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Abstract. Given a finite-dimensional Hopf algebra H and an exact indecomposable
module category M over Rep(H), we explicitly compute the adjoint algebra Aaq as an
object in the category of Yetter—Drinfeld modules over H, and the space of class functions
CF (M) associated to M, as introduced by K. Shimizu (2020). We use our construction to
describe these algebras when H is a group algebra and a dual group algebra. This result
allows us to compute the adjoint algebra for certain group-theoretical fusion categories.

Introduction. In [I3], K. Shimizu introduced the notion of adjoint al-
gebra A¢ and the space of class functions CF(C) for an arbitrary finite tensor
category C. The adjoint algebra is defined as the end | xec X ®X*. The dual
object A is a crucial ingredient in Lyubashenko’s theory of the modular
group action in non-semisimple tensor categories [§], [9].

Both the adjoint algebra and the space of class functions are interest-
ing objects that generalize the well known adjoint representation and the
character algebra of a finite group. In [I3] many results concerning the table
of characters, conjugacy classes, and orthogonality relations of characters in
finite group theory have been generalized to the setting of fusion categories.
Also, in [15] the adjoint algebra was used to develop a theory of integrals for
finite tensor categories.

Assume M is an arbitrary module category over a finite tensor cate-
gory C. In [I4], K. Shimizu introduced the notion of adjoint algebra A and
the space of class functions CF(M) associated to M, generalizing the defi-
nitions given in [13]. The main task of this paper is the explicit computation
of those objects in the particular case of C being the representation category
of a finite-dimensional Hopf algebra.

Assume that C is a finite tensor category, and M an exact left C-module
category with action functor ® : C x M — M. Then we can consider the
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functor ppq : C — Rex(M), pp(X)(M) =X @M, X € C, M € M. Here
Rex(M) denotes the category of right exact endofunctors of M. The right
adjoint of the action functor is p'Yy : Rex(M) — C, explicitly described as

pu(F) = | Hom(M,F(M))
MeM
for F' € Rex(M) [14, Thm. 3.4]. Here for any M € M, Hom(M, —) is the
right adjoint of the functor C — M, X — X ® M. It is called the internal
Hom of the module category M. The adjoint algebra is defined as Ay =
Py (Idaq). This object has a half-braiding o (X) : Ay ® X — X ® Aum
defined as the unique morphism in C such that the diagram

T (XSM)@idy

Ap @ X End(X ® M) @ X
UM(X) >~
X © A X ¥ @ Hom(M, M) —=—~ Hom(X © M, M)

is commutative. Here maq(M) : Ay — Hom(M, M) is the dinatural trans-
formation of the end Apg. It turns out that (Aag,on) is a commutative
algebra in the Drinfeld center Z(C). Although this description of the half-
braiding of A is rather clear, for us it was complicated to use it to make
calculations in particular examples. However, there is another way of de-
scribing this structure.

If B is a C-bimodule category, one can consider the relative center Z¢(B).
When C is considered as a bimodule over itself, the relative center coincides
with the Drinfeld center. The correspondence B — Z¢(B) is in fact part of
a 2-functor

Zc iC Bimod — Ab]k,

where ¢ Bimod is the 2-category of finite C-bimodule categories, bimodule
functors and bimodule natural transformations, and Aby is the 2-category
of finite abelian k-linear categories. Both Rex(M) and C are C-bimodule
categories. It turns out that p¢ has a C-bimodule structure [14, Section 3.4].
Applying the 2-functor Z¢ one obtains a functor Z¢(p'y) : Zc(Rex(M)) ~
Ciy — 2(C). Hence (An,om) = Ze(ply) (Id ).

Assume H is a finite-dimensional Hopf algebra. If M is an exact inde-
composable module category over Rep(H ), we explicitly describe the adjoint
algebra (Aar, oa) and the space of class functions CF(M). For this pur-
pose, we need to explain all ingredients in the construction of those objects.
Our description of both algebras relies heavily on the explicit description of
module categories over Hopf algebras. In Section [3| we embark on this task.
Module categories over Rep(H) are categories g M of finite-dimensional left



THE CHARACTER ALGEBRA FOR HOPF ALGEBRAS 173

K-modules, where K are certain H-comodule algebras. We also recall how to
describe module functor categories, and that there is a monoidal equivalence
Rep(H)’ \ ~ B M. This equivalence will be used when explaining the
functor Zc( "%). Another ingredient is the internal Hom. In this section we
also describe, in a precise way, the internal Hom of the module category M.
In Section , after recalling the definitions of [T4], for an object P € £ M
representing a module functor in Fp € EndRep(H)( kM), we explictly give
the structure of the functor

Fpr— | Hom(M,Fp(M)).
MeM

For this we compute, in an explicit way, the end {,,_ ,, Hom (M, Fp(M)) as an
object in the category HJ}D of Yetter—Drinfeld modules over H. In Sectlonl
we illustrate this description in the particular cases when H is a group algebra
or its dual. As a direct consequence, we compute the adjoint algebra and the
space of class functions for certain group-theoretical fusion categories.

1. Preliminaries. Let k be an algebraically closed field. All algebras
are assumed to be over k. If A is an algebra, we shall denote by 4 M (resp-
ectively M 4) the category of finite-dimensional left A-modules (respectively
right A-modules). If A, B are two algebras, we shall denote by p My the
category of finite-dimensional (B, A)-modules. From now on, all categories
are assumed to be abelian k-linear, and all functors are k-linear.

1.1. Hopf algebras. For a Hopf algebra H, we shall denote by A : H —
H ®i H the comultiplication, § : H — H the antipode, and € : H — k the
counit. We shall use Sweedler’s notation: A(h) = h(;) ® h(g), h € H. The
category g M has a canonical structure of tensor category with monoidal
product given by ®k. We shall denote this tensor category by Rep(H).

For a finite-dimensional Hopf algebra H, we shall denote by gyD the
category of finite-dimensional Yetter—Drinfeld modules. An object V € gyD
is a left H-module - : H®, V — V, and a left H-comodule A : V — H ®, V
such that

(1.1) Ah-v) = hayvnS(ha) @ h) - v(0),

forany he Handv e V.If V € g)ﬂD, themap ox : VX = XV
given by ox(v ® ) = vy - ¥ ® v(g) is a half-braiding for V, and this
correspondence establishes a monoidal equivalence £YD ~ Z(Rep(H)).

1.2. Finite categories. A category C is finite [4] if

e it has finitely many simple objects;
e cach simple object X has a projective cover P(X);
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e the Hom spaces are finite-dimensional;
e each object has finite length.

Equivalently, a category is finite if it is equivalent to a category 4 M for some
finite-dimensional algebra A.

If M, NN are two finite categories, and F' : M — N is a functor, we shall
denote by F' F™ : N' — M its left and right adjoints, if they exist. We
shall also denote by Rex(M, ) the category of right exact functors from M

to V.

