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We formulate a general theory to study the time-dependent charge and energy transport of an adiabatically
driven quantum dot in contact to normal and superconducting reservoirs at 7 = 0. This setup is a generalization
of a quantum RC circuit, with capacitive components due to Andreev processes and induced pairing fluctuations,
in addition to the convencional normal charge fluctuations. The dynamics for the dissipation of energy is ruled
by a Joule law of four channels in parallel with the universal Biittiker resistance Ry = e?/2h per channel. Two
transport channels are associated to the two spin components of the usual charge fluctuations, while the other two
are associated to electrons and holes due to pairing fluctuations. The latter leads to an “anomalous” component
of the Joule law and take place with a vanishing net current due to the opposite flows of electrons and holes.

I. INTRODUCTION

Time dependent transport at nanoscale is a prominent tool
for probing electronic dynamics at very low temperatures. A
prototypical instance is found in on-demand single electron
sources in which individual electron and hole charges are per-
fectly emitted ! The simplest device that works as a quantized
emitter is a quantum capacitor, which consists of a single-level
quantum dot tunnel-coupled to an unique reservoir. In such
a case only a purely AC current response is possible when
the dot gate is electrostatically influenced by an AC voltage
source. "/ Working in a range of frequencies of GHz (Q) and
at sufficiently slow AC amplitudes (V) this setup behaves as
a RC circuit that for the quantum regime exhibits the peculiar-
ity that relaxation processes are featured by an universal quan-
tized resistance Ry = h/2¢?>* The quantum analogue to the
classical RC circuit is now done by replacing the geometrical
capacitance by a quantum capacitance which is proportional
to the density of states of the localized level.

Conductance quantization is observed in the stationary regime
as a signature of ballistic transport due to the lack of backscat-
tering events®® In a quantum capacitor operating in condi-
tions where many-body interactions do not play a role, the
resistance quantization is attributed to a particular behavior of
the dwell time. Ry is universal because the mean value for
the square of the dwell time coincides with the square of its
mean value. For interacting systems under AC driving charge
relaxation processes are dictated by the correlation function
of the electron-hole excitations which are proportional to the
available density of electron-hole pairs or, equivalently, to the
charge susceptibility1%?% In that case, there is a relaxation
resistance Ry per spin channel and such universality resides
in the fullfilment of the Korringa-Shiba relation>'*"2l' The
latter holds for systems that behave as Fermi liquids, which
to some extend behave as noninteracting systems with renor-
malized parameters. Besides, a different quantization phe-
nomenon in a quantum capacitor is observed, depending on
the way in which the AC amplitude is increased beyond linear
response 212228 Sy ch quantization has potential metrological
applications and is suitable for quantum computing designs.
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FIG. 1. (a) Sketch of the setup. A quantum dot is driven by an
ac gate voltage V,(r) = V), sin(Q¢) and is connected to a normal and
a superconducting lead. (b) Representation of the dynamics of the
charge and energy by means of an effective circuit with capacitive
and resistive elements. The two branches associated to the normal
charge fluctuations are associated to the two components of the spin
of the electrons. The other two describe the “anomalous” charge
flow due to fluctuations of the induced pairing at the quantum dot.
The corresponding charge fluxes are associated to electrons and holes
and have opposite directions as indicated in the figure by the full dot
pairs (electrons) and empty ones (holes).

Most of the studies on quantum RC circuits belong to the lin-
ear regime being the nonlinear regime less investigated. In
particular, few studies have been reported in the interacting
system beyond linear response 25!

In the nonlinear regime, it is not obvious how to extend the
concept of relaxation resistance, because the analogy to the
classical circuit is not necessarily valid. Resistive behavior is
related to dissipation of energy. Hence, the analysis of the en-
ergy transport and heat production in parallel with the charge
transport in these systems is a natural strategy. In a recent
work, it was shown that a non-interacting quantum dot driven
in the adiabatic regime obeys an instantaneous Joule law with
an universal resistance Ry per transport channel #*# For an



interacting quantum dot described by the Anderson impurity
model, the fact that the instantaneous susceptibility satisfies
Korringa-Shiba law, ensures the validity of the same universal
instantaneous Joule law. When a magnetic field is included
in this model for the interacting quantum dot, the Joule law is
not satisfied separately for each spin channel but it is satisfied
by the effective resistance of the two spin channels considered
in a parallel circuit configuration *!

