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Abstract
In this article we evaluate state-resolved charge exchange cross sections for Be ,4+ B ,5+ C ,6+

N ,7+ and O8+ projectiles colliding with atomic hydrogen employing two different methods: the
classical trajectory Monte Carlo and the eikonal impulse approximations. These cross sections
are used to extend previously derived scaling laws for n-, nl-, and nlm-distributions to highly
excited final levels with n4 9,  covering energies in the range 50 2000 keV- amu.
Present total and partial capture cross sections are in agreement with available experimental and
theoretical data for these collision systems. Besides, the proposed scaling rules are also verified
by other theories, becoming a useful instrument for plasma research.

Keywords: electron capture, scaling, multicharged ions, hydrogen, partial charge-exchange
cross sections

(Some figures may appear in colour only in the online journal)

1. Introduction

Charge exchange (CX) in collisions of multiply charged ions
with hydrogen atoms has attracted renewed attention in the
last years. Such an interest is motivated by the importance of
this process, also called electron capture, in both laboratory
and astrophysical plasma environments [1]. In the case of
laboratory magnetic confined plasmas, the CX between
multicharged ions and neutral H plays an important role to
estimate the temperature of the plasma and the density and
charge of ionic impurities [2, 3], while in astrophysical
plasmas it was found to be responsible for x-ray emission
from comets due to the scattering of solar wind ions with
cometary neutral gases, having been also detected in the
heliosphere and in planetary atmospheres [4–6].

When multiply charged ions collide with H( s1 ) at inter-
mediate and moderated high impact energies, electrons are
mainly transferred to excited states of the ion, which then
decay via photon emission giving rise to specific emission

lines. These emission spectra, extensively employed as a
diagnostic tool in plasmas [7], strongly depend on the nl-
distribution of transferred electrons [8, 9], making the state-
selective electron capture cross section a key magnitude for
the analysis of the experimental data. However, partial CX
cross sections into different nl-sublevels are less studied than
their corresponding total and partial n values and conse-
quently, several plasma studies assume approximated l-dis-
tributions for the different levels [10–12]. In this article we
focus precisely on these state-selective CX cross sections,
extending previously derived scaling laws for n-, nl-, and nlm-
distributions [13] to deal with final capture levels up to the
n = 9 shell.

Two different theoretical methods are employed: the
classical trajectory Monte Carlo (CTMC) method and the
eikonal impulse (EI) approximation. Each of these methods
can be applied in a different region of impact energies. The
CTMC method is a classical theory that results appropriate for
impact velocities v in the range v 1 3~ - a.u. [14], while the
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EI approach is a high-energy method, which can be extended
to describe CX in the intermediate velocity range as well, i.e.
for velocities v 2 a.u. [13]. We use both approaches to
evaluate state-selective CX cross sections for different ion-H
collisions with the aim of providing reliable scaling rules that
cover a wide range of incidence energies, from intermediate
to high impact velocities. Notice that for highly charged ions
colliding with H( s1 ), many scaling rules for total capture, and
even for partial capture to a given n shell, have been proposed
[15–18]. But for nl-distributions the studies on scaling laws
are scarce [13, 19, 20]. Therefore, present state-selective
scaling rules are useful tools to estimate partial contributions
coming from specific final capture states, avoiding tedious
calculations, specially for capture to highly excited levels.

In this article, the CTMC and EI methods are applied to
evaluate CX cross sections for different bare ions—Be ,4+

B ,5+ C ,6+ N ,7+ and O8+-impinging on neutral hydrogen in its
ground state. The range of considered projectiles is of interest
in fusion and astrophysical research. Most of these ions are
found as impurities in laboratory fusion plasmas, like ber-
yllium and carbon that are expected to be present in ITER
[21, 22], or nitrogen that is routinely introduced in the
ASDEX tokamak to protect the plasma-facing components
[23, 24]. Also in astrophysics, ions of carbon and oxygen are
considered the predominant sources of soft x-ray emission in
collisions involving the solar wind [4, 25, 26].