1.3. Ends and coends. We briefly recall the notion of end and coend.
The reader is referred to [10] for the details. Let C, D be categories, and let
S, T : C°° x C — D be functors. A dinatural transformation £ : S = T is a
collection of morphisms in D,

Ex:S(X,X)—»T(X,X), Xec,
such that for any morphism f: X — Y in C,

(1.2) T(idx, f) o fX o) S(f, idx) = T(f, idy) o fy o S(idy, f)

An end of S is a pair (E,p) consisting of an object E € D and a dinatural
transformation p : F = S with the following universal property. For any
pair (D, q) consisting of an object D € D and a dinatural transformation
q: D 5 S, there exists a unique morphism h : D — FE in D such that
gx = pxoh forany X € C. A coend of S is the dual notion: it is a pair (C, )
consisting of an object C' € D and a dinatural transformation = : S = C
with the following universal property. For any pair (B, t), where B € D is
an object and ¢t : S = B is a dinatural transformation, there exists a unique
morphism h : C'— B such that honx =tx for any X € C.

The end and coend of the functor S are denoted, respectively, as
XeC
| s(x,x) and | S(X,X).
XeC

2. Representations of tensor categories. For basic notions on finite
tensor categories we refer to [2], [4]. Let C be a finite tensor category over k.
A (left) module over C is a finite category M together with a k-bilinear
bifunctor ® : C x M — M, exact in each variable, endowed with natural
associativity and unit isomorphisms

mX’y,MI(X®Y)®M—>X®(Y@M), EM:1®M—>M.
These isomorphisms are subject to the following conditions:
(2.1) mxyzgmmxev,zm = (idx @ my,zm) mx yezm(axyz @idy),
(2.2) (idx@lM)mX,l,M:Tx®idM,
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for any X,Y,Z € C,M € M. Here « is the associativity constraint of C.

Sometimes we shall also say that M is a C-module or a C-module category.
Let M and M’ be a pair of C-modules. A module functor is a pair (F,c),

where F': M — M’ is a functor equipped with natural isomorphisms

exm  F(XQM)—->XQF(M), XeC, MeM,
such that for any X, Y € C, M € M,

(2.3) (idx ® evm)ex yau F(mxyu) = mx,y,pon)Cxey,M,
(2.4) Crncrm = F(l).

There is a composition of module functors: if M” is another C-module
and (G,d) : M" — M" is another module functor then the composition

(2.5) (GOF,B) 2M—>M”, eX,M:dX,F(M)OG(CX,M)a

is also a module functor.

A natural module transformation between module functors (F,c) and
(G,d) is a natural transformation 6 : F — G such that for any X € C and
M e M,

(2.6) dX,MgX@M = (idX ® QM)CX,M-

Two module functors F,G are equivalent if there exists a natural module
isomorphism 6 : F' — G. We denote by Fung(M, M') the category whose
objects are module functors (F,c) from M to M’ and arrows are module
natural transformations.

Two C-modules M and M’ are equivalent if there exist module functors
F: M — M and G: M" — M and natural module isomorphisms Id ;s —
FoGandIdy — GoF.

A module is indecomposable if it is not equivalent to a direct sum of
two non-trivial modules. Recall from [4], that a module M is ezact if for
any projective object P € C the object P ® M is projective in M, for all
M e M. If M is an exact indecomposable module category over C, the dual
category Cy, = Ende(M) is a finite tensor category [4]. The tensor product
is the composition of module functors.

A right module category over C is a finite category M equipped with an
exact bifunctor ® : M x C — M and natural isomorphisms

muxy MOXQY)>(MeX)®Y, rv  M®1—-M
such that
(2.7) mysxyzmmxyez(idy ®axyz) = (Muxy @idz)mu xey,z,
(2.8) (rv @idx)mara,x =1idy ® Ix.

If M, M’ are right C-modules, a module functor from M to M’ is a pair
(T,d) where T : M — M’ is a functor and dpyy x : T(M @ X) - T(M)® X
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are natural isomorphisms such that for any X, Y € C, M € M:

(2.9) (drx ®@idy)dygxyT(marx,y) = mron,x,y dv,xoy
(2.10) rron dua = T(rar)-

Assume that M, N are categories, F' : M — N is a functor with right
adjoint G : N' — M. We shall denote by € : FoG — Idpr, n: Idpyy =+ Go F
the counit and unit of the adjunction. The next result will be needed later.

LEMMA 2.1 (|5, Lemma 2.11]). The following holds.

(i) If M,N are left C-module categories and (F,c) : M — N is a module
functor then G has a module functor structure given by

e;(,lN = G(idx geN)G(CX,G(N))nX@G(N), XeCand N e N.

(i) If M, N are right C-module categories and (F,d) : M — N is a module
functor then G has a module functor structure given by

hj_v,lx = G(ey ®@idx)G(do) x)Menex: X E€C,NEN. =

2.1. Bimodule categories. Assume D is another finite tensor category.
A (C,D)-bimodule category is a category M with left C-module category and
right D-module category structure together with natural isomorphisms

(2.11) ’)/X7M7y:<X®M)®Y—>X®(M®Y), Xel,YeD, MeM,
satisfying
(X@Y)8M)RZ—>(X®Y)8 (M Z)
ml®idi
(2.12) XeYeM)eZ m!

’yl
id®y _

X((YeM)@Z)—- XY (M®Z2))

XaMBYZ)—>X@MS (Y ®Z))
(2.13) (XeM)eY)eZ id®m”
y®id

X@MIYV))RZ—>XQ(MRY)® Z)

%
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Y1,M,1

1M B1 1B (MB1)
lM®id1\L
(2.14) M®1 rar
idlwl
M bt 1® M

where m! and m” are the associativity isomorphisms of the left, respectively
right, module category. If M, N are (C,D)-bimodule categories, a bimodule
functor is a triple (F,c¢,d) : M — N, where (F,c¢) is a C-module functor,
(F,d) is a D-module functor and the equality

(2.15)  yx,rony(exm ®@idy)dxgryy = (idx @ day)ex pgy F(vxay)
holds for all X € C, Y € D, and M € M.

It is known that M is a (C,D)-bimodule category if and only if it is
a left C ® D°P-module category, and a bimodule functor is the same as a
C ® D°P-module functor. See for example [7].

If M, N are left C-module categories, then Rex(M,N) is a C-bimodule
category as follows. If X € C, F € Rex(M,N) and M € M, then

(216)  (XTF)(M)=XBFM), (F®X)(M)=FXB®M).

2.2. The internal Hom. Let C be a tensor category and M a left
C-module category. For any pair of objects M, N € M, the internal Hom
is an object Hom(M, N) € C representing the functor Homa(— ® M, N) :
C — vecty. This means that there are natural isomorphisms, inverse to each
other,

¢ar.n + Home(X, Hom(M, N)) — Homu (X ® M, N),
zpﬁN : Hompy (X ® M, N) — Home (X, Hom(M, N)),
for all M, N € M, and X € C. Sometimes we shall denote the internal Hom
of the module category M by Hom ,, to emphasize that it is related to this
module category.

