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Quantum electrodynamics effects on NMR magnetic shielding constants of He-like
and Be-like atomic systems
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NMR shielding constants for He- and Be-like atomic systems of Ne, Ar, Kr, Xe, and Rn have been calculated
at the random-phase-approximation level of approach, including an estimation of QED corrections within the
polarization propagator formalism. We show that QED effects enhance electron correlation when Z becomes
heavier, which happens with relativistic effects, and also that QED effects become smaller when going from more
to less ionized systems. We studied two- and four-electron systems. Then such studies could easily be generalized
to other many-electron systems. Results of calculations with our relatively simple model, which includes QED
and electron correlation effects on the same theoretical grounds, have a summarized error in the range from
10% (for Ne) up to 24% (for Rn), so that our accuracy is a little lower than for calculations on H-like systems.
Our findings should stimulate the development and/or the application of more rigorous formalisms to get more
accurate QED corrections to response properties in many-electron systems.
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I. INTRODUCTION

How can we include many-electron QED contributions
to response properties like NMR spectroscopic parameters,
provided that exact analytic solutions do not exist? During
the last couple of years few attempts were made to estimate
the influence of QED effects on NMR nuclear magnetic
shielding σ of H-like and He-like systems [1,2]. Theoretical
treatments used in both references are fully relativistic, with
that of Ref. [1] being based on the nonrelativistic QED
expansion (only the zeroth-order approximation is obtained
nonrelativistically). The difficulties are such that there are no
actual calculations in the literature that give an estimate of
such effects on σ for many-electron systems.

The first theoretical models developed to introduce QED
effects [the self-energy (SE) part] on σ were published in
2002 [3,4]. In those models the main difficulties were related
to solutions of formal expressions and implementations, like
the integrals for the fourth level of the scattering matrix.
More recently, Rudziński et al. published relativistic and
QED corrections to σ ( 3He) with an estimated precision of
0.1 part-per-billion (ppb) [1]. Its relativistic corrections were
introduced through the Breit-Pauli Hamiltonian and were
found to be 0.1% of the nonrelativistic one, with the QED
corrections being 1% of the relativistic contributions. These
findings are in line with previous suggestions [5]. Afterward,
Yerokhin et al. [2] presented the results of ab initio calculations
for several H-like ions of 10 � Z � 92, considering various
QED contributions to σ , as well as Bohr-Weisskopf (BW) and
quadrupole corrections. In Refs. [1,2] the first reliable results
were given, but only for one- and two-electron atomic systems.

Few other general formalisms were developed to calculate
QED effects on atomic and molecular properties. Most of them
are still not implemented in computational codes [4,6–8] or
were implemented to calculate atomic properties like hyperfine
and Zeeman splitting [9–12]. One of the main difficulties that
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they share is related to the way to handle the inclusion of the
electron correlation.

There are several leading electronic effects, such as the
electron correlation and relativistic effects, that should be
included in order to get an accurate theoretical reproduction of
the nuclear magnetic shielding. For heavy elements it is known
that relativistic effects may be as large as the nonrelativistic
(NR) ones [13]. When one looks for more accurate results,
the effect of the nuclear size and QED corrections should be
introduced. The BW corrections, meaning the effect induced
by the spatial distribution of the nuclear magnetic moments,
are of the same order of magnitude as the QED effects for
H-like ions (for Z > 30) [2].

As shown recently, electron correlation and relativistic
effects are dependent on each other for NMR spectroscopic
parameters [13]. Furthermore the nuclear charge distribution
effects may be of the order of 9% for heavy-atom-containing
molecules [14]. Then the next important issue to address for
the calculation of σ in many-electron systems is related to the
likely mutual dependence of electron correlation and QED.
How important are electron correlation effects when QED
effects are properly considered? Or, vice versa, how large are
the electron correlation effects in a QED framework? If they
were independent of one another one could more easily figure
out how to include both effects in a simpler calculation.