This article is organized as follows. The theoretical
methods used in this work to investigate scaling rules for
partial CX distributions are presented in section 2. In section
2.1 we summarize the parametric dependence of the CX cross
section to a specific final state, obtained within the EI
approximation, which is here employed to derive scaling laws
for highly excited final states. While in section 2.2 we show
how total capture cross sections derived within the CTMC
and EI approximations merge in the intermediate velocity
regime, allowing us to combine both theories to produce a
join CTMC-EI approach that provides reliable results for a
wide range of impact velocities, from 1 a.u to 6 a.u. Scaling
rules for the corresponding partial cross sections are investi-
gated in section 3, where scaled n-, nl- and nlm-distributions
are presented and discussed in sections 3.1, 3.2 and 3.3,
respectively. Finally, in section 4 we outline our conclusions.
Atomic units (a.u.) are used unless otherwise stated.

2. Description of the theoretical methods

2.1. Parametric dependence of the EI capture cross section to
a given final state

The prior version of the EI approximation is a distorted wave
method that makes use of the exact impulse wave function to
describe the final collision channel, while the initial channel is
represented by means of the eikonal wave function [27]. It has
been successfully applied to describe CX in asymmetric
collisions, where the nuclear charge of one of the particles
is larger than the other, at high and intermediate impact
velocities. In particular, the prior EI approach was found

to provide proper electron capture predictions for both, mul-
ticharged ions colliding with light atoms (H and He) [13] and
proton-atom collisions [28].

Following previous articles [13, 19], we use the prior EI
approach to derive a scaling rule for the asymmetric reaction:

s n l mA H 1 H A , , , 1Z Z 1P P( ) ( ) ( )( )+  ++ + - +

where the charge of the fully stripped projectile, ZP, is larger
than the one of the target nucleus, ZT (with Z 1T = for H), and
n l m, , are the quantum numbers of the final electronic state,

,n l m, ,f bounded to the projectile with final electronic energy
.n l,e For this reaction the EI transition matrix reads [28]:
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where v is the impact velocity and W K KP i P fm
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is the

projectile momentum transfer, with Ki


(Kf


) the initial (final)
momentum of the projectile and Pm its final reduced mass.
The functions L ,T

D- I ,P
E+ and JP

E+ represent the Nordsieck-
type integrals defined in [28], and qn l m, , ( )f  is the Fourier
transform of the final electronic wave function. From
equation (2), using the explicit expressions of the L ,T

D-

I ,P
E+ and JP

E+ functions, the EI capture cross section into the
n l m, , state, ,nlm

EIs is found to satisfy [13]

z C Z v v W, , 3nlm
EI

P P nlm
7 2 ( )( )˜ ˜ ˜ ( )s s- 

Figure 1. Total electron capture cross sections for Be ,4+ C6+ and
O8+ ions impinging on H(1 s), as a function of the incidence energy.
(a) (upper panel) Calculations derived with :-·-, EI; , CTMC
approachs. (b) (lower panel): — , join CTMC-EI method; other
theories: AOCC [32], MOCC [33], FBA
[34], AOCC [35]; expt.: [18] and [36].
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where z Z nP P˜ = represents the mean value of the final
electron velocity and

C a a iaexp 2 1 4( ) ( ) ( ) ( )p= G -

is the projectile-electron Coulomb factor coming from the
asymptotic conditions, with Γ the gamma function. In
equation (3) the function nlms depends on the scaled
parameters ṽ and W ,˜ denoted with tilde, which are defined as
v v zP˜ ˜= and

W
W

z

v z

v

1

2
, 5

P

T
2 2

˜
˜

˜ ˜
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( )= =
+ -

respectively, with W W v v.P=
¾  the component of WP

¾

parallel to the incidence velocity and z Z zT T P˜ ˜= (z zT P
1˜ ˜= -

for H targets).
For positive W̃ values, the function nlms of equation (3)

presents a weak dependence on ṽ and consequently, it can be
approximated by an universal function of W ,˜ depending only

of the final quantum numbers n l m, , ; that is,

v W u W, . 6nlm nlm( ) ( )˜ ˜ ˜ ( )s »

In this article we will use this approximation, together with
equation (3), to derive state-selective scaling laws for capture
to highly excited levels, with main quantum numbers in the
range n4 9.  As stated in [13], the approximated relation
of equation (6) starts to fail for impact velocities lower than 2
a.u. when the condition z 1P˜ > is not verified.

