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Abstract
We prove boundedness results for integral operators of fractional type and
their higher order commutators between weighted spaces, including LP-L?,
LP-BMO and LP-Lipschitz estimates. The kernels of such operators satisfy
certain size condition and a Lipschitz type regularity, and the symbol of the
commutator belongs to a Lipschitz class. We also deal with commutators of
fractional type operators with less regular kernels satisfying a Hérmander’s
type inequality. As far as we know, these last results are new even in
the unweighted case. Moreover, we give a characterization result involving
symbols of the commutators and continuity results for extreme values of p.
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1. Introduction

There is a close relationship between the theory of Partial Differential
Equations and Harmonic Analysis. This is evidenced, for instance, by the
existence of a mechanism that provides us with regular solutions of PDE’s
when we equip this machinery with continuity properties of certain related
operators (see, for example, [4], [5], [8], [9], [12], [33]). Therefore, it seems
appropriate to explore the boundedness properties of the mentioned opera-
tors and, particularly, we shall be concerned with commutators of integral
operators of fractional type.
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It is well known that the fractional integral operator of order «, 0 <

«a < n, is defined by
i) = [ Ay,

n |z =yl

whenever this integral is finite. There is a vast amount of information about
the behavior of the operator above (see for example [1§], [20], [26], [30] and
[35]). In [6], Chanillo introduced the first order commutator of I, with a
symbol b € L{. _(R"), formally defined by

[b7 Ia](f) = bIaf - Ia(bf)'

Particularly, if b € BM O, the space of bounded mean oscillation, the author
proved that, for 1 < p < n/a and 1/q = 1/p — a/n, the operator [b, I,]
is bounded from LP(R™) into L4(R™). Some topics related to properties of
boundedness for commutators of fractional integral operators for extreme
values of p can be found in [19]. (For more information about BM O spaces
see [21]).

The continuity properties of the commutator of the fractional integral
operator acting on different spaces were studied by several authors con-
tributing, in this way, to the development of PDE’s. Some related articles
are given by [2], [10], [14], [I7], [22], [27], [28], [29], [32], [34]. In [25] the
authors consider the commutators of certain fractional type operators with
Lipschitz symbols and prove the boundedness between Lebesgue spaces,
including the boundedness from Lebesgue spaces into BM O and Lipschitz
spaces on non-homogeneous spaces. (See also [31] in the context of variable
Lebesgue spaces).

Nevertheless, there is not enough information about the behavior of
the commutators acting between weighted Lebesgue spaces, even less for
extreme values of p, that is, the weighted LP-BM O or LP-Lipschitz bound-
edness. Hence, one of our main aim is, precisely, to give sufficient conditions
on the weights in order to obtain these continuity properties. Some previ-
ous results in this direction were given in [I] where the authors study the
boundedness between Lebesgue spaces with variable exponent for commu-
tators of fractional type operators with BAM O symbols (see also [I1] in the
framework of Orlicz spaces).

We shall first consider fractional type operators, and their commuta-
tors, which kernels satisfy certain size condition and a Lipschitz type regu-
larity. For this type of operators we prove boundedness results of the type
described above. Particularly we prove a characterization result involving
symbols of the commutators and continuity results for extreme values of p.



THE EFFECT OF THE SMOOTHNESS OF FRACTIONAL... 3

Later, we study commutators of fractional type operators with less
regular kernels. These type of operators include a great variety of operators
and were introduced in [3]. See for examples and more information.

The paper is organized as follows. In we give the preliminaries
definitions in order to state the main results of the article, which are also
included in this section. Then, in §3| we give some auxiliary results which
allow us to prove the main results in

2. Preliminaries and main results

In this section we give the definitions of the operators we shall be deal-
ing with and the functional class of the symbols in order to define the
commutators.

We shall consider fractional operators of convolution type Ty, 0 < a <
n, defined by

Tof(z) = - Ko(z —y)f(y)dy, (2.1)

where the kernel K, is not identically zero and verifies certain size and
smoothness conditions. We will consider the following size conditions: we
say that K, satisfies the condition S}, if the following pointwise inequality

C
|Ka(z)| < e lz| #0

holds for some positive constant C'. In this case, we write K, € S},.

The examples of fractional type operators of the form (see [3])
show that we can have kernels satisfying a weaker size condition, which
was introduced in [3]: we say that K, satisfies the condition S, if it verifies
the following integral inequality

/ |Kq(x)|dx < Cs®,
s<|z|<2s

for every s > 0 and some positive constant C. We write it as K, € S,.
Clearly, condition S}, implies condition S,.

Let 0 < 0 < 1. We say that a function b belongs to the space A(9) if
there exists a positive constant C' such that, for every z, y € R"

[b(z) = b(y)| < Clz —y|’.

The smallest of such constants will be denoted by [[b]|z5). We will be
dealing with commutators with symbols belonging to this class of functions.

Given a weight w, that is, a non-negative and locally integrable func-
tion, we say that a measurable function f belongs to L%,(R™) for some
1<p<ooif fwue LP(R™).
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Given two functions f and g, by < and 2 we will mean that there exists
a positive constant ¢ such that f < cg and cf > g, respectively. When both
inequalities hold, that is, f < g < f, we will write it as f = g.

We will now classify the operators into two different types, according
to the regularity conditions satisfied by their kernels.