Quite recently, it was shown that the polarization propagator
formalism can be derived from the path-integral formal-
ism [8]. This fact gives new insights on how to include
both effects together, through the consideration of the effects
of external perturbations on a many-body quantum system
that is described within a QED-based theoretical framework.
Within the polarization propagator formalism the effect of an
(external) perturbation can be described by using knowledge
of the unperturbed, although correlated, many-body quantum
system.

We shall show here how to get reliable QED corrections
when including electron correlation up to first order (random
phase approximation). There is no need to go one step further in
the introduction of electron correlation, given that calculations
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at the RPA level of approach include most of these effects for
the nuclear shielding in atomic systems.

II. THEORETICAL MODEL

We applied an effective model from which QED effects
can be introduced in NMR shielding, following the ansatz
suggested in Sec. 5 of Ref. [8]. We consider the ground state
of an unperturbed atomic system described by means of a
self-consistent-field (SCF) or multiconfiguration Dirac-Fock
(MCDF) scheme which includes the leading QED effects. In
addition to that we introduce the electron-correlation effects
on response properties via perturbation theory.

A. The NMR magnetic shielding

Within the polarization propagator formalism, the σ con-
stant is written in terms of the so-called perturbators b and the
principal propagator P as [13]

σ = bNP(E = 0)bB + c.c., (1)

where N corresponds to its nuclear magnetic moment index
and B is the external magnetic field. The principal propagator
matrix at the RPA level of approach is [15,16]

P =
(

A B∗
B A∗

)−1

. (2)

Within the second quantization,

Aia,jb = −〈0|[a†
i aa,[a

†
baj ,H0]]|0〉

= δabδij (εa − εi) + 〈aj ||ib〉
= Aia,jb(0) + Aia,jb(1) (3)

and

Bia,jb = −〈0|[a†
i aa,[a

†
j ab,H0]]|0〉 = 〈ji||ab〉. (4)

Subindices a,b, . . . refer to unoccupied Dirac-Hartree-Fock
(DHF) orbitals, and i,j, . . . stand for occupied DHF orbitals.
The pure-zeroth-order approach (PZOA) is obtained when
matrix elements of matrix B and all two-electron matrix
elements of A are neglected [13]. In other words, only the
matrix elements of A(0) are considered.

For NMR shielding the perturbators are written as

bN
ia = 〈a|α × rN

r3
N

|i〉, bB
jb = 〈j |α × rG|b〉, (5)

where rG = r − RG, with RG being the gauge origin, and
rN = r − RN , with RN being the nuclear origin. They are
related by excitations from occupied to unoccupied orbitals.
In the relativistic regime the set of unoccupied orbitals is split
in two subsets, the positive and negative branches of energies.
Excitations to negative- and positive-energy solutions are
related by the diamagneticlike (σd ) and paramagneticlike (σp)
contributions to σ [17].

Actual calculations are not performed using Eq. (1) but
an algorithm that solves the product between the inverted
principal propagator and one of the perturbators,

σ = bN
ia(M−1)ia,jbbB

jb + c.c.

= bN
iaXRPA (PZOA)

ia . (6)

The matrix X contains all the information related to the
principal propagator and one of the two perturbators.

B. Polarization propagators and the path-integral formalism

As mentioned above, polarization propagators or double-
time Green’s functions can be derived from the more general
path-integral formalism [8]. This means that if one is able
to define an adequate generating functional in an atomic or
molecular orbital representation, one can get the polarization
propagators from it. If the operators V N and V B are the ones
that belongs to the perturbative Hamiltonian defining the NMR
magnetic shielding [operators given in Eq. (5)], the adequate
generating functional can be expressed as

Z[V N ,V B ] =
∫

D|h̃)e|h̃)(h|EÎ−Ĥ0|h̃)(h|+(V N |h̃)(h|+(V B |h̃)(h|

= Z[V N=0,V B=0]e
iW [V N ,V B ], (7)

where

W[V N ,V B ] = (V N |h̃)(h|EÎ − Ĥ0|h̃)−1(h|V B) (8)

is the molecular orbital (MO) or atomic orbital (AO) represen-
tative of the Green’s function corresponding to the quantum
correlation between two perturbative interactions (V N and V B)
applied on a molecular or atomic system. This functional W is
the generating functional of the Green’s function that contains
all connected Feynmann-like diagrams.