For any X € C and M, N € M define

COGV%M : X —» Hom(M, X ® M), ev{\\/}l,N :Hom(M,N)® M — N,

COCVx M = %Z)M’ X@M(ldx@w)» SVMN = PN (ldHOm(M,N))-

(2.17)

Define also fy; = eV%M(idmim(M’M) @ev%’M), and

Compj\\f : Hom(M, M) ® Hom(M, M) — Hom(M, M),
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It is known (see [4]), that Hom(M, M) is an algebra in the category C with
product given by comp{\\f.

2.3. The relative center. Let C be a tensor category and M a C-
bimodule category. The relative center of M is the category of C-bimodule
functors from C to M. We denote the relative center of M by Z¢(M).
Explicitly, objects of Z¢(M) are pairs (M, o), where M is an object of M
and

ox M@X S XM
is a family of natural isomorphisms such that

(2.18) le,Y,MUX®Y = (ldx ®@ oy )yx,my (0x @idY)mMX,Ya

where yx my 1 (X@OM)RY — X®(M®Y) are the associativity constraints
of the left and right actions on M (see (2.11])). The isomorphism o is called
the half-braiding for M.
As explained in [14] Section 3.6], the relative center can be thought of as
a 2-functor
Ze : ¢Bimod — Aby,

where ¢Bimod is the 2-category whose 0-cells are C-bimodule categories, 1-
cells are bimodule functors and 2-cells are bimodule natural transformations.
Also Aby is the 2-category of finite k-linear abelian categories. If M, N are
C-bimodule categories, then Z¢(M) is the relative center. If (F,¢,d) : M —
N is a bimodule functor, then Z¢(F) : Z¢(M) — Z¢(N) is the functor
Ze(F)(M,0) = (F(M),0), where ox : F(M)® X — X ® F(M) is defined
as

(219) 5)( :CX,MF(O—X)d&%X7 X elC.
The following is [14, Example 3.11].

EXAMPLE 2.2. If M, N are exact C-module categories, then Rex(M, N)
is a C-bimodule category (see (2.16))). In this case there exists an equivalence
Ze(Rex(M,N)) =~ Fung (M, N).

ExaMPLE 2.3. When C is considered as a C-bimodule category, then
Z¢(C) = Z(C) is the usual center of the category C.

REMARK 2.4. If (X,0) € Z(C) and M is a left C-module category, then
the functor L(x ,) : M — M given by L(x 5 (M) = X ® M is a C-module
functor. The module structure is given by

SN XBEYBM) »YE(XE M),

(X,O’) N 3 —1
cyn = myx,m(oy @ida)myy

for any X, Y € C, M € M.
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DEFINITION 2.5. For any exact indecomposable left C-module catego-
ry M, we shall denote by

Fm:20Cy) = Chy, (Vio)—=1V,

the forgetful functor. In particular F¢ : Z¢(C) — C is the usual forgetful
functor.

2.4. Morita invariance of the Drinfeld center. Let M be an ex-
act indecomposable module category over C. Using results of P. Schauen-
burg [12], K. Shimizu [I4, Section 3.7] proved that there exists a braided
monoidal equivalence

Ot 2(C) = 2(Chy)

For later use, we shall recall the definition of this equivalence. Let (V,0) €
Z(C). Then Opq(V,0) : M — M is the functor defined as Op(V,0)(M) =
V ® M, for any M € M. The module structure of the functor O,(V, o) is

cxmOm(V,0)(X QM) =Ve(XoM)—Xe((VeM),
given by the composition

vex)eM 29 (xevigM I XE(VEM).

mol
VR(XeM) 1 (
Then Or(V, o) becomes a C-module functor. It remains to explain how the
functor Ox4(V, o) is an object in the center of C},. For any (F,d) € C}, we
have to define a half-braiding 7z q4) : Om(V,0) o (F,d) — (F,d) o 0pm(V, 0).
This is the module natural transformation defined by

(2.20) (Tpa)m s VO F(M) = F(V® M), ((ra)m = dya,
for any M € M.

3. Module categories over Hopf algebras. Throughout this section,
H will denote a finite-dimensional Hopf algebra. We shall present families
of module categories over Rep(H ), and compute explicitly its internal Hom
and their module functor categories.

If \: K - H® K is a left H-comodule algebra then the category of
finite-dimensional left K-modules x M is a module category over Rep(H)
with action ® : Rep(H) x kM — gM, X @ M = X ® M, for all X €
Rep(H), M € gM. The left K-module structure on X ®j M is given by A,
that is, if k € K, x € X, m € M then

THEOREM 3.1 ([, Prop. 1.20]). If K is right H-simple then gM is
an exact indecomposable module category over Rep(H). Moreover, if M is
an exact indecomposable module category over Rep(H), then there exists a
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right H-simple left H-comodule algebra K with trivial coinvariants such that

M:KM.I

REMARK 3.2. If K, S are isomorphic H-comodule algebras, then the cat-
egories g M, g M are equivalent as Rep(H )-module categories. The converse
is not always true.

3.1. The internal Hom. We shall explicitly compute the internal Hom
of module categories over Rep(H).

If M, N are left K-modules, then the space Homg (H ®x M, N) has a left
H-action given by

(h-a)(t®@m)=a(th®m)

for any h,t € H, « € Homg (H ®x M, N) and m € M. We can identify the
space Hom g (H®y M, N') with the subspace of H*®,Homy (M, N) consisting
of elements ) . f; ® T; € H* ®, Homy (M, N) such that

(3.1) Z(fi, k—1yh)Ti(k@y - m) = Z(fi, h)k - T;(m)

K3 (2

for any h € H, k € K and m € M. An element ) . f; ® T; is seen as a map
from H @y M to N, sending h ® m to >_,(fi, h)T;(m). We shall freely use
this identification from now on. Condition says that this morphism is
a K-module map.

For any K-module M, the space Homg(H ®y M, M) has an algebra
structure as follows. If >, f; ® T;, Zj g; ® Uj are elements in Hom g (H ®k
M, M), their product is defined by

(32) (Zfi@)Tz) (Zgg@Uj) =Y figi®T;oUj.
( J i,J
The proof of the next result is straightforward.

LEMMA 3.3. With the product described in (3.2)), Homg(H ®x M, M)
becomes an H-module algebra. m

LEMMA 3.4. Let M,N € gM, and Hom(M, N) the internal Hom of the
module category g M. There is an isomorphism of H-modules

Hom(M,N) ~ Homg (H ®k M, N).
When M = N this isomorphism is an H-module algebra isomorphism.
Proof. Let X € Rep(H). The maps
¢ : Homp (X, Homg (H ®x M, N)) = Homg (X ®k M, N),
¥ : Homg (X @k M, N) — Homp (X, Homg (H @k M, N)),

defined by ¢(a)(z®@m) = a(z)(1®@m) and ¥ (8)(x)(h®@m) = B(h-xz®m) for
any h € H,z € X, m € M, are well-defined maps, inverse to each other. It
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follows straightforwardly that when M = N, this isomorphism is an algebra
map. m

3.2. Module functors. Given two H-comodule algebras K, S, we shall
explicitly describe the category of Rep(H )-module functors between the as-
sociated module categories.