2.1. Fractional integral operators with Lipschitz regularity. We

shall assume that K, satisfies the smoothness condition Hg ., that is,
there exist a positive constant C' and 0 < 7 < 1 such that
|z — 2'|"

|Kao(z —y) = Ka(2' —y)| + [Ka(y — ) = Ka(y — 2')| < OW’
whenever |z — y| > 2|z — 2/|.

A typical example is the fractional integral operator I, whose kernel
Ko(x) = |2|*™" satisfies condition H, ., as it can be easily checked.

Related with the fractional 1ntegra1 operators T, we can formally define
the higher order commutators with symbol b € L] (R™), by

I%ﬂ@=/>W@—MwWKAw—Mﬂw@,

where m € Ny is the order of the commutator. Clearly, T b =T,.

As we have said, we are interested in studying the boundedness prop-
erties of the commutators 777, with symbol b € A(d), on weighted spaces.
We shall first consider their cbntinuity on weighted Lebesgue spaces of the
type defined previously. We shall also analyze the boundedness of 77", from
weighted Lebesgue spaces into certain weighted version of Lipschitz épaces.
For 0 < § < 1 and w a weight, these spaces are denoted by L, (4) and
collect the functions f € LIOC(R”) that satisfy

Wleais = sgp 221 [ 150~ fulde < oo
where ||g||c denotes the essential supremum of a measurable function g.
The case § = 0 of the space above was introduced in [26] as a weighted
version of the space of functions with bounded mean oscillation.

The classes of weights we will be dealing with are the well-known A4, ,
classes of Muckenhoupt and Wheeden ([26]). For 1 < p, g < oo these classes
are defined as the weights w such that

Sup<|;| / w(g;)qu>l/q <|;‘ /B w(a:)p/dm)l/p/ < 0.

When ¢ = 0o, we understand that w € 4,  as wP e A
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In this subsection we shall assume that the operator T, has a convo-
lution kernel K, that verifies condition Hj ., with 0 < n < 1. In order
to simplify the hypotheses we shall suppose that m € N U {0} with the
convention that 3/0 = oo if § > 0.

We now give the boundedness result between weighted Lebesgue spaces

for the higher order commutators of T, with Lipschitz symbols.

THEOREM 2.1. Let 0 < a < n and 0 < 6 < min{n, (n — «)/m}. Let
l<p<n/(mé+a),1/g=1/p— (md+«a)/n and b € A(). If K, € S,
and w € Ay 4, then there exists a positive constant C' such that

1/p

1/q
([ mr@rras) < cloig, ([ 1f@poera)
R" Rn
for every f € Li,(R™).

REMARK 2.1. When m = 0 and T, = I,, the result above was proved
in [26]. Notice that there are no symbols or parameters ¢ in the hypotheses
when this is the case.

The next result gives the continuity properties of T} between weighted

Lebesgue spaces and L,,(8) spaces. By 87 we understand 3 if 3 > 0 and 0
if 8<0.

THEOREM 2.2. Let 0 < a < n and 0 < § < min{n, (n — «)/m}. Let
n/(mé+a) <r<n/(a+(m-1)9),ifm>1orn/a<r<n/(a—n)t,if
m=0. Let 6 =mé + a — % and b€ A(9). If K, € S}, and w € Ay, then
there exists a positive constant C' such that

172 Fl 5 < ClIBIRG L Fwller

for every f € Lj,(R™).

REMARK 2.2. When m =1, w =1 and T, = I, the result above was
proved in [25] in the general context of non-doubling measures.

REMARK 2.3. If r = n/(md + «), then § = 0 and the space Ly(8) is
the weighted version of the BM O spaces introduced in [26]. By taking into
account the range of p in Theorem [2.1} it is clear that this is the endpoint
value from which the Lebesgue spaces change into BMO and Lipschitz
spaces when the commutator acts. Particularly, if m = 0 and T, = I,,
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this is the well-known result proved in [26]. Notice again that there are no
parameters 0 or symbols in this case.

On the other hand, if m =0, T, = I, and n/a <r <n/(a —1)T, that
is, 7 = 1 in the definition of the class H; ., the result above was proved in
[30].

For the extreme value r =n/((m—1)d+a«a), m e Nand 0 < 6 <n <1,
we obtain the following endpoint result in order to characterize the symbol
b in A(S) in terms of the boundedness of T} in the sense of Theorem
In order to give this result we introduce some previous notation. For
k= 0,1,...,m we denote ¢, = m!/(kl(m —k)!). If also z, u € R", we
denote S(z,u, k) = (b(x) —bp)™ FT,((b— bp)¥ f2)(u), where fo = fXrr\B
for a given ball B and a locally integrable function f.

THEOREM 2.3. Let m € N, 0 < § < min{n,(n — a)/m} and r =
n/((m—=1)0+a). If Ko € S5, w € Ay jmsta),co and b € A(6), the following
Statements are equivalent.

(1) Tglh = Ly (R™) = Ly (6);
(ii) There exists a positive constant C' such that

[wxB s /
|B|1+6 B

for every ball B C R", z,u € B and f € L{ (R").

ch (z,u, k) — (S(,u, k) Bl dz < C| fwl,,  (2.2)
k=0

REMARK 2.4. When m = 1, w = 1 and T, = I, the result above
was proved in [25] in a more general context of non-homogeneous spaces.
Certainly, their result was inspired in the article of [19], where the same
result is proved for m =1, w =1, T, = I, and b € BMO.

