanisms of action, metabolites, or
toxicokinetic behavior as the commercial formulated
products (Sparling et al. 2010), the pesticides were
tested in this form, they were applied in cultivated
fields and introduced into the environment. Likewise,
Briihl et al. (2013) exposed terrestrial amphibians to
pesticide formulations that contain additives.

2.3 Study Animals

Twenty adult male of R. arenarum were collected by
hand from temporary ponds in artificial wetlands
(31°39'52.90" S, 60°42'50.20" W, South Park Lake,
Santa Fe, Santa Fe province, Argentina) in November
2014; these sites had not been treated with chemical

pesticides, as determined by the laws to protect human
and wildlife health. R. arenarum is used as model in
ecotoxicology (Cabagna et al. 2005). This toad is fre-
quently found in forests, wetlands, agricultural land and
urban territories (Peltzer et al. 2006) and it has an exten-
sive Neotropical distribution (IUCN 2010). These toads
feed mainly on a variety of arthropods, and they play,
therefore, an important role as biological controls, partic-
ularly in soybean crops (Attademo et al. 2005).

After capture, toads were quickly transported to the
laboratory in darkened buckets containing water to min-
imize stress. Snout-vent length (SVL) (mm) and body
weight (g) were recorded with digital caliper (precision,
0.01 mm). Toads were acclimated for 24 h before initi-
ation of the experiment (individually in semi-transparent
plastic water buckets; size: @ 23 cmx28 cm) under
laboratory conditions with a photoperiod 12—-12 h (light
07:00-19:00 h), humidity (60+10 %), and temperature
24+2 °C.

2.4 Risk Exposure

A control group (CO, N=5) with 500 ml of
dechlorinated tap water (DTW; pH 7.4+0.05; conduc-
tivity 165+12.5 pmhos/cm; dissolved oxygen concen-
tration 6.5+1.5 mg/L; and hardness 50.6 mg/L CaCOs)
and the three treatments with pesticide formulations
(nominal concentration) were employed: CPF (N=5,
10 mg/L), 2,4-D (N=5, 20 mg/L), and GLY (N=5,
20 mg/L). Doses were chosen in ranges usually lacking
overt toxicity, mimicking a scenario with no alerting
clinical signals that may erroneously lead to the assump-
tion of absence of danger (Muller et al. 2014). Toads
were randomly placed individually into a sterile bucket
with 500 ml of tests solution (DTW or pesticides) equiv-
alent to 3 cm deep for 48 h, and under the same labora-
tory condition as described previously.

2.5 Biomarkers

Blood samples (approximately 0.5 ml) were collected
by a minimally cardiac puncture using a heparinized
syringe (i.e., Attademo et al. 2011) after 48 h of dermal
exposure. Although, this procedure is invasive, the use
of anesthesia was avoided because of interferences in
the interpretation of biomarker responses (Vernadakis
and Routledge 1973). Busk et al. (2000) also reported
that anesthesia might be more stressful to amphibians
and reptiles than cardiac puncture. Likewise, Tyler
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(1999) suggested that cardiac puncture is a reliable
method. Therefore, we considered the practical experi-
ence of our personnel with amphibians, the health of
animals after blood sampling, and the minimum blood
volume required for experimental purposes as the
criteria for selecting cardiac puncture as the most appro-
priate blood sampling technique instead of animal sac-
rifice (Gabor et al. 2013). Whole blood was used for
lipid peroxidation and comet assay in erythrocytes and
hematological indicators of stress, while the plasma was
separated from the collect whole blood by centrifugation
(at 10,000 rpm for 15 min) for enzymatic
determinations.

Toads were maintained in the laboratory of ecotoxi-
cology during a period of recovery, and after a general
revision of body condition, they were released to the
same sites where they had been captured. To do this, we
had the approval of the Animal Ethics Committee of the
Faculty of Biochemistry and Biological Sciences,
National University of Littoral, and followed the guide-
lines of ASIH and SSAR (2001).

