Geobiology

Geobiology (2013), 11, 307-317

DOI: 10.1111 /gbi.12038

Global deglaciation and the re-appearance of microbial
matground-dominated ecosystems in the late Paleozoic
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ABSTRACT

The extensive matgrounds in Carboniferous-Permian open-marine deposits of western Argentina constitute
an anachronistic facies, because with the onset of penetrative bioturbation during the early Paleozoic
microbial mats essentially disappeared from these settings. Abundant microbially induced sedimentary struc-
tures in the Argentinean deposits are coincident with the disappearance of trace and body fossils in the
succession and with a landward facies shift indicative of transgressive conditions. Deposits of the Late
Carboniferous—Early Permian glacial event are well developed in adjacent basins in eastern Argentina, Brazil,
South Africa and Antarctica, but do not occur in the western Andean basins of Argentina. However, the
deglaciation phase is indirectly recorded in the studied region by a rapid rise in sea level referred to as the
Stephanian-Asselian transgression. We suggest that an unusual release of meltwater during the final degla-
ciation episode of the Gondwana Ice Age may have dramatically freshened peri-Gondwanan seas, impact-
ing negatively on coastal and shallow-marine benthic faunas. Suppression of bioturbation was therefore
conducive to a brief re-appearance of matground-dominated ecosystems, reminiscent of those in the
precambrian. Bioturbation is essential for ecosystem performance and plays a major role in ocean and sedi-
ment geochemistry. Accordingly, the decimation of the mixed layer during deglaciation in the Gondwana
basins may have altered ecosystem functioning and geochemical cycling.
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INTRODUCTION

Ediacaran marine ecosystems were dominated by extensive
matgrounds and, as a result, deposits are characterized by a
suite of microbially induced sedimentary structures (MISS of
Noftke et al., 2001), such as wrinkle marks, ripple patches
and palimpsest ripples (Seilacher & Pfliiger, 1994; Seilacher,
1999; Noftke, 2010). Infaunalization and the concomitant
appearance of vertical bioturbation during the Cambrian
agronomic revolution resulted in the restriction of mat-
grounds to inhospitable environments, such as hypersaline
lagoons and anoxic settings (Seilacher & Pfliiger, 1994;
Hagadorn & Bottjer, 1999; Seilacher, 1999; Pfliiger, 1999;
Buatois & Midngano, 2011a,b). However, matgrounds reap-
peared in shallow-marine environments as a result of global
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biotic crises, as indicated by the end-Permian mass extinction
(Pruss et al., 2004; Mata & Bottjer, 2012; Ezaki et al., 2012).

The late Paleozoic Gondwanan glaciation and its subse-
quent deglaciation phase undoubtedly exerted a global
impact on marine ecosystems, as indicated by the low levels
of rates of origination and extinction of marine organisms
during the glacial events (Stanley & Powell, 2003), and
the substantial changes in the composition of marine com-
munities in postglacial times (Clapham & James, 2008). In
addition, deglaciation resulted in direct local impact on
coastal communities due to the strong meltwater discharge
issuing from melting of the continental ice masses (Buatois
et al., 2006, 2010). Although global and local effects of
the Gondwana glaciation have been explored, its impact at
regional scale is not well understood. The aim of this paper
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is to: (i) document an anachronistic occurrence of wide-
spread matgrounds in Carboniferous—Permian shallow-
marine deposits of western Argentina, and (ii) evaluate
how the re-appearance of matground-dominated ecosystems
should be understood within the framework of the deglaci-
ation phase in Gondwana, underscoring the geobiological
impact of meltwater discharge.

STRATIGRAPHY AND AGE

The Carboniferous—Permian back—arc Calingasta—Uspallata
Basin of western Argentina (Fig. 1) is part of a series of
perigondwanic basins developed along the paleo-Pacific
margin (Lépez-Gamundi, 2010). The Santa Elena Forma-
tion is exposed in Sierra de Uspallata, forming the south-
ernmost outcrops of this basin (Dessanti & Rossi, 1950). It
has been subdivided into the Tramojo and Jarillal members,
the former encompassing mostly continental deposits and
the latter being marine in origin (Taboada, 1998, 1999).
Based on the presence of brachiopods of the Tivertonin—
Streptoviynchus and Cancrinelln (= Costatumulus) biozones,
the Jarillal Member is considered of Stephanian-Asselian
age (Taboada, 1998, 1999; Azcuy et al., 1999).