Equation (6) is easily obtained from Eq. (8). There are three
terms. The first and the third ones are related to perturbators,
and the second is the principal propagator. The h symbols
stand for excitation operator manifolds [13].

Terms like (V N |h̃) are binary products defined as

(V N |h̃) = 〈0|[V N†,h̃]|0〉. (9)

The ket |0〉 is the ground state of the unperturbed system.

C. Electron correlation and QED effects

As mentioned above, polarization propagators do permit
us to consider the response of atomic and molecular systems
to internal or external perturbations by applying perturbation
theory at different levels of approaches. Then we will consider
the unperturbed atomic system as described within a QED
framework and include the electron correlation due to the
interaction among orbital excitations as a perturbation. This
is like considering the influence of potential u(φ) in Eq. (35)
of Ref. [8].

In other words, H0 is the unperturbed Hamiltonian of the n-
electron atomic system that is described using the SCF proce-
dure, and H1 is the perturbative one-body Hamiltonian arising
from the interaction among the nuclear spin and the external
magnetic field, with the electronic framework of the atom.

Our proposal is to apply an expression equivalent to that of
Eq. (6). We make then an ansatz that is in line with the one
given in Ref. [8].

(i) Only leading QED corrections to both perturbators
and principal propagators are enough to estimate an order of
magnitude for QED corrections to shielding.

(ii) QED corrections on perturbators bB will be vanishingly
small.
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(iii) Matrix X will contain QED corrections at either level
of approximation, RPA and PZOA.

Then we rewrite Eq. (6) to include QED effects within
polarization propagator formalism at zeroth- and first-order
levels of the approach:

σ QED =
∑
i,a

XQED
ia

[
bN

iaCia

(
DC + QED

DC

)]
. (10)

In this equation the matrix elements bN
ia are scaled by coeffi-

cients Cia . The procedure by which these matrix elements are
estimated is one of the key points of this work.

D. The coefficients C( DC+QED
DC )

In Eq. (10) the coefficients C scale the matrix elements
of perturbators to include QED effects on them. As shown
in Eq. (5), when such matrix elements are built from atomic
orbitals like |n1κ1m1〉 and |n2κ2m2〉, they can be written as

〈n1κ1m1| (α × r)

r3
|n2κ2m2〉 = A(κ1m1κ2m2)R(−2)(n1κ1n2κ2)

(11)

and

〈n1κ1m1|(α × r)|n2κ2m2〉 = A(κ1m1κ2m2)R(1)(n1κ1n2κ2),

(12)

where A(κ1m1κ2m2) are some angular coefficients and R(n)

are the radial integrals, defined as

R(n)(n1κ1n2κ2) =
∫ ∞

0
rn

(
Pn1κ1Qn2κ2 + Qn1κ1Pn2κ2

)
dr,

(13)

with Pnκ and Qnκ being the radial parts of the one-electron
wave function (Dirac bispinor):

ψ = 1

r

(
Pn,κ (r)�

mj

κ,j (θ,φ)

iQn,κ (r)�
mj

−κ,j (θ,φ)

)
. (14)

In order to quantify the QED influence on σ we start by es-
timating the vacuum polarization (VP) effects on perturbators
in Eq. (5). We need to define first the coefficients that will be
used as scaling factors in Eq. (10). So