Under these hypotheses, we shall denote by g Mg the category of finite-
dimensional (S, K)-bimodules that are also left H-comodules, with comodule
structure a morphism of (.5, K')-bimodules.

PrOPOSITION 3.5. Asumme K,S are right H-simple left H-comodule
algebras, and g M, sM the corresponding Rep(H)-module categories. There
are equivalences

Rex(k M, sM) >~ s Mk, FunRep(H)(KM, sM) ~ HMK'

Proof. We shall only explain the definition of the equivalences. For the
complete proof see [I, Prop. 1.23|. The first equivalence is a consequence of a
theorem of Watts [16]. The functor @ : gM g — Rex(xgM, M), ®(B)(M) =
B ®g M, is an equivalence of categories.

If P € gMg, define the functor Fp : kM — sM by Fp(M) = PRy M.
The correspondence P — Fp is an equivalence of categories.

If Pe Mg, X € Rep(H), and M € gM, the functor Fp has a module
structure:

exm Pk (X @k M) = X @ (PR M),
CX,M(p®$®m):p(fl)‘$®p(o)®m, peP xe X, me M.

Here the map A : P — H ® P, A(p) = p(—1) ® p(g), is the left H-coaction
of P. m

The next result is a direct consequence of Proposition [3.5]

COROLLARY 3.6. Let K be a right H-simple left H-comodule algebra.
There is a monoidal equivalence

Rep(H ) gMK. "

Assume K, S are H-comodule algebras. The category s M g has a Rep(H )-
bimodule structure as follows. If P € s¢Mg , X € Rep(H), then

XBP=X® P, P3X=Pog(XeK).
The (S, K)-actions on the spaces X ® P and P ® X are
s (x@p) -k=s_1 @80 p-k,
s-(p(xl) k=s-p(xxlk), seS kleK peP xeclX.
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The natural isomorphisms relating both actions are given by
Yx.py (X @P)®Y - X®(PRY),
1xpy(z@p) @ (Y@ k) =20 (pRYEK),

forany X,Y € Rep(H),P € sMg,z € X,y €Y,p e Pandk € K. It follows

by a straightforward computation that the maps vyx py satisfy (2.12)—([2.14).
Recall that Rex(xM, sM) has a Rep(H )-bimodule category structure
(see (2.16)). The next lemma is straightforward.

LEMMA 3.7. The equivalence Rex(xg M, sM) ~ sMg of Proposition
is an equivalence of Rep(H)-bimodule categories. m

(3.3)

3.3. The center of dual tensor categories. In Section for any
exact C-module category M we presented an equivalence of braided tensor
categories O : Z(C) — Z(C},). In this section, we shall explicitly give this
equivalence in the case C = Rep(H) and M = gM for a right H-simple
left H-comodule algebra K. For this, we shall use the monoidal equivalences
Z(Rep(H)) ~ YD and Rep(H)? y =~ A M. The latter is given in Corol-
lary [3.6]

Set O = 0 r : BYD — Z(EMk). ItV € BYD then 05 (V) = V@ K.

The K-bimodule and left H-comodule structures are given by
k-(v®@t)-s=kcyy vekgts,
AMv@t) =vpyt) @uey @tey, veV,tksek.
The half braiding of the object V ®y K is given by
o (Ver K)®x P— Pog (Ve K),
op(v@t@p)=(t-p)oy®S ' ((t-p)_1) v®1

for any P € EMK, veV,pe P,and t € K. This formula comes from
[2-20).

4. The character algebra for representations of Rep(H). Given
a finite-dimensional Hopf algebra H, and M a representation of the ten-
sor category Rep(H). We aim to compute the adjoint algebra A and the
corresponding space of class functions as introduced by K. Shimizu [13], [14].

4.1. The adjoint algebra and the space of class functions. Let
C be a finite tensor category, and M an exact indecomposable left module
category over C. We shall further assume that M is strict. First, we shall
recall the definition of the algebra Ay € Z(C).

The action functor pps : C — Rex(M) is

pm(X)(M)=X@M, XeC MeM.
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It was proven in [I4, Thm. 3.4] that the right adjoint of paq is the functor
Py - Rex(M) — C such that for any F' € Rex(M),

piu(F) = | Hom(M, F(M)).
MeM
The counit and unit of the adjunction (paq, piy), will be denoted by
€:pm o PR = drex(my, 1 1de = Pl 0 par-
According to Lemmal[2. T the functor pi has the structure of a C-bimodule

functor as follows. The left and right module structures of p¢, are

r PUXBF) = X®py(F),

(41) l —1 ra (: =
(&xr) = pia(idx ® EF)nX®p§31(F)’
(42) Exr i Pm(F®X) = pii(F) ® X,

(€h,p) " = piu(er ®idx )Ny mzx: X €C, F € Rex(M).

This description appears in [I4, Equation A.9].

Since p : Rex(M) — C is a C-bimodule functor, we can consider the
functor Z¢(ply) : Ende(M) — Z(C). Here Z¢ is the 2-functor described in
Section

DEFINITION 4.1 (|14, Subsection 4.2|). The adjoint algebra of the module
category M is the algebra Ax¢ := Z(p%)(Ida) in the center of C. The
adjoint algebra of the tensor category C is the algebra Ag of the regular
module category C.

It was explained in [14, Subection 4.2 that the algebra structure of Axq
is given as follows. Let maq : Apg = Hom(—, —) denote the dinatural trans-
formation of the end Axg. The product and the unit of Ax  are

mapm: AMQAM — Am, uam i 1 — Apg,
defined to be the unique morphisms that satisfy
TMm(M) o mpg = compyf o (mar(M) @ mpm(M)),
WM(M)ouM:coevjl\flM, M e M.
For the definition of coev™ and comp™ see Section .

DEFINITION 4.2 (|14l Definition 5.1]). The space of class functions of M
is CF(M) := Home(F¢(Anm), 1) = Homz ) (Am, Ac).

The following result will be useful when computing the adjoint algebra
in particular examples. The first three statements are contained in [13], [14].

(4.3)

LEMMA 4.3. Let M be an exact indecomposable C-module category.
(i) If I:C — Z(C) is a right adjoint to the forgetful functor F : Z(C) — C,
then Ac ~ 1(1).
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(ii) There exists an isomorphism Acs, =~ Orp(Anm) as algebra objects in
Z(Chy)-

(ii) CF(Cx,) =~ Endzc)(Am)-

(iv) FPdim(Apn) = FPdim(C).

Proof. Recall that 0, : Z(C) — Z(C}) is the braided equivalence pre-
sented in Section 2.4

It is proven in [I4, Corollary 3.15] that the functor 6,4 o Z(p) is the
right adjoint of the forgetful functor Fey . Taking M = C implies (i), and
taking an arbitrary M yields (ii).

(iii) is [14, Theorem 5.12].