A very interesting generalization of the RC circuit is to
consider a configuration where the capacitive element —
the quantum dot— is not only connected to a conducting
lead but also to a superconducting one. DC transport in
setups containing a quantum dot embedded in a normal-
superconductor (N-S) junction has been widely investigated
theoretically and also experimentally %% Pumping induced
by AC driving in quantum dots in N-S junctions has also
been investigated *’** However, only recently RC config-
urations and time-dependent transport induced by a single
driving potential at the quantum dot in these structures have
been studied*? The extra ingredient that the N-S coupling
brings about is the conversion of electron-hole pairs into
Cooper pairs between the two leads because of the An-
dreev processes,*!' along with induced superconductivity at
the quantum dot. The aim of the present work is to explore
the impact that these effects have in the interplay between the
charge and the energy dynamics of such hybrid RC setups. A
sketch of the setup is shown in Fig. I} We will focus on the
adiabatic regime, where the period of the driving gate voltage
is much larger than any characteristic time for the electrons in
the quantum dot and both leads are at temperature 7 = 0. We
will show that Andreev processes introduce an additional con-
tribution to the quantum capacitance, Canq(?), induced by the
coupling to the normal lead, Cx(f), while the induced pairing
due to the coupling to the superconducting lead can be repre-
sented by an anomalous capacitance C(r). The latter describes
the simultaneous fluctuations of electrons and holes associ-
ated to the fluctuation of the induced pairing, as a response to
a variation of the gate voltage. Each of these capacitances de-
pend on time in the regime where the amplitude of the driving
voltage exceeds the range of linear response. The concomi-
tant energy conversion can be described by an instantaneous
Joule law. The latter is a generalization of the Joule law of
Refs. 42144l where, in addition to the contribution of the two
spin channels, there is an anomalous component due to the
disruption and formation of the induced pairing at the quan-
tum dot. Unlike the former contribution, the latter takes place
without a net charge flow, since electrons and holes generate
currents in opposite directions. The corresponding processes
can be represented by the circuit of Fig. [I] The paper is or-
ganized as follows. In section II we present the model. Sec-
tion III contains the equations ruling the charge and energy
dynamics, including the introduction of the adiabatic regime
and the Green’s function treatment to calculate the relevant
time-dependent observables. The instantaneous Joule law is
derived from the quantum-dot dynamics in Section IV, while
in Section V we show that the associated heat flows entirely
into the normal lead. In Section VI we present some results
that illustrate the behavior of the different components of the

capacitances and the different components of the Joule heat-
ing. Finally, summary and conclusions are presented in Sec-
tion VIL

II. MODEL

We consider a single-level quantum dot that is tunnel-coupled
to both, a superconducting (S) and normal (N) reservoirs.
The quantum dot is under the action of an oscillatory time-
dependent gate potential V,(¢) = Vj sin(Q2f). The full set-up is
described by the Hamiltonian,

H(t) = Ho(t) + Hx + Hs + ) He,. (1)
a=N,S

The first term describes a single level quantum dot

Ho(®) = " [eae + eVe®] nao, 2)

o

where d. is the creation operator for an electron on the dot
with spin o~ =71, |, and n,, denotes the occupation operator for
spin 0. &4 is the energy of the dot level, which is modulated
by V,(#). The normal reservoir is described by a free-electron
Hamiltonian

Hy = Z(EkN - MN)CzNJCkN,m (3)
o,kN

in which €y is the energy dispersion relation and k the
wavevector, cyn - 18 the destruction operator for an electron
in the normal reservoir with spin o. The electrochemical po-
tential for the normal contact is represented by uy. The su-
perconducting reservoir is described by a BCS Hamiltonian
of the form

Hs = Z [(Eks — Us )Czsg(,cks,a + AcksrCgs,y + h'C-] , @
o kS

where A denotes the s-wave pairing potential. The coupling
between dot and reservoirs is

Heo =W ) [ef, pdr + hec] (5)

ka,o

Here, w, is the tunneling amplitude that connects both, the
normal reservoir with the dot and the superconducting contact
with the central site. We focus on the transport induced purely
by the AC driving applied at the quantum dot, without any
additional voltage bias applied at the leads. For simplicity, we
consider ug = uy = 0.