C1

(
DCV

DC

)
= [〈n1κ1m1|(α × r)q |n2κ2m2〉]DCV

[〈n1κ1m1|(α × r)q |n2κ2m2〉]DC

= [R(1)(n1κ1n2κ2)]DCV

[R(1)(n1κ1n2κ2)]DC

(15)

and

C2

(
DCV

DC

)
=

(〈n1κ1m1| (α×r)q
r3 |n2κ2m2〉

)
DCV(〈n1κ1m1| (α×r)q

r3 |n2κ2m2〉
)
DC

= [R(−2)(n1κ1n2κ2)]DCV

[R(−2)(n1κ1n2κ2)]DC

, (16)

where indexes DC and DCV indicate wave functions calcu-
lated in a self-consistent manner by using the Dirac-Coulomb
(-Breit) Hamiltonian and the Dirac-Coulomb(-Breit) Hamilto-
nian with the addition of the Uehling potential, respectively.
We decided to introduce only one factor in this work because
C(DCV

DC
) � C(DCBV

DCB
).

One can consider only one factor to introduce the VP effects
on both perturbators:

C

(
DCV

DC

)
= C1

(
DCV

DC

)
C2

(
DCV

DC

)
, (17)

and then

C

(
V P

DC

)
= C

(
DCV

DC

)
− 1. (18)

It is worth mentioning that C( V P
DC

) factors in each group of
excitations, ns–n′s, np1/2–n′p1/2, np3/2–n′p3/2, etc., depend
weakly on n′, so it is justified to use only one C( V P

DC
) factor

within each group of orbitals.
Next, in order to estimate the influence of both QED

corrections (VP + SE) we use the following factor:

C

(
DC + QED

DC

)
ia

=
{

(1 + A)
{
1 + [

C
(

V P
DC

) − B
]

DSE(Zα)+DV P (Zα)
DV P,po(Zα)

1
1+B

}
if a is an electronic state,

1 if a is a positronic state,
(19)

where A = (�εV P
i − �εV P

a + �εSE
i − �εSE

a )/(εDC
i − εDC

a ),
B = (�εV P

i − �εV P
a )/(εDC

i − εDC
a ), and DSE(Zα),

DV P (Zα), and DV P,po(Zα) are coefficients taken from
Yerokhin et al. [2,18].

Coefficients DSE, DV P , and DV P,po have been calculated
for H-like systems in such a way that the use of the C(DC+QED

DC
)

factor is justified only for ns–n′s excitations.
How do we obtain the C(DC+QED

DC
) coefficients in Eq. (10)?

Let us use the following auxiliary symbols:

Mia = 〈i|(α × r)|a〉
〈
a

∣∣∣∣ (α × r)

r3

∣∣∣∣i
〉
.

�ε = εDC
i –εDC

a , �εV P = �εV P
i –�εV P

a , �εSE = �εSE
i −

�εSE
a for simplification.

Then using Eq. (6) at the PZOA level of approach,

σDC+V P

=
∑
i,a

MDCV
ia

�ε + �εV P
=

∑
i,a

MDC
ia

[
1 + C

(
V P
DC

)]
�ε + �εV P

= σDC + �σV P,po =
(∑

i,a

MDC
ia

�ε

)
+ �σV P,po, (20)

where �σV P,po is equivalent to the VP perturbed-orbital
contribution taken from Ref. [18]. After short derivations,

�σV P,po =
∑
i,a

MDC
ia

[
C

(
V P
DC

) − �εV P

�ε

]
�ε + �εV P

. (21)
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Next, we can write

σDC+QED =
∑
i,a

MDC
ia C

(
DC+QED

DC

)
�ε + �εV P + �εSE

= σDC + �σ QED

= σDC + �σV P,po �σ QED

�σV P,po

=
(∑

i,a

MDC
ia

�ε

)
+ �σV P,po DSE(Zα) + DV P (Zα)

DV P,po(Zα)
,

(22)

where the expression

�σ QED = �σSE + �σV P

= α2(Zα)3DSE(Zα) + α2(Zα)3DV P (Zα) (23)

shows the QED influence on both electronic orbital properties
and hyperfine interaction and the expression

�σV P,po = α2(Zα)3DV P,po(Zα) (24)

was introduced from Ref. [18]. Finally, linking Eqs. (21)
and (22), we obtain the C(DC+QED

DC
) coefficient in the form

shown in Eq. (19).