2.2. Join CTMC-EI approach: total capture cross sections

In this section we inspect the validity of the used theoretical
approaches—CTMC and EI—by comparing total capture
cross sections for the studied collision systems with available
experimental data and with results obtained from other
theories.

Figure 2. Scaled cross sections Sn, as a function of the scaled momentum W ,˜ for different n values in the range n 4 9.= - Solid black line,
proposed curve given by equation (8). Column (a) (left pannels), results for ZP = 4–8 derived within the considered approaches: EI,
CTMC, each of them in the corresponding velocity range, as indicated in the text. Column (b) (right pannels), results from other theories: ,
and AOCC for ZP = 4, 6, 8, n = 6, 4, 7, respectively [35]; and CTMC for ZP = 4, n = 6, 7 [38]; and CDW for ZP = 6, n = 3, 4

[39]; FBA for ZP = 6, n = 5 [34]; , and CTMC for ZP = 6, n = 5 and ZP = 8, n = 6, 7 [40]; , , ; AOCC for ZP = 5, 6, 7, 8
and n = 5, 5, 4, 3 [41] and recommended ADAS sets for ZP = 6, n = 4, 8 [42].
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The present CTMC calculations were computed using a
superposition of ten standard microcanonical distributions,
fitting the radial probability density of the atomic hydrogen
[29]. Nuclear straight-line trajectories and a statistic of
2 105´ electrons have been considered. The trajectories have
been integrated up to t v500 .max

1= - Notice that capture to
low n levels (n 3 ) is well characterized by the usual
microcanonical distribution, but for higher n levels, like those
considered in this article, the hydrogenic density-fitted one
provides a better description of the electron capture pro-
cess [30, 31].

Concerning the EI approach, each electron capture cross
section to a given n l m, , state was calculated separately,
involving a three-dimensional integral on the momentum
space, as given by equation (2), and a further integration on
the final angular distribution of the scattered projectiles. For
highly excited final levels, such numerical calculations were
almost prohibitive twenty years ago, forcing us to use extra-
polation rules [13], but now they can be done in a reasonable
CPU time (for example, for the state n l m, , 9, 8, 0( ) ( )= of
carbon, it takes less than 3’ in a PC I7 computer). In this
article we evaluated EI total capture results by adding
n l m, ,( )- cross sections up the shell n = 9, while the con-
tribution of final levels with n 10 was estimated by using
an extrapolation rule based on the n-dependence of the
Brinkman-Kramer cross section, as given by equation (12)
of [13].

In figure 1(a) we display CTMC and EI total CX cross
sections for Be ,4+ C ,6+ and O8+ colliding with H( s1 ), as a
function of the impact energy, considering a different velocity
range for each method: v 3 a.u. for the CTMC method and
v 2 a.u. for the EI one. For the three projectiles, the CTMC
and EI curves fairly agree each other in the intermediate
energy region, between 100 and 200 keV amu−1, and in the
case of beryllium, the accord also extend to lower energies. In
order to quantify the level of concordance of both theories, we
can mention that for C6+ projectiles the differences between
CTMC and EI total capture cross sections at 100 keV amu−1

are around 15%, increasing up to 27% at 200 keV amu−1.
This fact allows us to combine both theoretical methods by
merging them around 100 keV amu−1 to build a join CTMC-
EI approach, which provides realistic cross sections in a wide
velocity region, ranging from intermediate to high incidence
velocities.

Total cross sections derived within the join CTMC-EI
method are shown in figure 1(b) and compared with results
obtained from other theories and with available experimental
data. For all the projectiles the curve corresponding to the join
CTMC- EI approximation is in good accord with values
derived from different theories, like semiclassical close-cou-
pling approaches with molecular (MOCC) [33] or atomic
(AOCC) [32, 35] wave functions, or the first born approx-
imation (FBA) [34. Join CTMC-EI results are also in agree-
ment with available experimental data for carbon and oxygen
projectiles in the intermediate energy regime [18, 36]. Such a
concordance is an indication of the adequate description of
the CX process obtained by means of the merge of the CTMC
and the EI methods.