REMARK 2.5. In [19] the authors also have obtained that, in the case
T, =1,,b€ BMO, m =1 and w = 1, the boundedness of the commutator
I, from L™ into BMO can only occur if b is constant. In our case, if
b e A(0), when T, = I, m = 1 and w = 1, we can deduce, by , that,
if I, is bounded from L™ into LL(§), then

\B\H ,

ch T, U, k (S('vu’ k))B] dr < CHan/a
k=0
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Since it is easy to see that

‘B’H_ /

1

Z S(z,u, k) — (S(,u, k))B]

5/| —bB|d;v/ if(yl _dy
|B[1Jr @B)e [u—yl

1
- [ o) —vplae| [ TD gy
|B|'tw /B @B)e [u—y["

Following the same guidelines of [19] with fy(y) = |u — y|_aXB(0,N) (u —
y)X(2B)C(y) for N € N, we obtain that

1
vt /B\b(x) ~ bpldz
dy

Due to the fact that ‘f(zB)cu{|u—y|<N} Ta—y[®

have b(x) = bp almost everywhere, for every ball B, which yields that b is
essentially constant.

dzx

9

we have

< CHan/oz

1—a/n
dy /

/(23)cu{|u—y<N} lu —y|™

1—a/n
— 00 when N — oo, we

2.2. Fractional integral operators with Hormander type regular-
ity. We now introduce the conditions on the kernel that will be considered
in this section. First, we must give some notation.

It is well-known that the commutators of fractional integral operators
can be controlled, in some sense, by maximal type operators associated to
Young functions. By a Young function we mean a function ® : [0,00) —
[0, 00) that is increasing, convex and verifies ®(0) = 0 and ®(t) — oo when
t — oco. The ®-Luxemburg average over a ball B is defined, for a locally
integrable function f, by

_ o1 |f(z)]
Hf||c1>,B—1nf{)\>0.|B|/B<I>< \ >dx§1}.

The maximal type operators that control the commutators involve these
averages. More precisely, if f € Li (R") and 0 < a < n, we define the
fractional type maximal operator associated to a Young function ®, by

Ma,‘bf(x) =

where the supremum is taken over every ball B that contains x € R". When
O(t) =t, Myo = M,, the classical fractional maximal operator.
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Given a Young function ®, the following Hélder’s type inequality holds
for every pair of measurable functions f, g

1
57 L 1f@at@lde < 207le slal o

where ® is the complementary Young function of ®, defined by

d(t) = ig}g{st — ®(s)}.

It is easy to see that ¢ < ® 1(¢)®1(t) < 2t for every ¢ > 0.
Moreover, given ®, ¥ and © Young functions verifying, for every ¢ > 0,
that ®~1(t)U~1(¢t) < ©7L(¢), the following generalization holds

I falle,s < I flle,Bll9llw,B-

We are now in position to define the smoothness condition on K.
We say that K, € H, g if there exist ¢ > 1 and C' > 0 such that for
every y € R" and R > cly|

oo
S @R (Kal- = y) = Ka() Xpjm2irllo, 50241 R) < C,
j=1

where |- | ~ s means the set {x € R" : s < |z]| < 2s}.

When @(t) = t9, 1 < ¢ < oo, we denote this class by H,, and it can
be written as

0 l/q
Z(QjR)n_a ((2];)71 /l 2R Koz —y) — Ka(x)]qd:c> <C.

=1

The kernels given above are, a priori, less regular than the kernel of
the fractional integral operator I, and they have been studied by several
authors. For example, in [23], the author studied fractional integrals given
by a multiplier. If m : R®™ — R is a function, /tEe multiplier operator T;,
is defined, through the Fourier transform, as T}, f(¢) = m(¢ )]/”\(C) for f in
the Schwartz class. Under certain conditions on the derivatives of m, the
multiplier operator T}, can be seen as the limit of convolution operators
TN having a simpler form. Their corresponding kernels K2 belong to the
class So N H, ,» with constant independent of IV, for certain values of r > 1
given by the regularity of the function m (see [23]).

Other examples of this type of operators are fractional integrals with
rough kernels, that is, with kernel K, (z) = Q(x)|z|*™™ where Q is a func-
tion defined on the unit sphere S~ ! of R”, extended to R™ \ {0} radially.
The function 2 is an homogeneous function of degree 0. In [3, Propo-
sition 4.2], the authors showed that K, € S, N Hy e, for certain Young
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function @, provided that Q € L®(S"~1) with

! dt
w@(t)i < 00,
0 t

where wg is the L®-modulus of continuity given by

wa(t) = sup [ +y) — Q)| g1 < 00,
ly|<t

for every ¢t > 0. This type of operators where also studied in [7] and [13].

As we said previously, we are interested in studying the higher order
commutators of T,. Since we are dealing with symbols of Lipschitz type,
the smoothness condition associated to these commutators will depend on
the Lipschitz parameter § when the LP-Lipschitz continuity is analyzed.
This condition is defined as follows.

DEFINITION 2.1. Let m € No, 0 < a < n, 0 <4 < min{l,(n — «a)/m}
and let ® be a Young function. We say that K, € Hy o m(0) if

3 (@)™ (2R (Kl — ) — Kal-))

Jj=1

)<

for some constants ¢ > 1 and C' > 0 and for every y € R" with R > c|y|.
Clearly, when § =0 or m =0, Hy0 m(6) = Ha0.