(iv) Let F' : Z(C) — C be the forgetful functor, and I : C — Z(C) its
right adjoint. It was proven in |2, Proposition 7.16.5| that FPdim(I(1)) =
FPdim(C). Hence FPdim(A¢) = FPdim(C) for any finite tensor category C.
Applying this result to C}, we obtain

FPdim(Ay) = FPdim(Ac;, ) = FPdim(C},) = FPdim(C).
The first equality follows from (ii), and the last one is [4, Corollary 3.43|. =

4.2. The adjoint algebra for module categories over Hopf al-
gebras. Let H be a finite-dimensional Hopf algebra. Let K be a finite-
dimensional left H-comodule algebra. The category xM is a left Rep(H)-
module category (see Section . We aim to compute Ax = A, p as an
algebra in the category gyD of Yetter—Drinfeld modules over H. For this,
we shall explicitly give a description of the functor Z(p%).

Identifying Rex(x M) = g M, we shall denote by px : Rep(H) — g Mg
the action functor. Explicitly, if X € Rep(H) then

pK(X) =Xk K.
The left and right K-actions on X ®y K are given by
s-(z@k)-t=s_p - rRsqpkt, ze€XstkekK.

DEFINITION 4.4. For any P € My, define SK(H, P) as the space of
left K-linear morphisms o € Homg (H ®y K, P) such that for any k € K
and h € H,

(4.4) a(hok)=ahe1)- k.

The space S& (H, P) has a left H-module structure - : H ®y S¥(H, P) —
SK(H, P) and a left H-comodule structure A : S (H, P) — H®y S¥(H, P),
defined by

(4.5) (h-a)(z®k)=alzh®k),
(4.6) A:SE(H,P) » Heyp SK(H,P), Ma)=a'®d,
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for any o € SK(H,P), h,x € H and k € K. Here for any h € H and k € K,
4.7)  a'@a’(h@k) = S(ha))alhe @ 1)—1yhe ® alhe @ 1)) - k.

When P = K, we shall denote S(H,K) := SK(H,K). It follows by a
straightforward computation that (4.5) and (4.6|) are well defined maps, and
they define an H-action and a H-coaction.

LEMMA 4.5. The space SK(H, P) is an object in the category YD.
Proof. We must prove the compatibility condition (1.1)), that is,
(4.8) Mz -a) = a?(l)aflS(x(g)) ® T(9) - v

for all z € H and o € SX(H,P). Take ¢ € H*, h,x € H and k € K.
Evaluating the right hand side of (4.8)) at ¢ ® h ® k gives

(¢, xya” S($(3))> (x2) - ) (h @ k)
= (D1), 2))(D(3), S (@(3)) (P(2) @ a2y - @ (h @ k)
= (¢a ,36(1 N @), S(3) (), 0 al (hao) ® k)
= (¢), z)) (b)), S(z3)))
(

@) hit(2)(2) @ 1) (1) (he2))3))a((h2)) 2) © V(o) - K
= (¢, 2(1)S((2))S(h(1))x

a(h@)r@) ®@ o) - k

= (¢, S(h(y))a(h@yr @ 1)—phs)) alheyr @ 1)) - k

= (¢, S(hq))(z - a)(hz) @ 1)—1)h@)) (- a)(he) @ 1)) - k
= (¢, (z-a) Nz )’ (h@k). =

LEMMA 4.6. The space S(H, K) is identified with the subspace of ele-
ments Y, [i @ ki € H* @y K such that for anyt € K and h € H,

(4.9) Z<fz’at(—1)h>kit(0) = Z(fi: h)tk

Proof. We explained in Sectionthat the space Homg (H ®y K, K) can
be identified with elements Y, f; ® T; € H* ®x End(K) that satisfy (3.1). An
element ) . f; @ T; € H* @ End(K) with {f;}; linearly independent belongs
to S(H, K) if it satisfies (4.4)). This means that T;(k) = T;(1)k for all i and
all k € K. Thus, we can identify 7; with left multiplication by 7;(1). Under
this identification, is equivalent to (4.9)). m

REMARK 4.7. If K C H is a left coideal subalgebra, then elements of
the space (H/KTH)* ® Z(K) are in S(H,K). Here Z(K) is the center
of K. This follows from the fact that (H/K+H)* can be identified with the
elements f € H* such that (f, kh) = (¢, k)(f,h) for any k € K and h € H.

—

h@)T3) ® 1)(1yh@E)@)S(Ts))

/\
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THEOREM 4.8. Let K be a finite-dimensional left H-comodule algebra
and P € EMyg. Then M = M is a left Rep(H)-module category. There
s an isomorphism of H-modules

SK(H,P)~ | Hom(M,P ok M).
MeM
When P = K, this tsomorphism is an algebra map.
Proof. We shall use the description of the internal Hom of the module

category g M given in Lemma . First, we shall prove that S¥(H, P) =

$arep Hom(M, P& M) as objects in Rep(H). Observe that if M, M', N, N’

are objects in kM, and f : M — M’ and g : N — N’ are K-module
morphisms, then the functor Hom : M° x M — Rep(H) is defined on
morphisms by

Hom(f, g) : Homg (H @k M', N) — Homp (H @y M, N'),
a—goao (idy ® f).
For any M € gM define 7t : SK(H, P) — Homg (H ®x M, P ®@x M), by
@) (h@m)=ah®1)@xm, hecH meM.
Equation implies that wﬂ(a) is a K-module morphism. It follows di-

rectly that 771@ is an H-module map and that it is dinatural.
Assume that E € Rep(H) and

d: E - Hom(—,P®K —)

is a dinatural transformation. Dinaturality, in this case, implies that for any
K-modules M, N and any K-module map f: M — N, we have

(4.10) (idp ® f)odpy(e) =dn(e)(idyg ® f),

for any e € E. In particular, if N is any K-module and n € N, define
fn: K = N by fo(k) = k-n. Hence f, is a K-module map, so (4.10)
implies that (idp ® fy,) o di(e) = dn(e)(idg ® fr). Evaluating this equality
at h® 1 € H ®, K we obtain

(4.11) drg(e)(h®@1)®@n=dy(e)(h®@n),
for any h € H. Taking N = K implies that di(e) € S5 (H, P), that is,
d (e) satisfies (4.4)).

Define ¢ : E — SK(H,P) as ¢ = di. Then implies that dy =
7 0 ¢ for any K-module N. This proves that the object S (H, P) together
with the dinatural transformations 77" has the universal property of the end.
Thus SX(H, P) = SMGMHoim(M,P QK M).

When P = K, it is not difficult to verify that the product of the adjoint
algebra defined in terms of the dinatural transformation (see (4.3))), coincides

with the product described in (3.2]). =
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So far, we have described the structure of the end SMeM Hom (M, P®x M)
as an object in Rep(H). It remains to describe the structure as an object in
the category of Yetter—Drinfeld modules over H. The next two results will
be the initial steps towards this objective.