The same criterion is followed in the next section to
combine the CTMC and EI theories also at the level of state-
selective cross sections, where the differences between
CTMC and EI n-resolved cross sections at 100 keV amu−1

are 20% at most for Be4+ projectiles, decreasing up to a
relative error lower than 10% as ZP augments. At low velo-
cities, the join CTMC-EI results verified that the most
populated n-level, n ,max qualitatively agrees with the ZP

3 4

scaling law [37], but the value of nmax slowly decreases as
the velocity increases, tending in all the cases to the ground
level at very high velocities.

3. Results

3.1. Scaling law for partial n-resolved cross sections with n�4

In this section we focus on the partial CX cross section into a
given final n level, ,ns which is defined as .n lm nlmås s=
From equations (3) and (6) we obtain the following
approximated relation for :ns

S
z

C Z v
U W u W , 7n

P n

P

n
lm

nlm

7

2 ( ) ( )
( )
˜ ˜ ˜ ( )å
s

=  

where Un is expected to be an universal function of W ,˜
depending on the main quantum number n. In previous
articles [13, 19], this scaling rule was successfully tested for

Figure 3. Partial CX cross sections ,ns as a function of the impact
energy, for Ne10+ + H(1 s) collisions. Solid black line, present
scaling; calculations: CTMC [44], one-electron-diatomic-
molecule (OEDM) [44], AOCC [35].
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partial capture into the fundamental and first excited levels,
i.e., n 1 4.= - In this work the rule is extended to consider
final levels in the range n 4 9.= - In addition, we found that
when the scaled cross sections Sn for the different levels are
plotted together, all the CTMC-EI results can be gathered in a
relatively narrow band, indicating a weak dependence on n of
the universal function, i.e.U W U Wn ( ˜ ) ( ˜ ) for n4 9,  as
shown in figure 2(a). In this figure we have split the W̃ range
in two panels (upper and lower) in order to display clearly the
different results.

Furthermore, we provide a simple expression to represent
the approximate functionU W ,( ˜ ) which is valid for final levels
with principal quantum numbers in the range n 4 9.= - The
proposed function (for ns expressed in cm2) reads:

U W
a

b c W

a

b c W
, 81

1 1
2 4

2

2 2
2 4( ) ( )( )˜

˜ ˜
( )=

+
-

+

where a 3.46 101
14= ´ - cm2, b 2.63,1 = c 6.231 = (a.u.)−2,

a 1.0 102
16= ´ - cm2, b 2.21,2 = c 1.432 = (a.u.)−2. This

function, also plotted in figure 2, is valid for positive W̃
values and can be used to evaluate capture from H( s1 ) to a

Figure 4. Join CTMC-EI Pnl distributions as a function of W .˜ Solid black line, present scaling, given by equation (9); results for different
projectiles: Be ,4+ B ,5+ C ,6+ N ,7+ O .8+ In each panel the curves shift from left to right as n increases.

Figure 5. Pnl distributions, as a function ofW ,˜ for (a) l n 1,= - and
(b) l n 2.= - Lines, scaled nl-populations for different n shells,
derived within the join CTMC-EI method considering charges
Z 4 8.P = -
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given n-shell through equation (7) considering velocities
v 2 a.u., as well as lower energies (i.e. E 70 keV⪆ amu)
if the inequality z 1P˜ > is satisfied. Notice that all the CTMC-
EI results displayed in figure 2(a) (more than 500 Sn-values
that cover an extended cross section range of almost 9 orders
of magnitude) can be approximated by equation (8) with a
maximum relative error of 40% at most, decreasing as the
impact velocity augments.

Other theoretical methods also verify the universal
behavior given by equation ((8), as shown in figure 2 (b),
where scaled partial cross sections Sn, defined by equation (7),
are plotted as a function of W̃ for different sets of theoretical
data: those of Igenbergs et al [35] and Toshima and Tawara
[41] obtained with the AOCC; those of Schultz et al [38] and
Olson et al [40] obtained with the CTMC; those of Mandal
et al [39] and Saha et al [43] obtained with the continuum
distorted wave (CDW); and those of Belkić et al [34]
obtained with the FBA. We observe that the different theo-
retical and experimental data lie again inside a narrow band
around the universal curve of equation (8), assuring the
validity of the proposed scaling. We have also included in
figure 2 (b) results for C6+ projectiles and final capture levels
n 4 8= - extracted from the ADAS website [42], considering
the energy range E 70 keV amu. Differences between the
recommended ADAS data for the intermediate and high
energy regions and the ones derived from the universal curve
were found lower than 15% and 10%, respectively. Notice
that the scaling rule of equation (8) becomes specially useful

for high W̃ values and highly excited n levels, where theo-
retical results are particularly scarce.