Fig. 1 Geological map showing distribution of upper Paleozoic outcrops in
the Calingasta-Uspallata Basin (after Azcuy et al., 1999). Box indicates
location of study area.

SEDIMENTARY FACIES AND DEPOSITIONAL
ENVIRONMENTS

The Jarillal Member in Sierra de Uspallata has been subdivided
into three main intervals (Fig. 2). Two facies associations: A
(Wave-dominated shallow marine) and B (Mixed wave- and
river-influenced delta) have been recognized (Table 1). The
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Fig. 2 Sedimentologic log of the Jarillal Member of the Santa Elena Forma-
tion in Sierra de Uspallata, showing a detailed view of the interval contain-
ing the matground facies at the top of a wave-dominated parasequence.
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Fig. 3 Facies association A (Wave-dominated
shallow marine). Lower interval of the Jarillal
Member succession. (A) Facies A2, lower-
offshore deposits characterized by siltstone
units intercalated with thin very fine-grained
sandstone beds. Hammer is 33 cm long. (B)
Facies A3, upper-offshore deposits showing a
regular intercalation of siltstone and very fine-
grained sandstone with wave- and combined-
flow ripple cross-lamination. Lens cap is
5.5 cm wide. (C) Facies A3, upper-offshore
deposits. Close-up of wave-ripple cross-
lamination displaying characteristic chevron
upbuilding. Coin diameter is 1.8 cm. (D)
Facies A4, offshore-transition deposits. Note
hummocky beds passing upwards into a zone
with combined-flow ripple cross-lamination
and/or symmetrical to quasi-symmetrical
ripples. Anisotropic hummocky is indicated by
preferred dip direction of cross-strata sets. (E)
Facies A5, lower/middle-shoreface deposits
characterized by amalgamated hummocky
cross-stratified very fine-grained sandstone.
(F) Facies A6, upper-shoreface deposits
showing planar cross-stratified ~medium-
grained sandstone. Lens cap is 5.5 cm wide.

former consists of six facies (A1-A6), encompassing shelf,
lower-oftshore (Fig. 3A), upper-offshore (Fig. 3B-C), off-
shore-transition (Fig. 3D), lower,/middle-shoreface
(Fig. 3E) and upper-shoreface (Fig. 3F) deposits. This facies
association is present in the lower and middle interval of the
Jarillal Member, and deposits are stacked forming several
coarsening-upward parasequences. In the lower interval,
parasequences are sand-rich and tend to be dominated by
proximal facies (Fig. 2). These lower parasequences are
stacked forming a progradational parasequence set, reflect-
ing an overall regressive trend. In the middle interval, parase-
quences are mud-rich and tend to be dominated by distal
facies (Fig. 2). The middle interval records a transgression
along a wave-dominated shoreline. Wave dominance is indi-
cated by the abundance of structures indicative of oscillatory
flows (Fig. 3B-E), including hummocky cross-stratification,
and combined-flow and wave ripples, displaying diagnostic
features such as chevron and bundled upbuilding and oft-
shooting.

Facies association B consists of three facies (B1-B3),
including various subenvironments of a prograding mixed
wave- and river-influenced delta, such as prodelta (Fig. 4A),

© 2013 John Wiley & Sons Ltd
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distal (Fig. 4B) and proximal delta front (Fig. 4C,E), and
terminal distributary channels (Fig. 4D). This facies associa-
tion is present in the upper interval of the Jarillal Member.
The upper interval consists of coarsening-upward parase-
quences stacked forming a progradational parasequence set
(Fig. 2). Deltaic progradation is further indicated by the
presence of seaward-dipping clinoforms and delta topsets.
Intense soft-sediment deformation (Fig. 4B) suggests high
sedimentation rates and unstable substrate conditions, which
is consistent with a deltaic setting.

MATGROUND FACIES

Microbially induced sedimentary structures (MISS) result
from interaction between mat-forming microorganisms and
sediment particles (Noftke, 2010 and references therein).
In the studied succession, abundant MISS occur at eleven
surfaces within a resistant cliff-forming sandstone unit that
marks the top of the middle interval (Fig. 5A-C). These
structures occur in hummocky cross-stratified to wave-
rippled cross-laminated very fine-grained sandstone forming
lower- to middle-shoreface deposits. Some of the bedding
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planes containing MISS can be followed laterally for
approximately 500 m (Fig. 5A).