III. CHARGE DYNAMICS AND DISSIPATION

In this section we formulate the equations describing the
charge and energy dynamics of the full system. In the forth-
coming sections we will analyze the problem from two com-
plementary perspectives, (i) we calculate the dot charge dy-
namics and the dissipated power in the adiabatic regime and



we will show that both quantities are related by means of
an instantaneous Joule law with a constant and universal re-
sistance. Such relation follows from a circuit description in
which quasiparticles and pair generation events run in parallel
(see Fig. 1). (ii) Secondly, we will focus on the case where the
chemical potential lies within the gap of the S reservoir. Under
these conditions, we calculate the heat flow at the normal con-
tact and the charge current flow at the same lead. Again, we
show a relationship between these two quantities given by an
instantaneous Joule law. Remarkably, we arrive at this conclu-
sion by evaluating the heat flow at the normal contact consid-
ering the contribution from the tunneling barrier, the energy
reactance.**

A. Charge and energy dynamics of the quantum dot

The quantum dot charge dynamics determines not only the
charge current but also the amount of dissipated energy in
the hybrid setup. Such dynamics is governed by a conser-
vation law for the electrical charges. In this respect, the flow
of charges across the quantum dot fullfils

eirg(t) = € ) itar(t) = = [N (1) + Is(1)], (©6)

o

where 714,(¢) = —i/h{[n4,, H]) is the change in the occupation
of the dot at time ¢ corresponding to the spin o and ¢ > 0
the electron charge. The charge currents flowing into the nor-
mal (N) and superconducting (S) leads are computed from the
Heisenberg relation, they are respectively,

Io(t) = —ie/I{[Na, HI), (N

withe = N,S and Ny = Y00 C;:m,.ckmr being the occupation
operator for the normal and superconducting contacts.

The power supplied by the ac source is converted in electrical
work done by the electrons at a rate

oH

P(t) = —<5> = —e > nar OV, (0). 8)

o

This power equals the total heat production rate at time 7,43

Ou(t) = —P(1). €))

B. Spacial distribution of the heat flow

As explained in Refs. [[16]], [43]], [44], the heat flow is instan-
taneously distributed in the different parts of the device, i.e.,
at the contacts, central site and tunnel junctions, as follows

Ot = Y [JE@) + JE W] + Ea(0), (10)

a

where

Jf(r>=—,§<[Ha,H1>, Jé<r>=—%<[Hm,H]> (1)

is the energy rate change at the reservoirs @ € N, S, and the
corresponding contacts. The change of the energy at the cen-
tral site is

. i OH

Eq(1) = h([Hd,H]>+< i > (12)
In Ref. 42| it was shown that, for a quantum dot connected
to a normal lead, the most meaningful definition of the heat
flux into the lead « is the one including the so-called “energy
reactance”, JE (£)/2 that is half of the energy rate change at
the tunneling barriers. The latter represents the energy that
is temporarily stored or emitted at the tunneling barrier. We
adopt that definition and write the heat flux into the lead « as
follows

: JE(t
0u = JEw + 20, (13)
In the case of a dot connected to a single normal lead, the reac-
tance ensures the validity of the second law of thermodynam-
ics in the adiabatic regime,***** it gives a proper description of
the AC heat current spectrum in the linear response regime?,
and also of the transient dynamics ' Similarly, we can define
the heat flow into the quantum dot***# as
) . JE (1)
Oult) = Eq(t) + Z = (14)

Notice that, by substituting these definitions in Eq. (I0) and
using >, ([Ho, H] + [Heo, H]) + [Ha, H] = 0, we get

O®) = D 0ult) + Qua(t) = —P(), (15)

a

which is, precisely, Eq. (9).

C. Adiabatic dynamics

We now focus on the so-called adiabatic regime, where the
AC time is much longer than any other associated time scale
for the setup. In this respect, the electron tunneling processes
occurs many times in a AC time period. For the description of
the quantum dot dynamics in this regime we follow Refs. 31
and 47, where the quantum dot occupation is split in two con-
tributions up to linear order in Vg(t). The adiabatic evolution
of the occupancy of the quantum dot is given by

nao (1) = 1 (1) + e (Ve (D), (16)

where ng’o_(t) = (nyy), is the snapshot occupancy of the dot,
evaluated with the exact equilibrium density matrix p, corre-
sponding to the Hamiltonian H(¢) frozen at the time t. The
correction is linear in both the time variation of the AC ampli-
tude and, equivalently, in the AC frequency Q.

As a result of this expansion for the dot occupation one can
show that the power developed by the AC source has a purely
AC (Born-Oppenheimer) component Pq,s(#) associated to the



reversible heat produced by the conservative forces, and a dis-
sipative component Pgiss(7) with a non-zero time average. The
last term of Eq. (T6) is associated to the frictional (dissipa-
tive) component of the force. In fact, by substituting Eq. (I6)
into Eq. (8) we find

P(1) = Peons(0) + Pyiss (1) (17)
with
Peons(t) = e Z nga(t)vg(t),

Paiss(t) = € D" AV (0T, (18)
When performing the averages over one period 7 = 27/Q

ﬁcons,diss = (1/T)f dtPcnns,diss(t) > (19)
0

for these two contributions to the power we can verify that
Peons = 0 and Pyis > 0, as expected.