2.5.1 B-Esterases Determination

Plasma BChE activity was determined colorimetrically
by the Ellman et al. (1961). The reaction medium in-
cluded 930 ul 25 mM Tris—HCI, 1 mM CaCl, (pH=
7.6), 50 ul 5,5'-dithiobis-2-nitrobenzoic acid (3 9
10~* M, final concentration), 10 ul butyrylthiocholine
jodide (2x107> M, final concentration) and 10 ul of
plasma. The variation in optical density was recorded
at 410 nm for 1 min at 25 °C using a Jenway 6405 UV—
VIS spectrophotometer. Kinetic was carried out in du-
plicate. Plasma BChE activity was expressed as pumol of
substrate hydrolyzed min~' ml™' of plasma using a
molar extinction coefficient of 13.6x107> M ™' cm ™.
We did not determine the plasma.
Acetylcholinesterase (AChE) activity because the
BChE is the enzyme that primarily contributes to total
plasma cholinesterase activity in many vertebrate spe-
cies (Sanchez-Hernandez and Moreno-Sanchez 2002).
Plasma CbE activity was measured by the Gomori
method (1953) as adapted by Bunyan et al. (1968). The
assay was carried out with 25 mmol L™ Tris—HCI,
1 mmol L™ CaCl, (pH=7.6), and 10 pL plasma at
25 °C. The reaction was initiated by adding 50 pL a-
naphthyl acetate (1.04 mg mL ™" in acetone) as substrate,
and stopped after 10 min by addition of 500 L of2.5 %
SDS and subsequently 500 uL of 0.1 % Fast Red ITR in
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2.5 % Triton X-100 in water (freshly prepared). Samples
were left in darkness for 30 min to develop, and the
absorbance of the complex was read at 530 nm.
Hydrolysis of «-NA was expressed as nmol of substrate
hydrolyzed min~' ml'of plasma using a molar extinc-
tion coefficient of 33.225x10° M ™" cm .

2.5.2 GST Activity

Plasma GST activity was determined as described by
Habig et al. (1974) and adapted by Habdous et al. (2002)
for serum GST activity in mammals. The reaction solu-
tion contained 100 mM Na-phosphate buffer (pH=6.5),
2 mM 1-chloro-2, 4 dinitrobenzene, 5 mM reduced
glutathione, and the sample as well as the kinetics of
reaction were monitored at 340 nm. GST was corrected
for no enzymatic activity by subtracting lanks (buffer
and GSH only) and the results were converted to spe-
cific activity in units of nmol of substrate hydrolyzed
min' ml™" of plasma using a molar extinction coeffi-
cient of 9.6x10° M' cm ™",

2.5.3 Lipid Peroxidation in Erythrocytes

Lipid peroxidation in erythrocytes was determined by
measuring the production of color generated during the
reaction of TBA with malondialdehyde (TBARS assay)
according to the method of Buege and Aust (1978) with
some modifications (Simoniello et al. 2010). An aliquot
of washed erythrocytes were hemolyzed by adding
demineralized water (Milli Q plus reagent grade) and
mixed thoroughly with four volumes of reaction solu-
tion (15 %w/v TCA, 0.375 %w/v TBA, 0.25 mol
"' HCI acid) and 4 % BHT to inhibit peroxidation
stimulated by Fe’" without affecting the formation of
the MDA-TBA chromogen. The mixture was then heat-
ed at 92 °C for 45 min. After cooling, the flocculent
precipitate was removed by centrifugation at 12000 g for
10 min at 4 °C. The sample absorbance at 535 nm was
determined, and the TBARS concentration was calcu-
lated using the extinction coefficient 1.56x
10°M ' cm™'. The MDA concentration in erythrocytes
was expressed as mmol mg ' protein.