In order to illustrate the utility of the n-resolved scaling
law, we compare in figure 3 partial cross sections for Ne10+

projectiles, available in the literature, with results derived
from equations (7) and ((8)), considering final n levels close
to the most populated one. Results of figure 3 confirm that the
proposed scaling provides reasonable predictions for pro-
jectiles with Z 8P > .

3.2. Scaling for nl-distributions

We investigate the nl-distributions, defined as P ,nl nl ns s=
with nls the partial CX cross section into the nl subshell,
which is obtained as .nl m nlmås s= Using equations (3) and
(6) we derive the following scaling rule for Pnl:

P U W
u W

U W
, 9nl

nl

n
nl

m

nlm

n
( ) ( )

( )
˜

˜

˜
( )ås

s
=  

where Unl is assumed as an universal function. In figure 4 we
plot CTMC and EI results for the Pnl distributions
corresponding to Be ,4+ B ,5+ C ,6+ N ,7+ and O8+ projectiles,
as a function of W ,˜ considering final n levels from n = 4 to
n = 9. While the CTMC method is used to obtain the nl-
distributions for the lower values of W ,˜ i.e. W 1.5˜  a.u., the
EI approach is employed to describe the high energy region,
which corresponds to W 2.0˜  a.u. In all the cases, the Pnl

values derived from the CTMC approach match with those
obtained with the EI theory in the intermediate region, which
corresponds to scaled transferred momenta W̃ in the range
between 1.5 and 2.0 a.u. Therefore, it is possible to derive
practically universal Unl functions for the different
nl- subshells, which can be used to estimate partial angular
momentum distributions for ionic projectiles with larger
nuclear charges than the ones considered here. To build
these curves we have used the join CTMC-EI method,
connecting the results of both theories at an impact velocity
v 2.2» a.u.

As a general tendency we found that for low W̃ values,
in the rangeW 0.5˜  a.u., the capture proceeds to the subshell
with the highest orbital momentum, i.e. l n 1,= - but the l-
value corresponding to the maximal contribution decreases as
the scaled momentum W̃ augments, as shown in figure 5,
where the Pnl distributions for the orbital quantum numbers
l n 1= - and l n 2= - are displayed as a function of W .˜
Even though all the curves for l n 1= - (or l n 2= - )
present similar shapes, the population of the nl-subshell also
depends on the main quantum number n, since as n increases,
the position of the maximum slightly shifts towards lower W̃
values and its relative contribution diminishes. This behavior
is expected to hold also for higher ZP charges.

With the aim of providing a more precise representation
of the Pnl functions for the different nl-subshells, numerical
values corresponding to the universal distributions obtained
from the join CTMC-EI method are tabulated in tables 1–6 in
the appendix. These tables can be easily used to compute a

Figure 6. Partial CX cross sections nls for: (a) ZP = 6, nl = 43; (b)
ZP = 7, nl = 54; (c) ZP = 8, nl = 83. Solid black line, present
scaling; calculations: EIA, CTMC, AOCC [35], CDW [39],

CTMC [40], FBA [34], CDW [43], AOCC [41].
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partial nl cross section for a given electronic transition and
impact velocity. For example, 43s for the C6+ + H 

nlC 435 ( )=+ process. First, we have to calculate 4s by
applying equation (7) with Z 6P = and zP˜ =6/4 as follows:

C v U W

W
v

v

6

4
6 ,

with
4 6 1

2
,

4

7
2

2 2

( )∣ ( )∣ ˜

˜ ˜ ( )
˜

⎜ ⎟⎛
⎝

⎞
⎠s =

=
+ -

-

and U W( ˜ ) from equation (8). Once we have computed ,4s
we only need to use equation (9) and table 1 to obtain 43s
as P .4 43s ´ As an illustrative example, in figure 6 we
display partial CX cross sections, derived from the proposed
scaling functions, as a function of the impact energy,
considering: (a) Z 6,P = n = 4, l = 3; (b) Z 7,P = n = 5,
l = 4; (c) Z 8,P = n = 8, l = 3. These particular cases were
only chosen as a proof of the efficacy of the proposed scaling
rule. In all the cases, the scaling- derived curve, displayed
with a black line, runs close to the CTMC and EI results, as
well as to the theoretical data extracted from [35, 46]. Only
for the O8+ example with n = 8, the scaling slightly
overestimates the data for the lowest energies, since the
condition Z n 1P > is not verified.