We will analyze the adiabatic dynamics of the charge and
energy at quantum dot and also the adiabatic regime of
the charge and energy currents flowing in the normal leads.
The latter can be carried out by recourse to non-equilibrium
Green’s function approach, as explained below.

D. Green’s function approach

We present the general expressions to calculate the relevant
time-dependent mean values of the observables defined in
the previous sections by using the nonequilibrium Keldysh-
Floquet Green’s function formalism following Refs. 48| and
49/but now generalizing to the Nambu basis.

One of the observables we are interested in is the occupation
of the quantum dot. In order to evaluate it, the starting point
is the definition of the occupation matrix, with elements

n (1) = —i|Gj . (t,1)] (20)

ij’
which is defined from those of the lesser Nambu-Keldysh
lesser Green’s function matrix

(dip(t)dy (1)) (1) (D))
dHd() ()L (D))

Here the upper (lower) signs correspond to spins T and |, re-
spectively, while o denotes spin orientation opposite to o.
Particularly important for our purposes are the matrix ele-
ments

G, (1) = i( ) Q1)

Nar(t) = nl2, (22)

which define, respectively, the population of the dot with elec-
trons with spin o and with pairs induced at the quantum dot
by proximity to the superconducting lead.

The lesser Green function matrix G;‘U(t, t') satisfies the Dyson
equation

11
ngo (1) = Nyos

G 1) = f dtd, Gy (1, 1)E5 (1 — )G (12, 1), (23)

4
where GA:w(t, H) = [GAZJ(tl, 1]" are the retarded and advanced

Green functions of the dot while £<(71, ) encodes the cou-
pling self-energy for the dot-reservoir. The Fourier trans-
form for the coupling self-energy reads i<(s) =1 f(s)f(s)
and I'(e) = —2Im [25 (&) + iN(s)] which are the coupling
self-energies for the normal and superconducting contact and
f(e) = 1/[1 + exppBe] is the Fermi-Dirac function with 8 =
1/kgT being T the temperature, and kg the Boltzman constant
(we recall that we have assumed py = us = 0).

Another observable we need is the charge current at the nor-
mal lead, which can be expressed in terms of Green’s func-
tions as follows

2e de _.
_ —ig(ty—1)/h
In(t) = _h (TE fdll f_zn'e 1 24)

xXRe|Gaq(t,1)E5(8) + G, (1, 1)EN ()] -

Similarly, the two terms of Eq. (I4) defining the heat flux
into the N reservoir Qn(#) can also be expressed in terms of
Green’s functions

2 de _;
E__Z —is(t\~1)/h
Iy=-7 %— fdn f 5-¢ e (25)

xRe [Guo(t,1)E5(e) + G, (1. 1)E ()]

2 d N .
Ty = 7 f Zif(é‘) Re [3tGd,a(l, S)FN(S)]H . (26)

Since the retarded and advanced dot Green functions depend
on two times it is convenient to work in the mixed representa-
tion

A de A :
G;,(T(t’ tl) = fﬁcg’g(n 8)e—l£(t—t1)/h (27)

where in terms of Fourier components reads
Ar —incu [ dE Ay —ig(t—n)/h
Gy (tt) = Z e EGd,a(”’ ge . (28)
n

Similarly, the AC electrical field reads as follows in the
Fourier representation, V(t) = Y,.0 [\7; L Vi ei”Q’].
Here V* are matrices in Nambu space with non-vanishing ma-
trix elements, respectively,

[V;]” = ;fr "NV (1), [\7};]22 = _2 fT Y (1),
' ’ (29)

Finally, the Fourier-transform in 7 — #; of the Green’s function
obeys the Dyson equation

G1 (t8) = Gole) + " > 4G, (1,6 + snh) V3 Go(e).
s=x n
(30)
1. Adiabatic expansion of the Green’s function

For the adiabatic dynamics we just need a solution accurate
upto O(Q) for Eq. (30). Expanding the rhs of this equation in



powers of Q leads to

av)

Gl (. oGo(e) ™ = V(] =1+ir0,Gl (1€ )—. (31)

The explicit solution to this equation reads
G o (1,8) ~G'y (1, 8) + iehd, Gy (1, )G, (1, )V, (1), (32)

where G;U(I, g) =
function.