Manchuriophycus

The most pervasive MISS in these deposits are cracks
referred to as ‘Manchuriophycus’ (Endo, 1933). These
cracks are commonly preserved on the soles of sandstones
and seem to be preferentially developed in the troughs of
flat-topped ripples forming sinuous, curving positive pat-
terns that cross-cut each other (Fig. 6A-D, Fig. 7A-B). In
some cases, these structures are also preserved as negative
features at the bases of the rippled sandstones. Cracks are
0.1-1.0 cm wide, and several centimetres long. These struc-
tures have been observed on nine different surfaces in the
middle interval. Schieber (2004) considered these cracks as
formed by destruction processes, such as dehydration and
shrinkage. Most likely these cracks formed preferentially
along the ripple troughs due to the presence of thicker
microbial mats in those areas than in the crests (Schieber,

Fig. 4 Facies association B (Mixed wave-and
river-influenced delta). Upper interval of the
Jarillal  Member succession. (A) Facies B1,
prodelta deposits. Note dominance of thinly
interbedded siltstone and sandstone and
intercalation of a tabular, combined-flow
ripple cross-laminated sandstone bed (arrow).
Lens cap is 5.5 cm wide. (B) Facies B2, distal
delta-front deposits, showing intense soft-
sediment deformation. Lens cap is 5.5 cm
wide. (C) Facies B3, proximal delta-front
deposits forming seaward-dipping clinoforms.
Geologist for scale (circled). (D) Facies B3,
proximal delta-front deposits. Note clinoforms
and terminal distributary-channel deposits
forming an erosive-based lenticular sandstone
body (arrow). (E) Facies B3, proximal delta-
front  deposits.  Note  seaward-dipping
clinoforms and horizontally bedded topsets
(arrow). Geologist for scale.

2007; Eriksson ez al, 2007; Lan & Chen, 2012). Thin
sections revealed the presence of thick microbial mats that
form a continuous layer draping the sediment surface
(Fig. 6D). Some oriented sand grains are also visible within
the organic matrix, mostly in areas with thicker epibenthic
microbial mats. Haematite crystals are common, most likely
representing weathered products of pyrite (Noftke et al.,
2006). Manchuriophycus has been reported in coastal areas
of shallow-marine and lacustrine environments (Eriksson
et al., 2007; Schieber et al., 2007). The co-occurrence of
sinuous cracks with wave-ripple marks points to a subaque-
ous origin for these cracks (Lan & Chen, 2012).

Multidirected ripple marks and load-casted ripples

The other abundant MISS are multidirected ripple marks,
which consist of patches of ripples having different orienta-
tions, preserved on the same surface. These structures are
present on both the tops and bases of the sandstone beds,
in the latter case forming load-casted ripples (Fig. 8A-D).
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Fig. 5 Stratigraphic context of the matground facies occurrence in the
middle interval of the Jarillal Member succession. (A) General view of the
transgressive mudstone-dominated deposits of the middle interval. Arrow
indicates location of MISS interval at the top of a wave-dominated parase-
quence. (B) General view of parasequence culminating in the lower/middle-
shoreface deposits containing the MISS on the right. Note maximum-flooding
shelf black shales on the left (Facies A1). (C) Close-up of the parasequence
containing the MISS interval.
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Multidirected ripple marks occur in at least eight closely
spaced surfaces within the uppermost sandstone unit of the
middle interval. These structures reflect the periodic alter-
nation between mat growth, biostabilization and reworking
by storms or high water during spring tides in shallow-
water settings (Noftke, 1998; Pfliiger, 1999; Draganits &
Noftke, 2004; Bottjer & Hagadorn, 2007). Load-casted
ripples record the moulding and exquisite preservation of
bedforms in the absence of erosion due to microbial stabil-
ization. Their occurrence suggests the presence of slimy
films that provided cohesiveness to the deformed sandy
beds, which were subsequently casted by a finer-grained
bed (Seilacher, 2008; Bottjer & Hagadorn, 2007). These
structures commonly are associated with palimpsest ripples
in intertidal marine environments (Bottjer & Hagadorn,
2007), although in the Jarillal Member they are present in
shoreface (i.e. below the low tide line) deposits.