3.3. Scaling for nlm-distributions

Finally, we study the scaling for the nlm-distributions, defined
as P ,nlm nlm nls s= which are expected to verify:

P U W , 10nlm
nlm

nl
nlm ( )˜ ( )s

s
= 

where Unlm denotes again an universal function.
As an illustration, in figures 7 and 8 we plot the magnetic

number distribution for the n = 6 and n = 7 shells, con-
sidering the quantization axis along the direction of the
incidence velocity. In all the cases electrons are mainly cap-
tured to final states oriented parallel to the velocity, which
correspond to m = 0, while the contribution of other final
state orientations decreases as m increases. This is a general
behavior, also observed for other n shells.

4. Conclusions

We have used two distinct approximations, CTMC and EI,
in order to describe the CX process between multicharged
ions and atomic hydrogen for a wide range of impact ener-
gies, encompassing from intermediate to high velocities. For
five different bare projectiles, total and state-resolved CX

Figure 7. Pnlm distributions derived with the EI approach, for n = 6 as a function of W .˜ Symbols: • Be ,4+ x B ,5+ C ,6+  N ,7+ * O .8+
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cross sections derived with these methods show a good
agreement with available experimental and theoretical
data, being indicative of the accuracy of the considered
descriptions. In addition, the fact that CTMC and EI state-
selective cross sections for capture to highly excited levels,
from n = 4 to n = 9, match between them in the intermediate
energy region allowed us to extend previously derived
scaling laws for shell and sub-shells capture distributions
[13, 19] along the studied energy range. In the case of the n-
resolved scaling, an analytical universal function in terms of
the scaled transferred momentum W̃ is suggested, while for
the nl-distributions, values obtained from the proposed
scaling are listed in the appendix to facilitate their inter-
polation. These scaling rules are important tools, not only to
display partial cross sections for different multicharged
projectiles in a comprehensive way, but also to predict
n-, nl-, and even nlm-distributions originated by highly
charged ions.
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Appendix A. Appendix: Pnl tables

Numerical values for the distribution corresponding to
equation (9), derived from the proposed scaling rule, are listed
in the following tables.

Figure 8. Pnlm distributions derived with the EI approach, for n = 7, as a function of W .˜ Symbols: • Be ,4+ x B ,5+ C ,6+  N ,7+ * O .8+

Table 1. U100 nl´ values for n = 4.

WPz P40 P41 P42 P43

0.13 1 9 25 64
0.31 2 9 23 66
0.44 2 10 25 64
0.50 2 10 26 62
0.60 2 9 30 57
0.67 2 8 36 52
0.80 3 10 44 42
0.88 4 12 48 36
0.99 3 19 50 28
1.06 2 22 50 25
1.23 2 32 48 17
1.40 4 41 43 12
1.57 7 47 38 8
1.74 11 50 33 6
1.90 15 52 29 5
2.07 19 53 25 3
2.23 23 53 21 3
2.39 28 52 19 2
2.55 31 51 16 2
2.68 34 50 14 1
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Table 2. U100 nl´ values for n = 5.

WPz P50 P51 P52 P53 P54

0.10 1 5 13 26 55
0.30 1 5 12 25 57
0.38 1 5 12 25 56
0.57 1 6 14 29 49
0.67 1 7 16 32 42
0.74 1 7 17 40 37
0.89 2 6 21 45 26
0.98 2 6 26 44 20
1.14 3 8 35 40 14
1.20 3 10 38 38 11
1.41 2 18 44 29 6
1.62 2 28 45 22 4
1.83 4 37 42 16 2
2.03 6 43 38 12 1
2.23 10 47 34 9 1
2.43 14 49 30 6 0
2.64 18 51 26 5 0
2.84 22 51 23 4 0
3.04 26 50 20 3 0
3.23 30 50 17 2 0

Table 3. U100 nl´ values for n = 6.