[Go(e)™L = V(]! is the frozen dot Green’s

2. The frozen dot Green’s function

The frozen Green’s function corresponds to the equilibrium
problem defined by the Hamiltonian frozen at the time 7. It
can be directly calculated by the equibrium Dyson equation

G (o) |el - V(o) -2y - &5 | = 1. (33)

We recall that £y is the self-energy describing the coupling
between the quantum dot and the normal reservoir and the ma-
trix £¢ describes the coupling to the superconducting one. In
analogy to Egs. (22)), we define the frozen occupation matrix,
with elements [7i;,(D)];; = l[G< (. D)]ij, where the lesser
Green’s function matrix satisfies

G5 1.0) = G, (.85 [C), 0] (B4

In our calculations, we will use the following matrix elements,
which define the frozen occupation of the quantum dot by par-
ticles and by induced pairs

M (D) = AL (D). (35)

The simplest model for the reservoirs corresponds to a con-
stant density of states for the single particle energies. This
results in the following self energy for the normal lead

2N=(_’TN/2 0 ) (36)

_ all
nd(r nﬂT(t)

0 —lFN / 2
Similarly, the self-energy for the superconducting lead reads

Ts (e 6(A — |e]) + i |¢] 9(|s|—A)}( 1 Ale
A= (e + 07 )| Ale 1

S = ) (37)

Within this model for the self-energy, it is easy to show that
the Green’s function satisfies the properties presented in Ap-

pendix (A).

In order to get explicit expressions we follow Ref. [50].

We name [Gr,a(t, s)]” = —[é;’g(z‘, —8)];2 = G(t,e) and
[G;ﬁ(r, .9)]]2 = [G;’D_(I, s)]; = F(t, &). In this case we get
1
G(t,e) = 38
t8) = — V(1) — Zeq(t, €) (38)

where we have defined an effective self-energy X.q(f,&) =
29(e) + =F (£)*g(t, &) with the help of
2, [@)], 69

Z [i“(s)] 11
a=N,S§

a=N.,S

%) = *F(e) =

andg(t,e) =1/ [e+eVg(—t)+ZG(—s)*]. Finally, the anomalous
propagator reads

F(t, &) = -G, e)xF ()31, ), (40)

IV. INSTANTANEOUS JOULE LAW FOR THE DOT
DYNAMICS

Introducing the adiabatic expansion of the Green’s function of
Eq. (32) into the definition of the occupation of Eq. (20) we
can identify the two contributions to the adiabatic dynamics of
the occupation of the quantum dot. The frozen contribution is
determined from the frozen Green’s function. Conveniently,
we define

Pro(t,e) = i|Grolt &) = Gro(t o)) (41

in terms of which the frozen occupation matrix reads
n (1) = f % fe) b1t 2)] (42)
fo 21 Fr iy

The coefficient of the linear contribution in V, of Eq.
becomes

Ao(f) = ~2hIm [ f 8 ©)0:C 1ot 1t e)]
2 1

2 [Hsolfaol, ol

Notice that in the last step we have integrated by parts and
used [G(t,8)| , = [G4(t,2)],,, which implies [p/(t,8)] ,
[ﬁ o (2, ‘9)]21' Hence, this coefficient can be split in two com-

ponents as Ay (f) = A1 +(#) + A124(f) being at zero tempera-
ture

h
Aij,(r(t) = E [ﬁf,(r(t’ O):It2j : (44)

Now we evaluate the dissipative power from Eq. (I8) by using
Eq. {@4). We see that this quantity also has two components,
associated to those of A, (f). We will show below that the
component related to Aj; (¢) follows a normal instantaneous
Joule law and we name it Pﬁ 21 (1), while the one related to
Aj2»(f) is named Pjoue(?) and follows an anomalous Joule
law,

Pyiss(2) = jou]e(t) + PJoule(t) (45)

with
— zh (72
Ploae®) = 5 Z[pfa(r o V2.
2
Pjoulem—i—hZ[pfg(t o, V2. (46)

In order to make the Joule law explicit, we proceed to relate
the two components of the dissipative power Eq. (@5) to the



dot charge dynamics. To this end, we analyze the time evolu-
tion of the dot charge up to O(V,(#)). This leads to the purely
AC charge current which reads

dqd(r (t )
Cdr

Here we can identify the non-linear capacitance of each spin
channel C,(t) = e[)nﬁ(r(t)/avg. In addition, the dynamics of
the charge and heat involves the dynamics of the induced pairs
at the quantum dot by proximity to the superconductor. The

latter is . (1) = (d{d]) = (dydy) = -}, (1). The correspond-
ing charge fluctuation reads

dq’ (1)
dt

d(r(t) = (r(t)vg(t)- A7

= €1, (1) = =0, (1/V,(1), (48)