E. QED corrections within the MCDF approach

The calculation of C(DCV
DC

) coefficients, the radial integrals
defined in Eq. (13), and QED contributions to the orbital
energies have been performed by means of the MCDFGME

code [9,19,20]. This fully relativistic code is based on the
well-established multiconfigurational Dirac-Fock approach.

For VP energy correction the Uehling potential [energy
contribution term of order α(Zα)4mec

2 [21]] has been included
in a self-consistent manner, and the higher-order terms of less
importance [Kallen and Sabry term [22] of order α2(Zα)4mec

2

and Blomqvist term [23] of order α(Zα)6mec
2] have been

included in a perturbational way.
The Uehling potential in the case of finite nuclear size and

spherical symmetric nuclear charge distribution ρ(�r) can be
expressed as [24]

U (�r) = −2

3

αλe

r

∫ ∞

0
d3r ′ r ′ρ(r ′)

×
[
K0

(
2

λe

|r − r ′|
)

− K0

(
2

λe

|r + r ′|
)]

, (25)

where λe is the Compton wavelength of the electron and the
function K0(x) is defined as

K0(x) =
∫ ∞

1
dt e−xt

(
1

t3
+ 1

2t5

)√
t2 − 1. (26)

To estimate the SE contribution we used the Welton
picture [25,26]. In this approach the self-energy correction
for s-type Dirac-Fock orbitals is scaled from exact hydrogenic
results by the following relation:

(�Enκ )DF = 〈nκ|∇2Vnucl(r)|nκ〉DF

〈nκ|∇2Vnucl(r)|nκ〉Hyd
(�Enκ )Hyd, (27)

where Vnucl(r) is a nuclear potential. For one-electron systems
the SE correction to the orbital energy has been calculated

TABLE I. Electron correlation corrections to relativistic σp (σ t )
for neutral systems.a

Atom RPA PZOA Difference

Ne 13.26 (444.86) 10.03 (441.68) 3.23 (3.18)
Ar 66.71 (956.82) 62.80 (953.09) 3.92 (3.74)
Kr 557.89 (3229.48) 537.58 (3210.11) 20.31 (9.37)
Xe 2023.13 (6554.02) 1963.21 (6496.07) 59.92 (57.94)
Rn 10937.48 (19230.16) 10548.88 (18846.17) 388.60 (384.00)

aBasis sets used: cc-pVTZ for Ne and Kr and Dyall.cV3Z for Xe and
Rn.

exactly by Mohr [27–29] and expressed as

�Enκ = α

π

(Zα)4

n3
Fnκ (Zα) mec

2, (28)

where Fnκ (Zα) is a slowly varying function of Zα.
It is worth emphasizing here that the contributions �εSE

were evaluated approximately based on exact hydrogenic
results and some more or less sophisticated scaling models
(see, e.g., Refs. [5,30]).

III. RESULTS AND DISCUSSION

The calculation of σ at the RPA level, both with QED and
without QED corrections, has been performed by means of
the DIRAC code [31], employing an isotropic Gaussian model
for the nuclei. The electron correlation at a second-order level
of approach (SOPPA) was obtained by applying the DALTON

code [32]. For Ne, Ar, and Kr the NR correlation-consistent
polarized valence triple zeta (cc-pVTZ) basis set was used
[33–35], and the relativistic Dyall correlated valence triple
zeta (Dyall.cV3Z) basis was used for Xe and Rn [36]. The
εQED correction to the energy was included only for excitations
from s-type orbitals.

As observed in Table I the electron correlation effects at
the RPA level of approach for relativistic calculations of σ in
neutral systems are 0.30% for Kr, 0.90% for Xe, and 2.04%
for Rn.

