

Desing of 3D printed veterinary capsule devices for supplement administration

Loreana Gallo ^{1,2}, Juan Francisco Peña ², Santiago Daniel Palma ⁴, Juan Pablo Real ⁴, Ivana Cotabarren ^{2,3,*}

- ¹ Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), 8000 Bahía Blanca, Argentina; lgallo@plapiqui.edu.ar (L.G.)
- Planta Piloto de Ingeniería Química, PLAPIQUI (UNS-CONICET), 8000 Bahía Blanca, Argentina; lgallo@plapiqui.edu.ar (L.G.); icotabarren@plapiqui.edu.ar (I.C.); jfpeña@plapiqui.edu.ar (J.F.P.)
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), 8000 Bahía Blanca, Argentina.; icotabarren@plapiqui.edu.ar (I.C.)
- ⁴ Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Cienciias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina; sdpalma@unc.edu.ar (S.D.P.); juan.real@unc.edu.ar (J.P.R.)
- * Correspondence: icotabarren@plapiqui.edu.ar
- † Presented at RICiFa 2021, 10-12 November 2021.

Received: ...; Revised: ...; Accepted: ...; Published: ...

Abstract: Urea is commonly employed in ruminant feed supplementation, however is rapidly hydrolyzed in the rumen. Therefore, modifying the urea release has become a pharmacotechnical challenge. In this work, a proof of concept study was developed to test the feasibility of using Fused Deposition Modeling-3D printing (3DP) to create veterinary capsule devices (CDs) that could allow the control of urea release. Three designs were assayed: D1 = one-compartment capsule with body and cover printed in polylactic acid (PLA), D2 = one-compartment capsule with body of PLA and cover of polyvinyl alcohol (PVA) and D3 = multi-compartment capsule with cover and body of PLA, the body presenting a PVA orifice in one extreme and five PVA partitions inside. The release of urea from the CDs was performed in 1 liter of distilled water, 40 °C and 50 rpm. Two sinkers of differents weights and two types of paddles were evaluated. D1 showed no release of urea within 24 hours. D2 exhibited a retard release without influence of sinkers and paddles. D3 showed immediate and prolonged profiles, thus the release was affected by sinkers/paddles and some printing errors. These preliminary designs showed the possibility of using 3DP as a technological platform to modify the urea release in ruminant feed supplementation.

Keywords: urea; 3D printing, proof of concept; veterinary supplements; capsule devices, modified-release

© 2021 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Funding

This research was funded by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) [grant number PIP 11220150100704CO and PUE D.2555/16], Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) [grant number PICT-2016-1827] and Universidad Nacional del Sur [grant number PGI 24M/163].

Acknowledgments

The authors thank Ing. Diego Colaneri and Dis. Teresa Duttari for their technical assistance.

Conflicts of Interest

The authors declare no conflict of interest.