DISCUSSION

As a result of the Cambrian Agronomic Revolution, micro-
bial mats experienced a retreat towards environments hostile
to bioturbators, essentially disappearing from fully marine
settings by the Ordovician (Seilacher & Pfliiger, 1994;
Seilacher, 1999; Hagadorn & Bottjer, 1999; Buatois &
Mingano, 2011a,b). Therefore, post-early Palacozoic marine
recordings of microbial mats are typically restricted to mar-
ginal-marine intertidal settings or fully marine settings under
dysoxic conditions. Examples of the former are known from
a number of tidal-flat deposits of Carboniferous age in
Kansas (e.g. Mdngano et al, 2002; Buatois & Maingano,
2011b), Cretaceous age in Colorado (Schieber, 2007) and
Neogene age in Patagonia (Carmona et al., 2012). Exam-
ples of matgrounds in fully marine dysoxic environments
have been documented in the Silurian of Lybia (Pfliger,
1999). Extensive matgrounds in fully marine settings are
also known to occur at a more global scale as a result of mass
extinctions. Suppression of bioturbation during biotic crises
has resulted in the brief re-appearance of matgrounds, as
illustrated by post-extinction aftermath Lower Triassic
deposits, which contain abundant MISS (Pruss ez al., 2004 ).

The presence of extensive matgrounds in Carboniferous-
Permian open-marine deposits of the Santa Elena formation
illustrates an occurrence of anachronistic facies. As is the case
of older rocks (Mata & Bottjer, 2009), there is evidence of
mutual exclusion of matgrounds and penetrative bioturba-
tion in the Santa Elena Formation. While vertical bioturba-
tion is common in the nearshore deposits of the lower
progradational parasequence set, penetrative trace fossils are
absent or extremely rare in identical facies containing MISS
in the transgressive interval, further suggesting that biotur-
bation is most likely a key factor precluding matground
development. Brachiopod shells, which are abundant in the
offshore tempestites and shoreface deposits of the lower
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Fig. 6 Manchuriophycus. (A) General top view
of microbially stabilized deposits showing flat-
topped ripples and Manchuriophycus cracks.
Hammer is 33 cm long. (B) Close-up view
showing 8-shaped, circular and sinuous cracks.
(C) Sandstone top with microbially induced
shrinkage cracks. (D) Thin section, showing
continuous microbial mats on the sediment
surface, being disrupted by a shrinkage crack.

Fig. 7 Close-up of Manchuriophycus. Note the
sinuous patterns and the superimposition of
different crack generations. (A) Photograph.
(B) Drawing.

Fig. 8 Multidirected ripple marks and load-
casted ripples. (A) General view of one of the
sandstone bases showing load-casted ripples.
(B) General view of sandstone tops with
multidirected ripple marks and Manchuriophycus.
Hammer (circled) is 33 ¢cm long. (C) Different
sandstone tops with multidirected ripple marks,
flat-tops and cracks formed preferentially
in ripple troughs. Hammer is 33 cm long.
(D) Close up of C.
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interval, are absent in the middle transgressive interval, fur-
ther suggesting an environment hostile for the benthic fauna.

The occurrence of matgrounds in the Santa Elena Forma-
tion should be understood within the framework of the
Gondwana glaciation. The Gondwana Ice Age comprises
three main glacial events, namely Devonian-Early Carbonif-
erous, carly Late Carboniferous and Late Carboniferous-
Early Permian (Limarino ez a/., 2002). The second of these
events is well represented in the Andean basins of Argentina,
including the Calingasta-Uspallata Basin (Lopez-Gamundi,
2010; Limarino et al., 2002). However, it is the third event
the one that records the peak of the Gondwana Ice Age, dis-
playing the most widespread distribution of glacial deposits
in eastern Argentina, Brazil, South Africa, Antarctica and
Australia (Lépez-Gamundi, 2010). Although glacial depos-
its of the Late Carboniferous-Early Permian event do not
occur in the Andean basins, the deglaciation phase is
indirectly recorded by a rapid rise in sea level resulting in a
drastic landward facies shift forming a transgressive systems
tract (Desjardins et al., 2009; Lépez-Gamundi, 2010). This
Stephanian-Asselian transgression is evidenced in the Santa
Elena Formation, as indicated by the thick mudstone-prone
shelf deposits of the middle interval.