REMARK 2.6. It is easy to see that Hy dm(02) C Hadm(01) C Hao
whenever 0 < §; < J3 < min{l, (n — a)/m}.

Recall that Fourier multipliers and fractional integrals with rough ker-
nels are examples of fractional integral operators with K, € H, ¢ for cer-
tain Young function. By assuming adequate conditions depending on §, on
the multiplier m, or on the L®-modulus of continuity we, one can obtain
kernels K € Hy o m(0). This fact can be proved by adapting Proposition
4.2 and Corollary 4.3 given in [3] (see also [24]).

We shall also deal with a class of Young functions that arises in con-
nection with the boundedness of the fractional maximal operator M, v on
weighted Lebesgue spaces (see §3). Given 0 < a < n, 1 < 5 < p < n/a
and a Young function ¥, we shall say that ¥ € B, g if t=*/"W=1(t) is the
inverse of a Young function and U'*t% € B, for every p > nf/(n — af),
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that is, there exists a positive constant ¢ such that

/°° YT (t) dt

— <0
P t

for each of those values of p.
We now state the following generalizations of Theorems and
We shall consider again m € Nj.

THEOREM 2.4. Let 0 < a <n and 0 < 6 < min{l,(n — «)/m}. Let
1l<p<n/(md+a),l/g=1/p— (md+ a)/n and b € A(J). Assume
that T;, has a kernel K, € S, N H, ¢ for a Young function ® such that its
complementary function = B+, for some 1 < 3 < p. Then, if w is a
weight verifying w® € A 2.4, there exists a positive constant C' such that
1/p

1/q
([ i) < el ([ ropeerd)
Rn Rn
for every f € Li,(R™).

REMARK 2.7. If we consider, for example, ®(t) = et'” — e with v >0,

then ®(t) ~ t(1 + log" t)7 and this function verifies condition Brstai-
Thus, ® satisfies the hypotheses of the theorem above and, in this case, we
can take w € A, . As we have mentioned before, this condition B,54qa.3
is related with the boundedness of the corresponding fractional maximal

operator M rad between L%, and L%, when w® € A 2.4 (see Theorems|3.1

and below). When 5 > 1, a typical example is 5(1%) = tP(1 + log™ )"
for v > 0. In this case, the Young function ® related with the smoothness
condition on the kernel K, given in the theorem above is ®(t) = t7(1 +
log® )=/ (=1 where ' = 5/(8 — 1).

THEOREM 2.5. Let 0 < o < n, 0 < ¢ < min{l,(n — a)/m} and
n/(mdé+a) <r <n/((m—1)§ +«a) such that § = md+a — . Let w be a

weight such that w® € Ay /8,00 for some 1 < B < r. Assume that T, has a

kernel K, € S:NHy 0m(8) for a Young function ® such that ®~1(t) < 5

for every t > 0. If b € A(S), then there exists a positive constant C' such
that

1Tl 5y < CBIRGs L fl
for every f € Lj,(R™).
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THEOREM 2.6. Let m € N, 0 < § < min{l,(n — «)/m} and r =
n/((m — 1)6 + a). Let w be a weight such that w® € Ay /8,00 for some
1 < B < r. Let T, be a fractional integral operator with kerne] K €

S* N Hy.om(5) where ® is a Young function verifying ®~1(t) < 5 for

every t > 0, and ® € Bsta,p- If b€ A(6), the following statements are
equivalent.

() T&y + Ly (R") = Ly (6);
(ii) There exists a positive constant C' such that

waBHoo/
|B|1+5 B

for every ball B C R", z,u € B and f € L]

ch (@, u, k) = (S(, u, k) ]| dz < C| fw],
k=0

(R").

loc

3. Auxiliary results
In this section we give some previous results. We begin with an in-

equality involving functions in A(J) which is easy to check.

LEMMA 3.1. Let 0 <0 <1 and B C R™ a ball. If b € A(¢), then for
every y € AB, A > 1,

5
b(y) — bs| < C|b]lae) [AB]"-
The following lemma is an easy consequence of condition S,.

LEMMA 3.2. Let K, be a kernel verifying condition S, with(0 < o < n.
Then, for any ball B = B(xp,rg), we have

/ |Ko(x — zp)|de < rg.
B

In order to obtain the boundedness result between Lebesgue spaces,
we prove the following key estimate, which shows how can we control the
higher order commutators of T, by a fractional maximal function via the
sharp maximal operator Mg , 0 < v <1, given by

Mif(a) = sup int = [ 1£) = aldy.

B>z a€R

where M&,Yf = M§(|f|7)1/7. In the following, for0 < o <nand 0 <y <1
we shall denote Mg~ f 1= Mo~ (| f]7)1/7.
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LEMMA 33. Letm e N, 0 <y <1l/m O0<a<nand0 <<
min{1l, (n —a)/m}. Let b € A(0) and T, a fractional integral operator with
kernel K, € S,,. Then, there exists a positive constant C' such that

(i) if Ko € HY

a,007

m—1
M§ (T ) () < ClIblRs | S Mo, 4 (1T, f1) (@) + Myysaf () | |
j=0

where §; = 6(m —j), j=0,...,m.
(ii) if Ko € Hq 0 for some Young function @,

m—1
ME (T ) (@) < CIblT | S5 Moy (T2, £ (@) + My, 55 (@) |
7=0

where §; = 6(m — j), j = 0,...,m, and ® is the complementary
function of ®.