In addition to that, the NR electron correlation effects added
from RPA to the SOPPA level of approach are smaller than
0.13% and 0.07% for Xe and Rn, respectively (see Table II).
Then one can assume that most of the electron correlation is
included at the RPA level. Furthermore QED corrections to
σp at the RPA level for He-like systems are given in Table III,
with such corrections to σd being vanishingly small, so the
QED corrections to σd are not included here.

In Fig. 1 we show the percentage contributions to the
relativistic value of σp of a He-like Rn atom with no QED
corrections. The excitation 1s → 2s (1s → 3s) contributes
∼=25.4% (∼=5.6%). The contributions of excitations to the

TABLE II. NR correlated values of σp (σ t ) for neutral systems.

Atom RPA SOPPA Difference

Xe Dyall cV3z 0.0 (5642.38) −7.11 (5641.88) −7.11 (−7.61)
Rn Dyall cV3z 0.0 (10728.12) −7.68 (10720.24) −7.68 (−7.88)
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TABLE III. QED corrections at the RPA level to σp for He-like
systems. cV4Z stands for correlated valence quadruple zeta.

System and basis DC+QED DC Difference

Ne Dyall cV4Z 10.8172 10.8180 −0.0008
Ar Dyall cV4Z 58.6025 58.6186 −0.0161
Kr Dyall cV4Z 468.5153 468.8796 −0.3643
Xe Dyall cV4Z 1601.4545 1603.6116 −2.1571
Rn Dyall cV3Z 8114.4900 8139.6360 −25.1460

continuous states have numbers of 65 and larger. In Fig. 2
the equivalent percentage contributions of a Be-like Rn atom
are given. In this case the 1s → 3s (2s → 3s) excitation
contributes ∼=4.7% (∼=8.5%).

The comparison of the patterns of contributions to σp in
He-like and Be-like systems due to excitations starting from 1s

orbitals or 2s orbitals shows few similarities and differences.
In the case of He-like systems the contributions of the first
excitation, meaning 1s → 2s, are the largest compared with
the whole pattern of contributions that ends in the continuum.
That is not the case for Be-like systems. Still for excitations
starting in the 2s orbital in Be-like systems the pattern is
similar to that of excitations starting in the 1s orbitals in He-
like systems, which may indicate that this could happen for
excitations starting on the highest occupied atomic orbital.

Excitations starting on the 1s orbital in Be-like systems
show the opposite behavior, meaning the first four excitations
each contribute much less than any of the contributions
of excitations to the continuum states. Furthermore, the
percentage contributions of all the excitations to the continuum
of ionized Rn are 64.13% for its He-like configuration and
77.56% for its Be-like configuration.

QED corrections to X-like (X = He, Be) atomic systems
are shown in Fig. 3. QED corrections on top of correlated
calculations are larger than the uncorrelated ones. In the case
of Be-like Rn they get close to 0.16% at the RPA level and
0.07% at the PZOA level.

Do QED effects enhance or diminish the electron corre-
lation effects? For Be-like systems the QED corrections at
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FIG. 1. Percentage contributions to σp(He-like Rn) due to exci-
tations starting in 1s orbitals.
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FIG. 2. Pattern of percentage contributions to σp(Be-like Rn) due
to excitations starting in 1s and 2s orbitals.

the RPA level are larger than the equivalent PZOA values. In
Fig. 4 we show the percentage values of the calculation: [(RPA
− PZOA) with QED − (RPA − PZOA) without QED]/[(RPA
− PZOA) without QED]. This shows that QED effects enhance
electron correlation when Z becomes heavier, although such
an enhancement is larger for He- than for Be-like systems.

In order to estimate the errors of our numbers, a few points
should be considered, according to Eq. (19).