Extensive development of matground facies in deglacial
times is not restricted to the Santa Elena Formation; MISS
also occur in equivalent strata in southern Brazil (Rio do
Sul/Taciba Formation, Parand Basin). Palimpsest ripples,
trapping and binding structures, erosional remnants, wrin-
kle structures, biolamination, sinoidal laminae and micro-
bial filaments are common in the fine-grained rhythmites
(Netto et al., 2009). Bioturbation is absent and small-
scale, soft-deformation structures are widespread. Framboi-
dal pyrite and acritarchs occur locally.

Suppression of bioturbation may result from a number
of stress factors, such as anoxia, episodic deposition, hypersa-
linity or extreme brackish-water (oligohaline) conditions
(Buatois & Mdngano, 2011a). In particular, changes of inten-
sity of bioturbation and ichnodiversity occur along a salinity
gradient within marginal-marine environments (Wightman
et al., 1987; Mingano & Buatois, 2004; Buatois &
Mingano, 2011a; MacEachern & Gingras, 2007). Because
very few animals have the physiological adaptations necessary
to survive in brackish water, marginal-marine ichnofaunas
are of low diversity. Ichnodiversity and degree of bioturba-
tion are minimal under oligohaline conditions and may
eventually fall to zero close to the transition to freshwater.

Isbell et al. (2003) estimated that the late Paleozoic
Gondwana ice sheet volumes were in the range of 49.1-
65.4 x 10° km®. Full ablation of a single ice sheet would
have resulted in a 100-m seca-level rise. Melting of the
Gondwana ice masses may have caused an extreme discharge of
freshwater (Buatois et al., 2006, 2010), a situation somewhat
comparable with that of the Holocene Yoldia Sea, which
was freshwater during most of its deglaciation history as a
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consequence of the high release of meltwater in the north-
ern Baltic Sea Basin (Virtasalo er a/l., 2006). An unusual
release of meltwater during the final deglaciation episode
of the Gondwana Ice Age may have dramatically freshened
peri-Gondwanan seas, impacting negatively on coastal and
shallow-marine benthic faunas. Suppression of bioturbation
was therefore conducive to a brief re-appearance of mat-
ground-dominated ecosystems.

The global impact of the Gondwana Ice Age and its
transition to a largely ice-free greenhouse world on marine
ecosystems have received increased attention through the
documentation of low rates of origination and extinction
during the glaciation and rapid faunal turnovers in its after-
math (e.g. Stanley & Powell, 2003; Clapham & James,
2008; Isbell er al, 2008). On the other spectrum of the
scale, the near-field effects (i.e. in close proximity to
glaciers) of the deglaciation have been examined recently
in the upper Paleozoic deposits of Gondwana with the
documentation of freshwater ichnofaunas inhabiting coastal
areas of fjord settings as a result of extreme meltwater
release from adjacent ice masses (Buatois ez al, 2000,
2010). The present study bridges the gap between these
two scales of analysis by showing that freshwater release
was significant at a regional and inter-basin scale, with
ablation of the Late Carboniferous-Early Permian ice cap
affecting the Andean basins of Argentina. This is a scale
that has received little attention in the stratigraphic record.
However, information from modern environments shows
that the impact of coastal processes far exceeds the local
scale. For example, approximately 50% of sediment depos-
ited in the Orinoco Delta is in fact derived not from the
Orinoco River but from the mouth of the Amazon River,
located some 2000 km to the southeast. The sediment is
transported via the northwest-directed Guayana current,
generating extensive muddy shorelines along the northern
coast of South America (Kuehl er al., 1986). Large-scale
events, such as the deglaciation that immediately followed
the Gondwana Ice Age, undoubtedly have played a major
role on coastal ecosystems, strongly affecting benthic com-
munities (Buatois et al., 2006, 2010; Netto ez al., 2009,
2012). Bioturbation is a key factor in ecosystem perfor-
mance which plays a major role in ocean and sediment
geochemistry (e.g. Canfield & Farquhar, 2008). Accord-
ingly, the decimation of the mixed layer (i.e. the soupy
and totally bioturbated uppermost sediment zone) during
deglaciation in the Gondwana basins may have altered eco-
system functioning and geochemical cycling. The geobio-
logical consequences of the Gondwanan deglaciation event
deserve further exploration.
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