2.5.4 Comet Assay Modified for Detection of Oxidized
Bases (FPG and Endo III)

The ACA (pH>13) was then performed according to
the method described by Singh et al. (1988), with the
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following modifications (Poletta et al. 2008): blood
samples were diluted 1:19 (v/v) with RPMI-1640 medi-
um and used immediately. Then, 4.5 puL of each diluted
blood sample (approximately 4.0x10° erythrocytes)
was added to 300 puL of 1 % low melting point agarose
(LMA) and three slides were prepared. To lyse the
cellular and nuclear membranes of the embedded cells,
the key-coded slides were immediately immersed in
freshly prepared ice-cold lysis solution (2.5 M NaCl,
100 mM Na,EDTA, 10 mM trizma base, 1 % Triton
X-100 and DMSO 10 %; pH 10) and left at 4 °C
overnight. After lysis slides were washed and excess
liquid dabbed off with tissue; 50 ul of enzyme solution
or buffer alone as control was placed on the gel and
covered with a cover slip. Slides were put into moist box
(prevents desiccation) and incubated at 37 °C for
30 min. At the end of the incubation period, coverslips
were removed and slides were placed in an electropho-
resis tank to continue with the comet assay (Poletta et al.
2012). The slides were then immersed in freshly pre-
pared alkaline electrophoresis solution (300 mM NaOH
and 1 mM Na,EDTA; pH>13), first for unwinding
(10 min) and then for electrophoresis (0.7-1 V cm ™",
300 mAmp, 10 min at 4 °C). All of the steps were
carried out under conditions of minimal illumination
and low temperature (on ice). Once electrophoresis
was completed, the slides were neutralized and
dehydrated with ethanol. Slides were stained with acri-
dine orange at the moment of analysis and one hundred
randomly selected comets from each animal were visu-
ally classified into five classes according to tail size and
intensity (from undamaged, class 0, to maximally dam-
aged, class 4), resulting in a single DNA damage score
(damage index, DI=nl1+2.n2+3.n3+4.n4), where nl,
n2, n3 and n4 are the number of cells in each class of
damage, respectively. The frequency of FPG or Endo I1I
sites were estimated by subtracting the values obtained
without enzymes from the values obtained with the

enzyme.

2.5.5 Hematological Indicators of Stress

Two blood smears for each toad were prepared on clean
slides, fixed, and stained by the May—Grunwald—
Giemsa method (Dacie and Lewis 1984). To determine
the counts of heterophil and lymphocyte, 100 cells per
film were examined by light microscopy. All blood
counts, including granulocytes (heterophil, basophil,
and eosinophil) and non-granulocytes (lymphocyte and

monocyte), were examined by the same investigator.
The results are presented as the percentage of each cell
occurring in each film. The heterophil/lymphocyte
(H/L) ratio was examined as a response estimator of
stress (Davis et al. 2008).

2.6 Data Analyses

All biomarkers data were expressed as the mean+SEM.
The influence of pesticide treatments on each variable
(B-esterases, GST enzyme, TBARS, ACA [FPG and
Endo III sites], and H/L ratio) were analyzed with
Kruskal-Wallis test and Dunn’s test for post hoc com-
parisons (Lajmanovich et al. 2013). These statistical
analyses were performed using BioEstat software 5.0
(Ayres et al. 2008). A value of p<0.05 was considered
significant.

3 Results

Mean (+SD) length and body mass of male toads were
90.15+2.43 mm and 70.92+0.93 g, respectively. No
signs of general behavioral disorders (e.g., hyperactivi-
ty, loss of coordination in both front and hind limbs,
erratic swimming, etc.) were observed in exposed toads
to CPF, 2,4 D, and GLY as a response to neurotoxicity.

3.1 B-Esterases Activities

The mean value of BChE activity in the non-pesticide
exposed toads was 6.14+0.48 pmol min' mg™' plasma
at 48 h. BChE activity varied among groups exposed to
different types of commercial pesticides, differing sig-
nificantly in toads exposed to CPF (percentage of inhi-
bition whit a 55.86 %) respect to BChE activity of the
control group (p<0.01) (Fig. 1).