First, the error of orbital energy values can be omitted
because the precision of elemental constants used and the
precision of numerical calculation are a couple of orders of
magnitude larger than the precision of the numbers we present
here. Then, the error originates from terms utilizing the C( V P

DC
)

factor and from terms utilizing the DSE and DV P factors.
The uncertainty of the results from Yerokhin et al. [2,18] is
the major source of error, and our values cannot have errors
smaller than that. From those works the error of DSE is in
the range of about 0.02%–20% (see Table I in Ref. [18]),
and the error of the QED contribution to σ is about 8%–23%
(see Table III in Ref. [18]). In this work there are no errors
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FIG. 3. QED corrections to σ t of He-like and Be-like atoms at
RPA and PZOA levels of approach.

032504-5



GIMENEZ, KOZIOŁ, AND AUCAR PHYSICAL REVIEW A 93, 032504 (2016)

-5

0

5

10

15

20

25

30

35

40

%
 in

fl
ue

nc
e 

of
co

rr
el

at
io

n
in

Q
E

D
ef

fe
ct

s

10 20 30 40 50 60 70 80 90

Atomic number Z

He-like
Be-like

FIG. 4. Percentage enhancement of electron correlation due to
the introduction of QED effects.

for DV P presented, but errors originating from the estimation
of uncalculated vacuum-polarization diagrams is included in
the total error of the QED contribution to σ . For the sake of
estimation of errors of our numbers, we used percentage error
values from Table III in Ref. [18] and interpolated (for Ne
and Xe) or extrapolated (for Rn) them by using a quadratic
polynomial. Another source of calculational errors, linked to
the C( V P

DC
) factor, originated from the approximations used

in our study. First, the difference between the C(DCV
DC

) and
C(DCBV

DCB
) factors for a given ns − n′s pair is in the range of

0.3%–0.7% for the studied cases, which indicates the error of
the C(DCV

DC
) = C(DCBV

DCB
) approximation.

Second, the difference between the C( V P
DC

) factors for
ns − n′s and ns − n′′s pairs is up to 5% (it is an upper-limit
estimation based on MCDFGME calculations with good numer-
ical convergence for excited states achieved); that indicates
the error of using only one C( V P

DC
) factor within groups of

{ns − n′s,ns − n′′s, . . .} orbitals.
Finally, our results may have a summarized error of 10.6%,

12.6%, 16.8%, 20.1%, and 24.0% for Ne, Ar, Kr, Xe, and Rn,
respectively, which mostly originated from the errors in the
calculations of Yerokhin et al. [2,18].

IV. CONCLUSION

The analysis of QED effects together with electron correla-
tion on the response properties in many-electron atoms is still
an almost unexplored area of research.

We proposed here an effective model, from which QED
effects on NMR magnetic shielding of many-electron atomic
systems can be estimated. This model is based on the ansatz
suggested in Ref. [8], where the polarization propagator
formalism was successfully derived from the path-integral
formalism. We included the leading QED effects on both per-
turbators and the principal propagator, taking care of the fact
that, within the polarization propagator formalism, one must
consider the effect of external perturbations on unperturbed
systems. QED effects were introduced in the perturbators by
well-defined correcting factors. The uncorrected perturbators
were calculated from the output of a multiconfiguration Dirac-
Fock scheme. In addition, the electron correlation effects were
added at the RPA level of approach, which is good enough for
atomic systems. Such electron correlations were calculated
applying the same MCDF scheme.

Our results are based on state-of-the-art calculations of
QED effects on H-like systems, which were accurately
estimated from those of Refs. [2,18]. As a check of the
accuracy of our numbers one should consider the closeness
among our results and those published in Refs. [2,18].

What advance in both the estimate of the order of magnitude
and dependence on QED and the electron correlation effects of
the atomic NMR shielding did we introduce? Our results show
that (a) QED corrections are larger when electron correlation
is considered, (b) QED corrections for Be-like systems are
smaller (absolute values) than for He-like systems, (c) QED
effects enhance electron correlation when Z becomes heavier,
which happens with relativistic effects, and (d) QED effects
become smaller when going from more to less ionized systems.
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