where the upper (lower) sign corresponds to o =T, |, respec-
tively. Importantly, we get two contributions with opposite
sign in @8), which reflects the fact that a pair fluctuation im-
plies a simultaneous flux of electrons and holes. As a con-
sequence, the net induced current between dot and reservoirs
vanishes, although the process leads to energy dissipation in
the form of a Joule law for the electrons and for the holes.
Notice that each of the contributions (977 1o (D/0V, can be pos-
itive of negative, depending on the occupation of the quan-
tum dot. However, as they have opposite sign, the net con-
tribution cancels when they are added. For this reason, we
find it convenient to define the “anomalous capacitance” as
Co = elangT(t)/anl and redefine the induced-pair charge
fluctuations as

deo'(t)
dt

which satisfies )., dGq-()/dt = Y, dqz(r(t)/dt =0
In order to compute the capacitances we evaluate the dynam-
ics of the dot charge at first order in V,(#). Then, starting from

d|pro(t.9)],
dt

+C()V, (), (49)

Al (1) = f( )

= ef Zra;‘f [ﬁf,()’(n S)Ljvg’ (50)

and comparing Eq. (50) with Egs. (7)), and (9) in the zero
temperature limit we find

&2

2
~ € r.

Colt) = 5= [pre 0] . €0 =5 [[pa@0)],|. D

The dot charge dynamics [see Eq. (#7)] and the time evolution

for the pair-density charge [see Eq. ] together with Eq.

(51) can now be related to the normal and anomalous Joule

components of the dissipative power [see Eq.(@3)] according

to
dqar (1) |’
Joule(t) = RO Z [ q:lh(t)} >

o

dgas(t) |
Z[ dt } (52)

a

Pioue(t) = Ry

with a constant and universal quantum resistance Ry = h/ 262.
While in the first term of Eq. the label o represents fluxes
of charges with different spin components, in the second term
it actually represents the two opposite charges for the elec-
trons and the holes. We notice that the above dynamics can
be described by the circuit sketched in Fig. [T(b), which corre-
sponds to a generalization of the RC circuit of a driven quan-
tum dot connected to a normal reservoir. There are four dif-
ferent channels that run in parallel, each channel has its own
capacitance. We will see that the normal capacitance C,(¥)
has contributions associated to normal transport as well as to
Andreev processes, while the anomalous capacitance accounts
for the induced Cooper pair fluctuation. The latter process in-
volve opposite currents of electrons and holes, which do not
produce any net current. Each of these channels dissipate en-
ergy in the form a Joule law with the universal Biittiker re-
sistance Ry. This result holds for arbitrary amplitude of the
driving potential provided that the driving frequency is low
enough and the reservoirs have 7' = 0.

V. INSTANTANEOUS JOULE LAW AT THE NORMAL
CONTACT

We recall that we are considering the chemical potential
within the superconducting gap. This regime is interesting be-
cause the heat flux to the superconducting reservoir vanishes,
which means that the dissipated energy flows only into the
normal lead. In this situation we can get analytic expressions
for the currents into the normal lead in the adiabatic regime.
Our aim now is to verify that such heat flux also obeys an in-
stantaneous Joule law with Biittiker universal resistance Ry.
We follow Refs. 48| and 49 to derive the charge and heat flow
at the normal contact in the adiabatic approximation. Details
are presented in Appendix [B] We arrive at the expression for
the heat current up to second order in Vg(t) (equivalent to up
to O(Q?). Such flux comprises two different contributions

On(r) = AL OOV, () + AP OV, (12 + OV, ] +-. (53)

Ax) (1) is first order in the AC frequency Q and vanishes at zero
temperature. The other term is the second order contribution
and reads for the zero temperature limit

) &*n 2 2 .,
O = 7= > llore @ O], +[ore . O] V7. (54)

o

Notice that Eq. (54) is, precisely, the dissipated power Pjoue(?)
given by Eq. (@3). This result implies that the dissipative
power coincides with the heat flow expression in the normal
contact. Besides, it is important to emphasize that such heat
current at the normal lead has been computed considering the
contribution of the energy reactance, see second term of Eq.
(T4).

Finally, we calculate the expression for the charge current at
the normal electrode at zero temperature which is calculated
from Eq. (7) and it reads

2

< S0l

In() = + 1o, 0)] ) Ve (59)



This again confirms the instantaneous Joule law [cf. Eq. (54)
and Eq. (33)].

Therefore, the analysis of the fluxes in the normal lead con-
firms the description of the dissipation in our setup in terms of
a circuit composed by two parallel subcircuits, each of them
corresponds to a RC circuit composed by the usual capaci-
tance C and Ry and the anomalous capacitance C and again Ry,
respectively. The circuit picture reflects the fact that the nor-
mal reservoir effectively receives the charge flowing through
all the resistive elements depicted in Fig. [I(b) that comes from
(1) the normal transmission, (ii) the Andreev processes and
finally (iii) the Cooper pair fluctuation. All these transport
events are the result of quasiparticle excitations that lead to
energy dissipation. In the next section we will analyze these
contributions in more detail.