Define the functor pg : k My — Rep(H) by px(P) = SK(H, P) for any
Pe gMg. If P,Q € kMg and f: P — @ is a morphism of K-bimodules,
then

pr(f): S®(H, P) = S*(H,Q), pr(f)(e) = foa

PROPOSITION 4.9. The functor px : kMg — Rep(H) is the right ad-

joint of pr. The unit and counit of the adjunction (px, pr) are given by

n i IdRep(r) = PK © PR, €1 pK o pr = I My,
nx(@)(h@k)=h-20k epla®k)=a(l®k),
forany X € Rep(H), P € kMg, x€ X,he H,a € SK(H,P) andk € K.

Proof. For any X € Rep(H), P € kMg, v € X, k € K and h € H
define
¢x,p : Hompy (X, S¥(H, P)) — Hom g 10)(X @y K, P),
dx.pla)(z®k)=a(z)(1®k),
¥x,p : Homx ) (X ® K, P) = Homp (X, S (H, P)),
Vx,p(B)(x)(h @ k) = B(h-z® k).

It follows by a straightforward computation that the maps ¢x p,¥x p are
natural morphisms, and are inverses of each other. The unit and counit of
the adjunction are given by

(4.12)

(4.13)

nx = ¥x xeuk (idxek), € = dgr(m p)plidsk (g p)). =

The next result is a particular case of Example Since we need an
explicit equivalence, we write out the proof.

LEMMA 4.10. There is an equivalence of categories Zgep(r)(k Mk) =~
H My

Proof. Let (M,0) € Zrep(m)(kMic). This means that M € g My, and
the half-braiding is given by ox : M ®k (X ®x K) — X ® M for any
X € Rep(H). Define A : M — H®x M by A(m) = og(m ® 1y ® 1k) for
any m € M. This establishes a functor

D : Zrepin) (kMi) = EMy,  D(M,0) = (M, ).
If (M, )\) € EMy, define 0y : M @ (X ®, K) — X @, M by
03\((m®;v®k):m(_l)-m@)m(o)-k, X €Rep(H),me M, ke K.
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It follows by a simple computation that 03\( is a well-defined isomorphism,
it is a K-bimodule map and it satisfies (2.18)). This defines a functor ¥ :
gMK — ZRep(H)(KMK) by LD(M7 >‘) = (M70)\)' .

For any P € LMy recall the structure of Yetter-Drinfeld module over
H of S¥(H, P) given by (&5), ({.0).

THEOREM 4.11. For any P € L M there is an isomorphism S (H, P) ~
Z(pK)(P) as objects in BYD.

Proof. If P € EMy, then Z(pg)(P,0?) = (SK(H P),c"), where, ac-
cording to , the half-braiding for py (P) = S¥(H, P) is the morphism
ol S¥(H, P) ®k X — X ® SK(H, P) given by the composition

é-'r —1
SE(H, P) @y X AN SE(H, P ok (X @ K))

pr (o)
e

SE(H, X @ P) == X @, SK(H, P)

for any X € Rep(H). Recall that ¢* is the half-braiding associated to P
explained in Lemma To compute o', we need to compute the bimodule
structure of the functor pgx. Both structures are given by and .

Using the formula for the unit and counit of the adjunction (pg,pK)
given in Proposition [£.9 we obtain

(Ex.p) e ®a)(h® k) = pr(idx @ ep)ixe,sx.p) (T © a)(h @ k)
= (idx ® ep)nxg,sx (1,p) (T @ a)(h @ k)
= (idx ® ep) (h(1) 2@ hg) - a® k)
(1) @ N -a(lek)
1) T® a(h(Q) ® k),

h
h

and

(Ex.p) a®@z)(h@ k) = (ep @ idxe,x)nsk (11,P)e, x (@ ® ) (h @ k)
= (ep ®idxg,k)(ha) @ ®@1®hy) T @k)
= (hay- ) (1® 1) @ hg) -z @k
=alhqy®1)®@hg 2@k
for any « € SK(H,P), 2 € X,he H, k€ K.

Now, the H-coaction of Z(px)(P,c*) associated with the half-braiding

O'P is

A SR(H,P) — Hey S¥(H,P), X(a)=o0y(a®1p).

Let us denote A7 () = a™! ® al. Using the formula for o, we know that
(55{7]3)_10[1;(04 ®1ly) = ﬁK(ag)(gﬁp)_l(a ® 1g). Evaluating this equality
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at h® k € H ® K we find that
(Ehp) o 1g)(h@ k) = hgya ' @ a(ho) @ k)

is equal to

i
ot (alhy ®1) @ hey) @ k)
= alhq)y ®@1)—nhe) @ alha) @ 1)) - k.
Thus
(4.14)  hpyat ®@a (e ® k) = alha) ® 1) 1yhe) ® alha) @ 1)) - k
for any oo € S5(H, P) and h® k € H @y K. Hence
a'®@a(h®@k)=a"'®a(eg(ha))he @ k)
= S(ha))heo " ® a®(hg @ k)
= S(hay)alhe) @ 1)nyhs) @ alhe) @ 1)) - k.
The last equality follows from . This formula coincides with . "
As a consequence of Theorems [£.8 and we obtain the next result.

COROLLARY 4.12. Let K be a finite-dimensional right H-simple left H -
comodule with trivial coinvariants. There exists an isomorphism of algebras

SH,K)~ Ax
in the category gyD. "

EXAMPLE 4.13 (Case K = H). We denote by H,q the algebra in the
category gyD whose underlying algebra is H, with H-coaction given by
the coproduct and H-action given by the adjoint action, that is, h>x =
hyzS(h(2)) for b,z € H. Since H is an H-comodule algebra with coproduct,
we can consider SY(H, H). The map ¢ : S(H, H) — H,q, ¢(a) = a(1® 1),
is an isomorphism of algebras in flyD. Indeed, it is an H-module map. Take
a € S(H,H) and h,t € H. Then
(415) Oé(h ® t) = Oé(hl X ]’LQS(hg)t)

e h(l)Ot(l ® S(hg)t) = h(l)a(l X 1)S(h2)t.
The second equality holds because « is an H-module map, and the last
equality follows from (4.4). Then
p(h-a)=(h-a)1®1)=a(h®1)=hpa(l®1)S(he) = hv>¢(a).

It follows by a straightforward computation that, ¢ is an algebra map
and an H-comodule map. Using (4.15)), it follows that the map ¢ : Hyq —
S(H,H), Y(x)(h@t) = hyzS(h2)t, z,h,t € H, is the inverse of ¢.
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EXAMPLE 4.14 (Case K = k). We denote by H; the following algebra
in the category gyD. The underlying algebra is H*. The H-action and H-
coaction are - : H @y Hjy — Hyq, A2 Hyy — H @y Hiy, Mf) = f—1) @ f(0),
where

(h- f)(x) = f(zh), (g, f—1)) ) = S(90))f92)
for any h,z € H and g € H*. It follows that S(H, k) = H;.