REMARK 3.1. For 0 <¢é <1, m=1and K, € H ., and homogeneous
of degree aw — n, the proof of (i) can be found in [31] for a larger class of
Lipschitz spaces with variable parameter.

Proof of Lemm al3.3l Fix B a ball containing x, and decompose
the commutator in the following way (see, for instance, [16] or [27])

m—1
Ty f(x) = Cim(b(x) = bap)™ T, f () + Tal(b— bap)™ f) ().
7=0

If we split f = f1 + fo where fi = fxapB, it is sufficient to estimate, for
0 <y < 1/m, the average

1 1/~
(’m /B 1T f (y) — Tal(b— b2B)mf2)(acB)!7dy> < I+ 11+ III,

where xp denotes the center of B, and

m—1 1 § | .
1= Z <‘m/B(b(y) _b2B)(m J)7|Tibf(y)pdy> ’

=0

11 = (,; [ e bwy”fl)(y)|wy>i ,

1

111 = (g [ Tl ba8)" £)(0) = o0~ o) om0y )
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For simplicity, we will assume ||b[[5(5) = 1. We shall first estimate I.
From Lemma B.1] we have

1
5(m J)
1< HbH 5i18] ( [ 1.8 Wdy)
A(6) ‘B‘

m

1/ m—1
P —pE Taf 7d Mo, f
Z;<|B|1( >/| b |y) Z% 0,2 (T2, f1) ()

where 6; = (m — j)J. Note that the last maximal operator is of fractional-
type since 0 < §; < (m — j)(n — «a)/m < n for every 0 < j <m — 1.

We will now estimate II. If y € B and z € 2B, then |y — z| < 3R,
where R is the radius of B. We have, by Lemma [3.2] that

1 m
H<® ([ 1ol = 2)0) ~ ban)" )z )

<5 [ 10 = sl ( Ly |Ka<y—z>|dy> d

3B "
SR b = sl )l

From Lemma , we can estimate [b(z) — bop|™ < ||b|\7/’\1(5)]2B|mT(S =
2]
1[5 |2B ™ to obtain

H

m 1
1S 10— [ 1N < [0 Mayraf @)
\23\ —Ta 2B

Since 0 < § < (n — a)/m, it is clear that 0 < 6y + a < n, so My, 14 is a
fractional-type maximal operator.
In order to estimate I11, we first observe that, by Jensen’s inequality

11T < ‘;, /B T, (b~ bap)™ ) (4) — Tal (b — bap)™ fo) () ldy,

and, setting B; = 2/ B, the integrand can be estimated, using Lemma ,
as follows

T2, (5 = bop)™ f2) () — Tul(b — bop)™ f2) ()| (3.3)
< Z / — 2) — Kalap - 2)|b(z) — bes|™ | (2)|d2

J+1\B

md
S [10l1Xs) E |Bj1] [Ka(y = 2) = Ka(zp = 2)||f(2)|d=.
B
j=1 +1\Bj
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Here, we must distinguish the cases K, € H o, and Ky € Hyo. 1If
K, e H;

«,00)

1 Tos((b—b2p)" f2)(y) — Ta((b — b2p)™ f2)(zB)

- sm ly —xp|"
S Bl 3 1Byl | y 7‘y_z,n_a+,7|f(2)ldz
j=1 j+1\B;

m6+a
S [16llA¢s) E |Bjsa| n 270" / (2)|d=
@ j=1 ’BJ+1| Bj1

T Zz e / F(2)|dz
Bjy1

| ml

< (161 X5y Mog+af (= 22 IS 1Bl R 5 Moy +a f (),
7j=1

since n > 0. Therefore
111 < HbHA M00+af( )

Let us now consider the case K, € H, o. Applying Holder’s inequality
with ® and @ in (3.3)), we obtain

Ty (b — b2B)mf2)( ) = Ta((b—b2B)™ f2)(z5)]
S 16l R Z |Bjsa| % (Ka(- = (9 — 28)) = Ka () X o2 rllo.5,1:

<1135

1
[o@)
<ol S 1Bt 5 (Kal — (5 = 28)) — Ka) Xpjozirllo5,0n
7j=1
m6+o¢
X |Bjs1l »|Ifllz 5

S bR Mpy 10,5 ()
X Z(2jR)"_°‘H (Kol = (y —2B)) = Ka()) X ~2i rll2.B,11

S Hb”A My 055 ().

Therefore,

i1

LTS (16l K5y Moy 10, . (2)-

Combining all these estimates, we obtain the desired pointwise inequal-
ities. O
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The following result is a variant of the well-known Fefferman-Stein’s
inequality (see [15]) and it will be a key estimate to prove Theorem In
this result, the A class of weights means the union of the Muckenhoupt
A, classes for every 1 < p < oco. According to our definitions, w € A, is
the same as w'/? € App-

LEMMA 3.4 ([28]). Let 0 < p < oo and 0 < v < 1. Let w be a weight
in the Ay, class. Then, there exists a positive constant C' such that

/R M S w(a)ds < O /R M (Pl (3.4)

for every measurable function f.

We shall also need two results involving the boundedness of fractional
maximal operators associated with Young functions (see [1]).