The CbE activity (mean=SEM) in the control group
was 167.94+9.96 nmol min ' mg ' plasma at 48 h.
Only CPF formulation inhibited CbE enzyme activity
significantly (p<0.01) with respect to control in toads
exposed. The percentage of inhibition is 43.11 %

(Fig. 2).
3.2 Oxidative Stress
The mean value of GST activity in control toads was

82.21+4.52 nmol min ' mg ' plasma at 48 h. The
induction of GST enzymatic activity with respect to
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Fig. 1 Effects of commercial pesticide exposure (48 h) on the
butyrylcholinesterase (BChE) activity in R. arenarum toads. CO
control, CPF chlorpyrifos, 2,4-D 2,4-dichlorophenoxy acetic acid,
and GLY glyphosate. Data are expressed as mean+SEM, N=5.
Significantly different form control (** p<0.01 Kruskal-Wallis
test followed Dunn’s post-test)

the controls was significant (p<0.01) for 2,4-D formu-
lations across dermal exposure (Fig. 3).

The TBARS (mean+SEM) in the control group was
26.15+2.29 mmol/mg ' protein at 48 h. TBARS levels
were significantly increased compared with control
groups in CPF exposure (p<0.05) (Fig. 4).
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Fig. 2 Effects of commercial pesticide exposure (48 h) on the
carboxylesterase (CbE) activity in R. arenarum toads. CO control,
CPF chlorpyrifos, 2,4-D 2,4-dichlorophenoxy acetic acid, and
GLY glyphosate. Data are expressed as mean+=SEM, N=5. Signif-
icantly different form control (** p<0.01 Kruskal-Wallis test
followed Dunn’s post-test)
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Fig. 3 Effects of commercial pesticide exposure (48 h) on the
glutathione S-transferase (GST) activity in R. arenarum toads. CO
control, CPF chlorpyrifos, 2,4-D 2 ,4-dichlorophenoxy acetic acid,
and GLY glyphosate. Data are expressed as mean+SEM, N=5.
Significantly different form control (** p<0.01 Kruskal-Wallis
test followed Dunn’s post-test)

3.3 DNA Damage

No differences were found in ACA (ID and FPG sites)
between toads exposed to the different pesticides and
the control group (p>0.05), although results demon-
strated a significantly higher DNA damage in Endo III
sites in CPF and 2,4-D exposed (p<0.01 by Kruskal—
Wallis followed by Dunn’s tests) (Fig. 5).

3.4 Blood Stress Index

Mean H/L ratio in control groups was 0.34+0.09. Toads
exposed at 2,4-D and GLY formulations decreased the
H/L ratio at 48 h (»<0.05) (Fig. 6).

4 Discussion

Amphibians may be particularly susceptible to anthro-
pogenic chemicals for a multiplicity of reasons.
Fundamentally, their complex life cycles (aquatic and
terrestrial life stages) expose them to potential chemical
contamination in both habitats. Certainly, offset evapo-
rative skin losses, terrestrial anurans absorb water, main-
ly through hyper-vascularized skin in the ventral pelvic
region, explain the vulnerability to pesticides uptakes
from contaminated sediments, water, and soil (Sparling
et al. 2001). Indeed, anurans moving across agricultural
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Fig. 4 Effects of commercial pesticide exposure (48 h) on the
thiobarbituric acid reactive substance (TBARS) activity in
R. arenarum toads. CO control, CPF chlorpyrifos, 2,4-D 2.4-
dichlorophenoxy acetic acid, and GLY glyphosate. Data are
expressed as mean+SEM, N=5. Significantly different form con-
trol (* p<0.05 Kruskal-Wallis test followed Dunn’s post-test)

fields may be at risk of pesticide skin and aerial expo-
sure (Briihl et al. 2011). Besides, agricultural chemicals
present on the vegetation or in soils can leach or diffuse
by precipitation into a potential aquatic breeding system
and subsequently affect amphibians (Storrs Méndez
et al. 2009).