5. Some explicit calculations. In this section we shall explicitly com-
pute the adjoint algebra for the representation categories of group algebras
and their duals. We shall use the identification of S(H, K) with the elements
in H* ® K that satisfy . First we recall the classification of exact in-
decomposable module categories over group algebras and their duals.

5.1. Module categories over the tensor categories Rep(k®) and
Rep(kG). Assume G is a finite group. We shall recall the classification of
exact indecomposable module categories over Rep(k®) and Rep(kG). For
this, we shall give families of simple left H-comodule algebras, where H =
kY kG.

Assume F' C G is a subgroup and 1 € Z2(F,k*) a 2-cocycle. We denote
by ky F' the twisted group algebra. We can choose 9 (in a cohomology class)
such that

¢(f79)¢(9717f71): 17 T/f(ﬂ 1):¢(17f):17
for any f,g € F. In that case we shall say that ¢ is normalized.
The twisted group algebra ky, F' is a left kG-comodule algebra as follows.
Elements in k,, F' are linear combinations of ey, f € F. The product and left
kG-coaction are

eren = (f,h)esn,  Mey) = f®ey,
for any f,h € F.If V is a simple ky F-module, we can form the following al-
gebra. The endomorphism algebra End(V') is a right kF-module with action
given by
(T-fw)=f1-T(f-v), feFveV,TecEndV).

Define K(F, 9, V) = End(V) ®kr kG. Let S C G be a set of representative
elements of cosets F'\G.

Any element in K(F,1,V) is of the form T'® s, for some s € S,T €
End(V). Here z denotes the class of z € kG ®x End(V) in the quotient
kG ®xr End(V'). The product in IC(F,, V) is defined as follows:

Tez)(U®y)=0,yToU®zx, T,UcEnd(V), z,yes.
The unit is ) 4 Id ® 5. The vector space K(F,1, V) has the structure of a
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right kG-module that makes it into a module algebra. The right action is
Tezx)-g=T®zg, g¢ge€QqG.
With this action IC(F,, V) is a right kG-module algebra, hence it is a left
kC-comodule algebra with coaction
X K(F 9, V) =k @ K(F,4, V), Mk) = k1) ® k)

such that for any g € G, (k_1), 9)k@) =k - g.

The next result is part of the folklore of representations of tensor cate-
gories. See, for example, [4, Proposition 4.1, Lemma 4.3]. It also follows from
Theorem [3.11

THEOREM 5.1. Let G be a finite group.

(i) If M is an exact indecomposable module category over Rep(kG), then
there exists a subgroup F C G and a normalized 2-cocycle ¢ € Z%(F,k*)
such that M =~ pM as module categories.

(i) If M is an ezact indecomposable module category over Rep(k®), then
there exists a subgroup F C G, a normalized 2-cocycle 1 € Z*(F,k*)
and a simple ky F-module V' such that M =~ i(p )M as module cate-
gories. m

REMARK 5.2. The equivalence class of the module category i(r,y,v)M
does not depend on the choice of the simple kyF-module V. The twisted
group algebra k,, F' is an algebra in the category Rep (k). One can prove that
regardless of the choice of V', the module category i (g, )M is equivalent
to Rep(ka)kwp.

REMARK 5.3. Let F' = {1} be the trivial subgroup of G, ¢ = 1 and
V =k with the trivial action. Denote K = IC(F,, V). It is not difficult to
see that K ~ k¢ as left k“-comodule algebras. Hence K{1},1,0)M =~ Rep(k%)
as Rep(k“)-module categories.

5.2. Case H = kG. Let F' C G be a subgroup, and take a normalized
2-cocycle ¢ € Z%*(F,k*). Let K = kyF be the twisted group algebra. We
shall denote by {ef}fer the canonical basis of kyF. The product in this
algebra is then ere; = (f,l)es for any f,l € F.

Let S C G be a set of representatives of right cosets F'\G such that
1€ S. Define b: F x F —k* as

(LI L)
D=
Also, for any [ € F, set C; = {(g,f) € Fx F : g 'fg=1}. For any s € S,
[ € F define
asi= Y. b f)o@es ek @ K.
(9,£)€C
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Using the identification explained in Subsection the element ay; can be
seen as an element in Hom (kG ®k K, K), where

(5.1) asi(z @ en) = 85 b(f, FLETOFLF TN h) eprp,
ifx=fteGwithteSandheF.

LEMMA 5.4. The set B = {a;; € kC @k kyF :se S, 1€ F}is a basis
Of S(kG,ka)

Proof. Clearly B is a set of linearly independent elements. Let z be an
arbitrary element of k& @y kyF. Thus z =) .~ feF &, 102 ® ey for certain
scalars &, ¢ € k. If z € S(kG,kyF'), equation (4.9) implies that

Z {x f5 ly efe = Z §x f(s elef
z€G, feF z€G, feF
for any y € G and [ € F. This implies that
> Gy (e = &l ey
feF feF
This equality implies, by looking at the coefficient of ¢;¢, that
&y, 5 = Eya-10(L f)
for any [, f € F and y € G. Hence

Z 517}0(5,5 e = Z fgs,ffsgs ey

z€G, feF seS, g, feF

= Z &s,gflfgb(gv f)5g5 ey
seS, g, feF

= Z Z é‘s,lb(gy f)5gs Qef= Z gs,las,l‘
seS,leF (g,f)eC seS,leF

Thus z is a linear combination of elements of B. u

The proof of the next result follows by a straightforward computation.

LEMMA 5.5. The kG-coaction of S(kG,kyF), given in (4.7), is deter-
mined by
Masg) =57"gs @ asg
for any g € F and s € S. The kG-action on S(kG,kyF), given in (4.5), is

determined by
€ Ogqg = b(hilu hilgh) O h=1gh

if x = ft and st~ f~' = hr, where f,h € F andt,r € S. u

For any subgroup F C G and a normalized 2-cocycle v € Z?(F,k*),
define Cy, (G, F) as the subspace of Homy (k[S x F], k) generated by functions
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¢ : S x F — k such that
(5.2) b(w,zs 'gsz " )p(s,g) = b(h™',h " gh)p(r, h ™" gh)

for any 2 € G such that sz~! = hr with » € S and h € F. Observe that if
F =G and ¢ = 1 then Cy(G, F) is the space of class functions on G.

PROPOSITION 5.6. Let F C G be a subgroup, and ¢ € Z*(F,k*) a nor-
malized 2-cocycle. There exists a linear isomorphism CF(x, pM) =Cy (G, F).

Proof. As before, let S C G be a set of representatives of elements of
F\G. Let ¢ € CF(k,pM). This means that ¢ : S(kG,kyF) — S(kG,kG) is
a morphism of kG-Yetter—Drinfeld modules. Elements of the basis described
in Lemma for S(kG,kG) are of the form a4 € k¢ @i kG for any g € G.