THEOREM 3.1 ([1]). Let0 < a <n,1 < <p<nj/aandl/q=
1/p — a/n. Let w be a weight such that w® € Ap/g.q/8- Let ¥ be a Young
function that satisfies V € B, 3. Then, M,y is bounded from LP(wP, R")
into LI(w?, R™).

THEOREM 3.2 ([I]). Let0<a<n,l<p<n/aandl/q=1/p—a/n.
Let w be a weight and U(t) = t%(1 + log™* t)Y where 1 < 3 < p and vy > 0.
Then, M, w is bounded from LP(wP,R"™) into L?(w9,R™) if and only if
w? € Ap/g/8-

In order to prove Theorem [2.3] we shall need the following estimate.

LEMMA 3.5. Let 0 < 6 < min{n,(n —a)/(m—1)}, for0 <n <1. Let
r=n/(m—-1)0+a), we A, be A(d) and f € L (R"). Let B C R" be
a ball and fo = fxrn\2p- If Ty is a fractional integral operator with kernel
K, € H; then, for every r,u € B,

@,00?
S(k—m+1)

81 gl froll, | B4

I Ta((b = b5)* f2)(2) = Tal(b — bB)" f2) (u)| S
lwxslle

for each k =0,...,m.

Proof of Lemm a3 Since K, € H;; ,,, by taking z,u € B,

and 0 < k < m, and setting B; = 2/ B, we have from Lemma that
[ Ta((b = bB)* fo) () = Ta((b = bB)" fo) (u)|
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< / Ko — ) — Kolu — 9)|1b(y) — bs[*|£()|dy
(2B)°

oo
k gk |z —ul"
Sl Yo Bl ® [ R Wy
A: J J
Biiq|n |B|n
< bl S Bl 1B ,Lln ; [ sl
=1 | Bjsl Bj+1\B;j

Now by Hoélder’s inequality and the fact that w € A, o with r = n/(a+
(m —1)0), we get

ITa((b = bg)* f2) (x) — Tul(b — b5)" fo) (u)]
|Bj| ™

-1
S ||bHA(5)||fw” Zm”w XBji1 |l
Sk at+(m—1)8
I
< 1ol g el ol S L2 >

7j=1

S(h=mt1) S thmat)
< bl @ I fwllr lwxsllx |B\ Z2J(5(k +1)—n)

7j=1
d(k—m+1) m+1)

Sl I fwl lwxsl 1Bl

where the series is summable since 0 < k < m and § < 7. O

LEMMA 3.6. LetmeN,0<a<n,0<d<min{l,(n—a)/(m—1)},
r=n/((m—1)d+a), b e A(d) and f € L}, (R"™) where w is a weight such that
wh e Ay/8,00 for some 1 < 3 < r. Let B CR" be a ball and fa = fxrr\28-
If T, is a fractional integral operator With kernel K, € Hy o .m(0), where ®
is a Young function verifying ®~'(t) < 5 for every t > 0, then, for every
r,u € B,
m+1)

£l 181K 5 IBI

||w><B||oo

I Ta((b = b5)* f2) () = Tal(b — bB)" f2) (u)| S

for each k =0,...,m

Proof. Fix z,u € B and 0 < k < m. Setting B, = B(u, R) which
satisfies B C 2B, C 4B, and using Lemma [3.1] we have

I Ta (b~ b5)* f2)(2) — Ta((b — bE)* f2) (u)]
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< / 1b(y) — b, [F| K — ) — Ka(u— )|/ @)|dy
R"\Bu

< Z / b(y) — b, [F| K — 1) — Kalu — 9)[|f()ldy
J+1Bu\2ﬂBu
4 ok
< bl S B / | Kalo—y) — Kau—9)|1f@)ldy.
= 2+ B, \2 B,

Since 1/r+1/(r/B) =1 — (8 —1)/r, we can use Holder’s inequality
with ®@=1(¢)t/7¢1/("/B)" < t and the fact that w® € Ay /8,005 tO get

T ((b—bp)" fo)(z )—T ((b—bp)* f2)(u)] (3.5)
< j+1 %4_1 1 ||w X2J+1BuH (r/B)
HbHA [ fwllr z(:)|2 By|n 27 L, [1/ (/)
J
X [[[Ka(- = (u—2)) = Ka()|x) 291 B,
Sktoa 1
||b||A yIBl = r  fwll
~ HwX2BuHoo
X Z@jR)n_a?j(ékM_%)|||Ka(‘ —(u—2)) = Ko ()X |2 rll020+18,
=1
||b||A |B’ waHr
- HwXBHoo
X Z 27 (2 R)" || Ka(- — (u—x)) — Ko ()X~ Rl 0201 B,
=1
m+1)
bk |B .
< | ||A )] ’ [l fwll |
|[wxBllso

where we have used that dk+a—n/r < md, for m € N, and that the kernel
K, € Ha7q>7m((5). Od

4. Proofs of main results

Proof of TheoremPI The proof will be done by induction
and, without loss of generality, we shall assume [|b| 55y = 1. Notice that
when m = 0, 1/¢ = 1/p — a/n and the boundedness result is known to
be true for A,, weights (see [I] in the more general setting of variable
Lebesgue spaces).
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Fix m € N and define the following auxiliary exponents
1 1 d(m—y 1 46
7:,4_7(7” j)zf—‘yi—i_a, 7=0,....,m.
pj q n p n
Clearly, p,, = ¢ and, if 6; = (m — j)d, we have that
1 1 0, 1 6
RIS R L
by q n p n
Notice also that p < p; < p; < g for every 0 < j <1 <m.
It is easy to see that w € A, , yields w” € A for every 0 < v < 1.