WPz P60 P61 P62 P63 P64 P65

0.08 0 2 7 16 26 48
0.32 1 3 8 14 24 50
0.60 1 4 9 17 29 40
0.78 1 5 11 22 33 28
0.96 1 7 14 27 38 16
1.01 1 7 15 29 36 13
1.16 3 6 20 35 31 8
1.26 3 6 23 39 26 6
1.41 3 7 28 39 19 3
1.51 3 8 34 37 16 2
1.76 2 16 41 30 9 1
2.00 2 26 43 23 6 0
2.24 3 35 41 18 3 0
2.48 6 41 37 13 2 0
2.72 9 46 34 10 1 0
2.96 13 48 30 8 1 0
3.20 18 49 26 6 1 0
3.44 22 50 23 4 0 0
3.67 26 50 20 4 0 0
3.91 30 49 18 3 0 0

Table 5. U100 nl´ values for n = 8.

WPz P80 P81 P82 P83 P84 P85 P86 P87

0.70 0 2 5 9 13 19 26 25
1.00 1 3 7 12 20 27 23 7
1.13 1 4 8 15 23 27 18 3
1.19 1 4 9 17 25 26 16 2
1.39 1 6 12 22 29 23 10 0
1.48 1 6 13 25 30 20 7 1
1.66 2 5 16 31 31 14 3 0
1.79 3 4 19 35 28 11 2 0
1.99 3 6 25 36 22 7 1 0
2.11 3 7 30 35 19 5 1 0
2.42 2 15 38 31 12 3 0 0
2.74 2 24 40 25 7 1 0 0
3.05 3 33 40 19 5 1 0 0
3.36 6 39 37 15 3 0 0 0
3.67 9 44 34 11 2 0 0 0
3.99 13 47 30 9 1 0 0 0
4.31 17 48 27 7 1 0 0 0
4.62 21 49 24 5 1 0 0 0
4.94 25 49 21 4 0 0 0 0
5.25 30 48 18 3 0 0 0 0

Table 4. U100 nl´ values for n = 7.

WPz P70 P71 P72 P73 P74 P75 P76

0.30 0 2 5 10 14 23 45
0.52 0 3 6 10 16 26 38
0.81 1 4 8 14 23 31 21
1.00 1 4 10 18 28 28 10
1.16 1 5 12 23 33 23 6
1.24 1 6 13 26 35 19 4
1.41 2 6 18 31 32 12 2
1.50 2 6 20 34 28 10 1
1.73 3 6 28 37 20 5 1

Table 4. (Continued.)

WPz P70 P71 P72 P73 P74 P75 P76

1.81 3 8 31 36 18 4 0
2.09 2 15 39 30 11 2 0
2.37 2 25 41 24 7 1 0
2.65 3 33 40 18 4 0 0
2.92 6 40 37 14 3 0 0
3.20 9 44 34 11 2 0 0
3.48 13 47 30 8 1 0 0
3.75 17 49 27 6 1 0 0
4.03 22 50 24 5 1 0 0
4.31 26 49 21 4 0 0 0
4.58 30 49 18 3 0 0 0

Table 6. U100 nl´ values for n = 9.

WPz P90 P91 P92 P93 P94 P95 P96 P97 P98

0.68 0 1 4 7 9 12 18 25 23
0.88 0 2 5 8 12 17 23 22 11
1.12 1 3 7 10 17 23 22 14 3
1.29 1 4 8 13 21 25 20 9 1
1.41 1 4 9 16 24 25 18 5 1
1.68 1 4 12 23 29 23 10 2 0
1.91 2 5 16 29 30 16 5 1 0
2.05 3 5 19 33 28 12 3 0 0
2.30 3 6 26 35 22 7 1 0 0
2.40 3 7 29 35 19 6 1 0 0
2.75 2 14 37 31 13 3 0 0 0
3.10 2 24 40 25 8 1 0 0 0
3.45 3 32 39 19 5 1 0 0 0
3.80 6 39 37 15 3 0 0 0 0
4.15 9 43 34 11 2 0 0 0 0
4.51 13 46 30 9 1 0 0 0 0
4.86 17 48 27 7 1 0 0 0 0
5.21 21 49 24 5 1 0 0 0 1
5.57 25 48 21 4 0 0 0 0 1
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