The use of some biomarkers is clearly needed in the
evaluation of pesticide assessments. Esterase inhibition
is the classical approach to monitoring environments
probably polluted by OP pesticides (Robles-Mendoza
etal. 2011). In our study, BChE and CbE activities were

significantly inhibited (nearest of 50 %) in the plasma of
R. arenarum toads after 48 h of dermal exposure to CPF.
In addition, previous experiments showed similar results
in B-esterases in another native species adults toads
(Rhinella schneideri, Attademo et al. 2007), fish
(Synbranchus marmoratus; Junges et al. 2010), and
lizards (Gallotia galloti, Sanchez et al. 1997) exposed
to OP. BChE and CbEs are important in reducing OP
toxicity (Wheelock et al. 2004; Laguerre et al. 2009) and
these isozymes may contribute to pesticide tolerance
due to their capability to bind to OPs. In the
R. arenarum individuals used in this study, BChE and
CbEs may be decreasing the effective concentration of
the pesticide (Wheelock et al. 2008) before they reach
the blood-brain barrier in order to protect AChE from
inhibition (Walker 1998).

After a 48-h exposure, the activity of the antioxidant
enzyme (GST) showed an increase in toads exposed to
all pesticides in relation to the control group; however,
this effect was only significant for toads exposed to 2,4-
D. Oxidative stress may occur if the equilibrium be-
tween oxidants and antioxidants is interrupted either
by the reduction of antioxidant defenses or by the ex-
cessive increase of reactive oxygen species (ROS)
(Valavanidis et al. 2006). Certainly, the toxic action of
2,4-D has been evolving from decades and now it is
considered that 2,4-D also induces free radical reactions
that lead to numerous unbeneficial changes in tissues.
The increases of free radical levels can cause DNA
damage and thus cell death (in apoptotic process)
(Bukowska 2006). Increased activity of GST can reveal
disorders that could be indicative of redox alterations
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Fig. 5 Effects of commercial pesticide exposure (48 h) on the
DNA damage quantified by comet assays in R. arenarum toads.
The damage index (DI) and levels of formamidepyrimidine-DNA-
glycosilase (FPG) and endonuclease III (Endo III) sites were

(10 mglL)

(20 mglL) (20 mglL) (10 mglL) (20 mgiL) (20 mglL)

calculated. CO control, CPF chlorpyrifos, 2,4-D 2,4-
dichlorophenoxy acetic acid, and GLY glyphosate. Data are
expressed as mean+SEM, N=5. Significantly different form con-
trol (** p<0.01 Kruskal-Wallis test followed Dunn’s post-test)
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Fig. 6 Effects of commercial pesticide exposure (48 h) on mean
heterophil/lymphocyte (H/L) ratio in peripheral blood from
R. arenarum toads. CO control, CPF chlorpyrifos, 2,4-D 2.4-
dichlorophenoxy acetic acid, and GLY glyphosate. Data are
expressed as mean+SEM, N=5. Significantly different form con-
trol (* p<0.05 Kruskal-Wallis test followed Dunn’s post-test)

related to a possible oxidative stress situation (Orug
et al. 2004) as demonstrated in fish (Oru¢ and Uner
2002). In addition, the increased TBARS levels found
in toad exposed to CPF may have resulted from an
increase of free radicals as a consequence of stress
condition. These findings are consistent with results of
several other investigations in human cell lines where
the administration of CPF caused oxidative damage and
it was evidenced by an increase in TBARS (e.g., Qiao
et al. 2005; Gultekin et al. 2006). Augmented levels of
oxidative stress would be expected because of the in-
creased intake and utilization of oxygen. Indeed, the
relation between the increase in oxidative stress of wild-
life after pesticide sprayed by concentration of TBARS
in plasma and red blood cells is demonstrated for rep-
tiles by Poletta et al. (2012).