Using Lemma [5.5] since ¢ is a kG-comodule map, we observe that

qb(a&g) = ¢8,ga1,sflgs
for any s € S and g € F. Here ¢, € k. This implies that ¢ is determined
by the scalars ¢ 4. It remains to prove that these scalars satisfy (5.2). Take
r € G, and write it as x = ft, where f € F and t € S. Assume that
st=lf~1 = hr, where h € F and r € S. Since ¢ is a kG-module map, we
have

¢($ ) as,g) = b(hila hilgh)gﬁ(ar,h—lgh) = b(hilv hilgh)¢r,h—1gha1,r—1h—1ghr
=x- qb(Oés,g) = Q5T - ap g—1g5 = gf)s’gb(x, $5_198$_1)a1’x3—lgsm—1.
This implies that b(h~!, h_lgh)gbhhflgh = b(z, 28 gsz ™ )ps g m

5.3. Case H = k®. Let F C G be a subgroup, and o € Z2(F,k*)
a normalized 2-cocycle. Let also V' be a simple ky,F-module. Recall the

definition of the left k&-comodule algebra KC(F,, V) from Subsection
Again, let S C G be a set of representatives of right cosets F'\G such that
1 € S. The following technical result will be needed later.

LEMMA 5.7. Let f € F. The vector space consisting of all T € End(V)
such that

(5.3) UoT=To(U-f),
for any U € End(V') is 1-dimensional.

Proof. Since the group F' is finite, the linear operator f- : V — V is
diagonalizable. Let {v;}?; be a basis of V such that f-v; = gv; with
gi € k* for any i = 1,...,n. Let T € End(V) be a linear transformation
that satisfies (5.3). For any j,k =1,...,n define U;} : V' — V the operator
Ujk(vi) = 65 for any @ = 1,...,n. Assume that T'(v;) = >, t;;v;. On the
one hand, for any ¢ = 1,...,n we have

(UjJC o T)(’Ui) = tiJ"Uk.
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On the other hand,
To (Ung . f)(?jz) = quk_ldj,l Z th’Ul.
l

Hence, (5.3)) implies that if ¢ # j then ¢; ; = 0, and if ¢ = j then qiqk_ltk,k =
t; ;. This implies the lemma. =

For any f € F denote by Ty € End(V') the unique (up to scalar) non-zero
linear operator that fulfils condition ([5.3)) of Lemma For any (f,s) €
F xS, define g ) € kG @k K(F, v, V) by

QAfs) = slfs® Ty ® s.
When f =1, we can choose Ty = Idy.

PROPOSITION 5.8. The linearly independent set {cv s q) : (f,8) € F' x S}

is a basis for S(kG, K(F,,V)).

Proof. It is straightforward that for any (f,s) € F'x S the element a s,
satisfies condition ([£.9). It follows from Lemma [£.3(iv) that

dim(S(kE, K(F,v,V))) = dim(k%) = |G|.
Since the set {a(y) : (f,s) € F'x S} has cardinality |G], it must be a basis. =
For any (f,s) € F xS define I(f,s) = {(h,a) € GXG : aha™! = s~ fs}.
LEMMA 5.9. The k%-coaction of S(kC,K(F,v,V)), given by , 18

determined by
Mags)= Y. 6.®heT;@sa
(a,h)EI(f,s)

for any (f,s) € F x S. The kG -action on S(kC,K(F,v,V)), given by ([@.5),
1s determined by

5 e )0 if g# s [s,
9 o) o) ifg=s"1fs. m

PROPOSITION 5.10. Let F C G be a subgroup, and ¢p € Z*(F,k*) a
normalized 2-cocycle. Let V' be a simple kyF'-module. There exists a linear
isomorphism CF (jc(p 1) M) ~ k5.

Proof. Recall that the comodule algebra representing the regular module
category Rep(k®) is the algebra K({1},1,k) (see Remark . Let ¢ €
CF (ic(rp,vyM). Thus ¢ : Sk K(F,¢,V)) — Sk K({1},1,k)) is a k-

module morphism and k¢-comodule morphism.
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Elements in the basis of S(k“,KC({1},1,k)) are Q(y,q), for any g € G.
Hence
0 if f=#£1,
dlags) if f=1.
for any f € F and s € S. We deduce that ¢ is determined at the values of
(1, for any s € S. Assume that

o(a(s) = Y bsg(1g)
geG
for certain ¢, € k. Since I(1,s) = {(1,a) € G x G}, and ¢ is a k%-comodule
map, we have that ¢s.g = ¢4 -1 for any s € S and g,a € G. Here we
are abusing notation, since sa denotes the element ¢ € S that represents
the class to which sa belongs. Hence the scalars ¢4 are determined by a
function f : F\G — k as follows:

(bs,g = f(?)

¢(a(f,s)) = gb(dsfs*l : a(f,s)) = 5sfs*1 : ¢(a(f,s)) = {

forany se Sand g € G. u

5.4. The adjoint algebra for tensor categories C(G, 1, F, ). Let G
be a finite group and w € Z3(G,k*) a 3-cocycle. Then C(G,w) stands for
the category of finite-dimensional G-graded vector spaces with associativity
constraint defined by

axyz(x®y) ®z)=w(g,h, flze (y® 2)

for any G-graded vector spaces X, Y, Z, and any homogeneous elements x €
Xy, y € Yy and z € Zy. Note that if w = 1, then there is a monoidal
equivalence C(G,w) ~ Rep(k%).

If F C G is a subgroup, and ¢ € Z2(F,k*) is a 2-cocycle such that
dyw = 1, then the twisted group algebra k,, F" is an algebra in C(G,w). Then
C(G,w, F,1) is the category i, rC(G,w)k,r of kyF-bimodules in C(G,w).
These categories are called group-theoretical fusion categories.

We shall describe the adjoint algebra Ap and the space of class functions
CF (D) when D = C(G, 1, F,v). We shall keep the notation of Section

It follows from Corollary that there is a monoidal equivalence

C(G7 1> F?’IJZ)) = Rep(G)]:wFM

Using this equivalence and Lemma (ii), it follows that Ac(q,1 7,y 1s iso-
morphic to 0y ” r(Ag " F), where Ak WF 18 the adjoint algebra corresponding to
the Rep(G)-module category i, r M.

Using the explicit description of the functor bk, given in Subsection
we find that Acq,1,Fy) is isomorphic to S(kG,kyF) @y ky F. Recall that
S(kG,kyF) has a basis consisting of the elements o, € kC @y ky F for
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s € S, and | € F. The vector space S(kG,kyF') @y kyF is the following
object in the category Z(k,rC(G,w)k,r). The left kG-coaction is given by

A S(kG, k¢F) Rk kd,F — kG ®x S(kG, kd,F) Rk k¢F,
Mass@ep) =s'fsh®@asf®e,, fheF,s€Ss.
The ky, F-bimodule structure is given by

eg (asp®@ep) e =bd ', d" fd)b(g, h)w(gh,l) oy g-1 4 @ egn
if s¢g~! = df where ¢, f,l,d € F and r,s € S.
The next result is a direct consequence of Lemma and (the proof of)
Proposition |5.6

LEMMA 5.11. The space of class functions CF(C(G, 1, F, 1)) is isomor-
phic to C1(G,F).
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