VI. ANALYSIS OF THE CAPACITANCES AND THE
DISSIPATED POWER

We now show results illustrating the behavior of the capaci-
tances, which determine the behavior of the charge and heat
currents between the quantum dot and the reservoir. Substi-
tuting the dot Green function [see Eq. (38)] in the expression
for the dot density of states [see Eq. (#I)] we explicitly see
that the capacitance for each spin channel given by Eq. (51)
has two different contributions at zero temperature:

Co(t) = C(1) = On(1) + Cana(D) (56)

We identify them to normal (Cy) and Andreev-type processes
(Cana)- They can be expressed in terms of the Green functions
and self-energies previously defined [see Eq. (38)], as follows

2
Cn() = g—ﬂr‘;(onG(n 02,

2
Cana(8) = ;-ﬂrG<0>|G<z, 0OZF 03¢ 02  (57)

with T¢(0) = —2Im[Z¢(0)]. Notice that the normal contribu-
tion is directly related to the normal part of the spectral func-
tion and exactly reduces to the capacitance of the quantum
dot connected to a single normal lead in the limit of vanishing
coupling to the superconducting one. Instead the contribution
Cana(?) is proportional to the coupling to superconducting the
lead and involves high order scattering processes, character-
istic of the Andreev reflection. The anomalous capacitance
is

~ e?

C(= ;IIm[F(t, 0]l (58)

The latter is proportional to the absolute value of the spectral
function of the anomalous Green’s function [see Eq. ],
which is positive (negative) for Vg() > 0 (V4(r) < 0).

The behavior of the different capacitances is illustrated in
Fig. Two different cases are shown, namely, the super-
conducting dominant case when I's > I'y (left panel in Fig.
[Qwith 'y = I's/4) and when both tunnel couplings are equal
I'y = T (right panel in Fig. ). In the simplest situation

0 02 04
T

N
.

FIG. 2. Capacitances of the driven quantum dot for I'y = I's/4 =
A/10 (left panels) and I'y = I's = A/10 (right panels). Times are
expressed in units of the driving period. The amplitude of the driv-
ing gate voltage is Vy, = 0.8A. Upper panels: Solid lines and dots
correspond to C(f) and C(f). Lower panels: Solid lines and dots cor-
respond to Cy(7) and Ca, (7).
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where the quantum dot is coupled only to the normal elec-
trode and without driving, there is a single level at the Fermi
energy uy = 0. The additional coupling to the superconduct-
ing electrode induces local pairing correlations in the quantum
dot. Then, the original single dot level splits into two Andreev
quasiparticle states in which the magnitude of the splitting de-
pends on the relative value of I'y /T'y. Since the behavior of
the capacitance is determined by the spectral properties of the
quantum dot, these features are clearly identified in Fig.
In fact, for the superconducting dominant case the dot spec-
tral density exhibits a larger level splitting in comparison to
the case where both lead-dot couplings are similar. As a func-
tion of time, the gate voltage moves upwards and downwards.
The Andreev quasiparticle energy levels and the capacitances
have weights when the dot spectral functions have weight at
the Fermi energy ¢ = 0. Besides, we observe that the nor-
mal capacitance Cn(#) follows the profile of the Andreev lev-
els, while the capacitance associated to Andreev reflection
processes shows an additional weight between the two An-
dreev peaks. We observe that the anomalous capacitance fol-
lows the spectral features of the anomalous Green function
with resonances at the Andreev quasiparticle states. Besides,
the anomalous Green function changes sign every time that
V,(t) = 0, hence C(#) = 0 at those times.

Every time C(f) and V,(¢) are finite, a charge current estab-
lishes between the quantum dot and the normal lead. This
current has normal and Andreev components for each spin
component leading to a net flux

S D (v + Con V0. (59

This flux leads to dissipation of energy following the Joule
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FIG. 3. Dissipated power of the driven quantum dot for I'y =I's =
A/10 (top) and I'y = I's/4 = A/10 (bottom). Solid lines and dots
correspond to the contribution of the ordinary, P?(’) 4e(8) and anoma-
lous Pjy(f) components of the Joule law. Other details are the same
as for Fig. [2]

law

Py o) = 2Ry [Cn(0) + CanaOF V(. (60)