In this study, the genotoxicity of three chemicals,
CPF, 2,4-D, and GLY, was tested individually in
dermal sub-lethal exposure. Following exposure to
DNA, glycosylases (FPG and Endo III) were used
to convert oxidized purines and pyrimidines, respec-
tively, into DNA single-strand breaks. Indeed, the
insecticide CPF and the herbicide 2,4-D demonstrated
a significantly higher DNA damage (incubated with
Endo IIT prior to analysis) in specimens treated, but
no differences in FPG sites were observed. Muller
et al. (2014) described a similar result in mice

@ Springer

exposed to CPF. According to Collins et al. (1996)
the use of these two enzymes has a substance effect
on the measurement of ID multiplying the rate of
damage observed four times. It has to be pointed
out that malondialdehyde, a naturally occurring prod-
uct of lipid peroxidation, is genotoxic and is capable
of inducing DNA damage (Marnett 1999). Induction
of oxidative DNA damage in erythrocytes of toad in
CPF exposure, as observed in our study, further com-
plements the enhanced lipid peroxidation, but it did
not show a significant enhancement in 2,4-D. This
could be due to some compensatory consequences, as
GST increase. In contrast, notwithstanding GLY pre-
sents a substantial genotoxic risk, it did not cause a
statistically significant increase in the DNA damage.
In fact, either dermal penetration studies with
Roundup® showed very low absorption (Williams
et al. 2000), or our exposure was not enough in time
to prove this effect. However, Roundup Ultra-Max®
contains ethoxylate adjuvants responsible for many
observed adverse effects in the exposed toads (e.g.,
cell toxicity) (Mesnage et al. 2013).

On the other hand, H/L ratios provide one mea-
sure of immune function (Norris and Evans 2000).
Furthermore, granulocytic leukocytes of the am-
phibians are relatively poorly studied compared to
those of other vertebrates (Shutler and Marcogliese
2011). However, we found significant relations
between leukocytes and the herbicide exposure
(2,4-D and GLY), where the H/L proportions were
lower than control may reflect a general stress
response (Davis et al. 2008). The two herbicides
affected hematological and immunological parame-
ters in aquatic vertebrates exposed to sub-lethal
concentrations of both herbicides (e.g., Safahich
et al. 2012). Severe stress may decrease hetero-
phils (heteropenia) and increase lymphocytes in the
periphery (lymphocytosis), resulting in a low H/L
ratio (Miller et al. 2011). Certainly, Attademo
et al. (2011) found in the frog Leptodactylus
chaquensis a differential leukocyte count and H/L
ratio in two agroecosystem fields in contrast with
a pristine forest.

Furthermore, in the risk evaluation of a pesti-
cide, the Log Kqow is an important parameter when
predicting the uptake across the dermis for am-
phibians (Quaranta et al. 2009). In this context,
chlorpyrifos exceeds the Stockholm Convention
criteria for bioaccumulation with most reported
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values of log Kow meeting or exceeding 5.0
(Gebremariam et al. 2012). CPF undergoes long-
range derive and has been measured in the Arctic,
in ice, snow, fog, air, seawater, lake sediment, fish
and vegetation. Accordingly, the determination of
the Bioconcentration Factor (BCF) values is need-
ed to provide other lines of body-burden toad by
CPF. In contrast, Log Kow of the two herbicides
studied has low mobility and only a slight tenden-
cy to leach in soil, but they are highly hydrophilic.
Thus, taking into account the dermal characteristic
of amphibians, pure herbicides and surfactants also
represent risks for dermal absorption, as demon-
strated by Willens et al. (2006). For example, inert
ingredients and solvents can also alter the dermal
absorption of herbicides, with effects being depen-
dent on solvent specificity and concentration
(Baynes and Riviere 1998).

5 Conclusions

In general, exposure and toxicity studies for adult
amphibians are scarce, and the reported data indicate
the need for further research, especially in light of
the global amphibian decline and pesticide bioaccu-
mulation. We studied a “realistic scenario” exposi-
tion with commercial formulations of three common
pesticides and direct dermal toads exposure. Effects
were not restricted to a specific class of pesticides
and seem to be influenced not only by the active
ingredient but also the formulation adjuvants. A
decreasing ecotoxicity sequence in terms of dermal
uptake at 48 h is the following CPF>24-D>GLY,
producing neurotoxicity, oxidative stress, DNA dam-
age, and immunological suppress in adults of the
common toad R. arenarum. In fact, the blood pa-
rameters selected are good biomarkers to characterize
the risk exposures of native amphibians exposed to
OP insecticides and herbicides.
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