g
Ty
have that w? € Ap;

77

D2

Moreover, from the properties of these classes, w

)

L

2|

for every 0 < 5 <11 < m.
By applying Fefferman-Stein’s inequality (3.4) with w? € A, ./ C
Ay, we get

T fllg < Mo (TTyF)llg S lwdh (T ) lg.
Now, since K, € S, N H* __, from Lemma we have that

,007
m—1 )
[T fllg S oMo, (IT2, f D)l + lwMayaflg-
j=0
Since w € Ap 4 and 1/q¢ =1/p — (6p + ) /n, we have that
m—1 ]
lwTsfllg S lwMe, (1T, f)llg + lwfllp-
j=0
On the other hand, since w” € Ap,

77

for every j = 1,...,m — 1, then the

2

bj a
fractional maximal operator Mp, is bounded from L, (R") to L~ (R").
Thus, we have that

m—1
j 1
T flly S 7 I Moy (T2, S + ol

7=0

m—1 m—1

. 1 .
<SS @Y, H ot = 3 Ty fll, + a0

7=0 7=0

Since 1/p; = 1/p—(jé+a)/n and w € Ay, and recalling that |[b]|5(5) = 1,
we apply the inductive hypothesis to get
m—1

1T fllg S D lwfllp + llwfllp S llwflp-

§=0
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Proof of Theorem[2 Fix f € L (R"™). It will be enough to
show that for every ball B,

WXB ||co m m s
lwxslloe [\ pm 10y — aplde < oI 1 fll 1 BIE,
Bl s

for some constant apg.

For a ball B C R", set fi = fxoB, fo=f— fi and ap = %f bf2
Then,

w . -
boxtlee [ g se) — aplas
B

B
w 0o " w 0o "
< lnnlee [ i e + L2 [ g o) - aplas
1Bl JB 1Bl JB
=1+ I.

For I; we write

_ loxsle o) b)) Koo
no= e [ ] b)) Kale = ) )y

By using Tonelli’s theorem and the fact that b € A(d), we obtain

s I g1 ([ ) = s e - s ) ay

dm _
S ll6llXs) 3B 1IwaBHoo/ |f(y)] (/ IKa(w—y)!dl“) dy
2B 2B

We notice that for z,y € 2B, if R is the radius of B, then = € B(y,4R)
so we can use Lemma (since S} C S,), Holder’s inequality and the
condition on w to have

dx.

m6+a_ _
I 5 [bllX(s 3B Hiwxsllsoll fwllr lw™ x5l
m5+o¢_l H’LU_IX:SB” /
< |1l X5l fwll-[3B] T”wX?)B”ooW

3
S N1l X)L fwllr| Bl

For Iy, we first estimate the difference [T} fa(z) — (17, f2) B| for every
x € B. Since

T2 fale) = (T o)) < o [ T2 o(e) = T2 o)l

we analyze A = [T7, fo(z) — T3 fo(y)|. I 2,y € B

A< / [(b(x) = b(2))" Koz — 2) = (b(y) — b(2))" Ka(y — 2)||f(2)]dz
(2B)°



20 E. Dalmasso, G. Pradolini and W. Ramos
S/ [b(x) = b(2)["|Ka(z — 2) = Ka(y — 2)[[f(2)|d=
(2B)°
+ / [(0(z) = b(2))™ = (b(y) — b(2))" || Ka(y — 2)|If(2)|d=
(2B)°
g/ 1b(z) — b(2)|"|Ka(z — 2) — Kaly — 2)||f(2)]dz
(2B)°

+ [b(z) — b(y)|
x Z/ b(2)|"™ R b(y) = b(2)|* | Kaly — 2)|If (2)|d=
:Ig—I—I4.

By the definition of A(¢), we get that

I3 5 |IblIXs) /( . | — 2" |Ka(x — 2) — Ka(y — 2)|| f(2)|d2

m |'56*y|77
SRIIFY 5)2/ Z|(s m\f(zﬂdz

+1B\QJB

o0

2J 6m‘ B’—
< E dz.
P13 « 2i(n—otn)| B!~ /21+1B\2J'B’f(Z)’ :

Then, by Hélder’s inequality, the definition of é and the fact that w € A oo,
we deduce that

e ) - —1
m 3N g6 1w xa1pll
I3 < [bl[§s) [ fwllr| B 511:2 21 B[/

m 5
Wbl Ll B

lwx Bl

In order to estimate I, we use that b € A(9) and K, € S, to get that

Iy S |Bllacs e =y 18115 )

m—1 oo

o= sty —
d
* kZ: 1 /J+1B\2jB _ Z’nfa ’f(z)| z

= ly
—rs / 1£(2)|d=.
2i+1B\29 B

5(m 1)

S HbHA 5)‘31" Z \QJHB’
7=1
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Then, by Holder’s inequality and condition w € A, o we obtain

o0

s .
11 S [bl5is) | Foll | BIR 3 1271 B
j=1

st 1 1w i1l
n r -—
’2j+1B|1/r’

1)+a 1)