The contribution due to the fluctuation of the induced pair-
ing leads to opposite particle and hole fluxes described by Eq.
@]) and has an associated net vanishing current,

dgas(1)
zg: —o==0. ©61)

This process contributes, however, to the dissipation of en-
ergy, in the form of an anomalous Joule law

Piowte() = 2RoC(1)* Vo (1)*. (62)

The different contributions to the dissipated power are shown
in Fig. Both contributions are peaked at the times where

J

the energy levels of the Andreev states get aligned with the
chemical potential of the leads. Due to the contribution of the
Andreev capacitance, there is a finite current and Joule dissi-
pation in the time intervals between these peaks in Pjoye(?).
The anomalous dissipation Pjoue(?) due to the disruption or
formation of induced pairs vanishes exactly at the center of
the gap between the pair of Andreev peaks.

VII. CONCLUSIONS

We have investigated the charge and energy dynamics of a
driven quantum dot in contact to superconducting and normal
leads. We have focussed on the adiabatic regime, relevant for
low frequency driving, with reservoirs at 7 = 0. We have de-
rived the dissipative power from (i) the dot charge dynamics
and equivalently from (ii) the heat flow at the N contact that
accounts the reactance contribution from the tunneling barri-
ers. Besides, the charge current is calculated from (i) the time
derivative of the dot charge and from (ii) the charge current
flow exiting the normal contact. For both cases a dynami-
cal Joule law is established leading to an universal nonlinear
charge resistance Ry = h/ 2¢2. In this scenario we have shown
that the Joule dynamics law may be described in terms of the
RC circuit of Fig. [T[b). According to Fig. [T(b) the capaci-
tance C takes into account the normal and Andreev processes
whereas C accounts for the generation of pairs. Remarkably,
the current due to the pair generation vanishes as a result from
the cancellation of electron and hole flows. However, it is im-
portant to highlight that such pair fluctuation processes con-
tribute to the heat dissipation through an instantaneous Joule
heating.
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Appendix A: Properties and identities of the frozen Green’s function

The frozen Green’s function satisfies the following properties

Pro(t,e) = i[éf,a(ts &) = Grq, 8)*] =Gro(t, ()G o(t,8), (A1)
0:G 1(1,8) = =G 1 (1, €)
dGry(t,e) . . . . .
LEEZ = G, G 1o (1, 8)e V1) = —ed,G (1,8 VD) (A2)

where ['(g) = i [ﬁ’(e) - flr(s)*]. In the last identities, we have assumed that we can neglect the dependence on & of %, which is a
valid assumption for models of reservoirs introduced in Section III.D.2.



Appendix B: Adiabatic expansion for the charge and heat currents into the N reservoir for subgap driving

The charge and energy currents in the the normal lead are defined, respectively, in Egs. and (25). Substituting Eq. in
these expressions and using identities for the Green functions along the same steps presented in Refs. 42/ and 43| but expressed

in the Nambu representation we get

i1Qt d T Ak
I == Z Z i f @i Lo @) - fe - )]
+ 3037 e+ nhQ) - £()] Guoll + n, ) p(&)C (0, 8)} :
n B=NS 11
. 1 . de [« A hQ
On() =+ Zr] Z e i f Zf {FN<s) [iGZ,U(—L e) (s - 7) [f(e) - f(e - IhQ)]

"2

n B=N,S

(g + (é + n)hQ) [f(e + nhQ) — f(&)] Guo(l + n, & 5(e)G ,(n, s)} ,

(BI)

11

In order to get the adiabatic expansion for the currents, we have to introduce Eq. the adiabatic expansion for the Green’s
function defined in Eq. (32)) and the corresponding expansion for the Fermi-Dirac distribution function

fe - IhQ) = f(e) — IhQ

af 1.,
o+ S (IhQ)

’f

2 (B2)

Then, we keep the terms of the charge current upto (%€2) and of the heat current in the first and second order in €. Here, we
also use the fact that within the gap, the density of states of the superconducting lead vanishes, hence, I's ~ O for |g] < A. The
results are the following

In the last line, we have dropped those contributions to Qﬁ)(t) that vanish at temperature 7 = 0. Notice that Q

Pn=e) f g—i‘jagf(s){[pf,(,(t,s)]” + [pret 8] ,} Ve,

OV (@) = —eh )’ f ‘2’—;5 0:f@{|prot.0)],, + |prot.0)] ) Vi),

(B3)

2
oY1) ~ —g Z,; f gaaf(s) 0.6 100,81 5(£00,G7 1, 8)] | = —?Za] f ;’—jagﬂs){[pf,g(t, o, + [ore ] V?.

atT =0.

=N

g)(t) also vanishes
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