223 -

81176, feoll B

HU)XBHOO

S 111K |

5
_ B 2 g
foxsle &

since 0 < 4.
Therefore,

5
61126l frll, B

A<
lwx Bl

~

which yields, after taking averages,

m 5
_ bl fwll B

2
7 llwxslle

Y

and, thus,

[wx Bl m m 5
T 5 Tosf () — apldz S ||bHA(5)||waT’B|”-

It remains to take supremum over all balls B to get the desired result. O

Proof of TheoremP3 Let B CR" be a ball and « € B. Let
J = fi+ fo with fi = fx2p. Then,

T £(@) — (T2 ) =T f1(2) — (T2 1)
+ch{ ) = b)" T (b — bs) f2) ()

-5 5 [ 0) = ba)" (b b)) ()
We can rewrite the above identity in the following form

Tg?bf(f’?) - (Tgfbf)B =o1(z) — (o1)B

+) ek loa(x,u k) — (02, u, k) g + o3(z, u, k) — (03(-,u, k) B]
k=0
where

o1(x) = Typf1(2),
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o2, u,k) = (b(@) — bp)™ ™ (Tal(b— bp)* f2) (@) — Tal(b— bp)* f2) ()

o3(z,u, k) = (b(x) — bp)™ " To((b— bg)" f2) (u).

oo, there exists 1 < p < such that w €

For o1, since w € A
mota

m6+
Ap.o- We take % = 119 — mi;“a, so ¢ > p and w € Ay and, moreover, w €
A, 4. By applying Holder’s inequality with ¢ and ¢’ and the boundedness
of T7, from L7,(R") to Li,(R™) (Theorem [2.1)) we obtain that

1/q
f i@l < o ([ mmae@lr) ol

Hf XB”P H

NHb”A((S) |B| "xB lgr-

Sincel:w—% —i-ﬁ,

the fact that w € Ay to get

we can apply again Holder’s inequality and

-1
< m " §/n||w XBH(I/
1, @ S 10l ] s B

S 116l 3 | fwll
In order to estimate oy we use the inequality
1, (@) = bl o < B

and Lemma [3.5] to obtain

wa\\% §(k—m-1)
1, s byl 5 o= T B Jb(w) — gl

S 1161 [ fol

Consequently, since

B [wxsllx-

a+(m 1)6

é
lox sl 1B

. n
a+(m—1)6

m

crlos(@,u k) = (o3(u, k)] = (T2 f (@) — (T3f)B)

k=0

— (01(x) = (01)B) = D> _ ek [oa(,u, k) — (02, u, k) )
k=0
by first assuming that T, f La“m D% s Ly (8), then

ch os(x,u, k) — (o3(-,u, k))p] dx

\B|Bk0
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< 1/|Tmf<> (T 1) |d+2/| (2)|d
S wol (@) — (T f)Bldr + — o1(x)|dz
BN » 1Bl /5"

2
+ ck/ oo(x,u, k)|dx
> gy [, lontoas b

Sl 1wl on s loxs 1 B

a+(m—1)8
On the other hand, if we suppose that (2.2]) holds, it is easy to see that
T f o Ly " (R™) < Ly (6). O

Proof of TheoremP4 We proceed by induction. We must
point out that the case m = 0 was already proved in [I]. As in the proof of
Theorem 2.1] we have that

w2 fllg S lwdh (T ).

We shall now use the second part of Lemma since we have that K, €
Sa N Hy e. Thus, we obtain that

m—1

lw T fllg S Y lwMo, o (1T, fD g + lwM, 5 o 5 oo
5=0
where we have assumed, without loss of generality, that [|b]|x(s) = 1.

From the hypotheses on the weight w and the Young function 5, by
Theoremwe know that [[wM . 5fllq S llwfllp- The proof now follows
in the same way as the proof of Theorem O

Proof of Theorem[23l Take f, f1, fo and ap as in the proof
of Theorem and define I; and I likewise.

Since in I; we have only used the size condition S}, the estimation is
the same, by taking into account that w® € A, /8,00 Yields w € A;  for any
B> 1.

For I5 we proceed similarly but we have to use now that K, € Hy ¢ m(9)
with ®~1(¢) < 5 for some 1 < B < r and all £ > 0. We split the average
into I3 and I4 as in the proof of Theorem[2.2] The last one can be controlled
in the same form. The difference will be in I5. Recall that

I = / b(z) = ()™ Koz — 2) — Kaly — 2)||f(2)ldz,
(2B)c

for x € B.
By the definition of A(¢), we get that

I3 5 10l 3 /(W |z — 27| Koz — 2) — Ko(y — 2)|| £ (2)]d2
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<. s
SR Y 127 B / | Ka(z = 2) = Ka(y — 2)|[f(2)|dz.
= 2i+1B\2/ B

Now, since K, € Hyom(5), v’ € Ar/8,00 and O ()t /e /B <t we
can prodeed as in (3.5) with & = m to obtain

5
bl|'\ s\ | Bl r
< | HA(&)‘ [ fuwl

3 ~Y
lwxslloe

|

Proof of Theorem[26 We proceed as in the proof of Theo-
rem We must only use the corresponding hypothesis on the kernel,
that guarantees the validity of Theorem and Lemma [3.6] which are im-
mediate from the fact that S N Hy ¢.m(0) C Si N Hy e (see Remark .
O
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