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Abstract. We present a theoretical model of the free Helmholtz energy (F ) for solid metals that
incorporates three contributions: the elastic part through a local strain description, the vibrational
energy within a quasi-harmonic Einstein model with volume-dependent cohesive energy, and the elec-
tronic contribution in the free electron gas setting. To get F , we introduce discrete approximations
of the Helmholtz energy defined in cubic lattices and show their convergence to F by finite element
methods.

For homogeneous deformations, the obtained model is applied to derive an equation of state (EOS)
which shows a very good agreement with experimental data. Moreover, by comparing with other known
theoretical EOSs, the present model is highly stable under different estimations of its parameters.

1. Introduction

Thermostatistical models of matter play a key role in the illustration and understanding of physical
behavior of many systems and also in the description of the relations between the properties involved.
In fact, the knowledge of the thermal properties and the EOSs of solids is a subject of permanent
interest in many fields of basic and applied sciences including physics, metallurgist and geophysics.

There are several experimental, theoretical and numerical approaches to determine EOSs for solids
[1, 2, 3, 4, 5, 6, 7, 8, 9]. Among the best-known models, we can be mentioned the ones of Birch-
Murnaghan [10], Rose-Vinet [11, 12] and Mie-Grünesisen [13, 14]. Either the EOSs have empirical
or theoretical bases they are very useful for interpolation and extrapolation of pressure-volume data,
for predicting behaviors and also for determining values of other quantities, as the bulk modulus.
However, in most of the standard frameworks, the Helmholtz or Gibbs free energies were not derived,
so a full thermodynamic description was not constructed. Moreover, there are many numerical and
computational methods such as Molecular Dynamic simulations [15, 16] and density function theory [17,
18] to analyze solids under deformations with a great experimental agreement. Nevertheless, numerical
methods can yield isothermal curves for a specific system but, in contrast to analytical approaches, do
not provide a full understanding about the mutual relations among physical parameters.

The general purpose of the present work is to contribute to the development of a reference for the
study of metal deformations, with a full and self-consistent thermodynamic description. The total free
Helmholtz energy is constructed from three contributions: vibrational, electronical and elastic. The
vibrational energy is given by a quasi-harmonic Einstein model with a dimensionless cohesive energy
versus distance function (F(z)) involving the Wigner-Seitz radius and a material-dependent scaling
length, as suggested in classical works by Rose, Ferrante, Smith and collaborators [11, 19]. Secondly,
the electronic part is estimated as the energy of free electron gas in the standard form. Finally, the
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elastic energy is described extending the internal energy in a power series with respect to a deformation
parameter. This method has been previously used in [20, 21] for describing the behavior of solid argon
and gold. However our insight is different, from one side, we explicitly introduce the deformation map
u that describes the new positions of the atoms after the deformation, allowing to expand the elastic
energy in terms of linear thermal strains. On the other side, we derive a continuum and macroscopic
model from a discrete and microscopic description of the atomic interactions. In consequence, our
model not only quantifies the change in volume produced by the deformation, but also contemplates
how the change in volume is generated.

The paper is organized as follows. In Section 2 we provide the basic setting of the phenomenon
under study, including standard assumptions on the partition of the total Helmholtz energy. The
construction of the discrete models for the total energy is discussed in Section 3. In this part, we
shall also provide full details of the formulation of each discrete energy contribution. The continuum
model for the Helmholtz energy, is presented in Section 4. A deep discussion of the model for the case
of homogeneous deformations, including derivations of EOSs, is provided in Section 5. In that part,
we shall also compare the theoretical findings to both, experimental data and previous equations of
state in the literature. In Section 6 we present the general conclusions of the paper. Finally, we close
the paper with the Appendix, where we supply the details in deriving the continuum model from the
discrete approximations.

2. Basic framework

We consider a metallic three dimensional body Ω0 ⊂ R3 with simple cubic structure. We call Ω0

the initial configuration with temperature T0 and pressure P0. The solid is initially in equilibrium and
is deformed into a new stable configuration (Ω) by a change in temperature or pressure. However, we
assume that the thermodynamic change does not produce a phase transition.

The total Helmholtz energy of a solid can be expressed as the sum of three terms describing the
elastic (Fe), vibrational (Fvib) and electronic (Fel) contributions [22]:

(2.1) F = Fe + Fel + Fvib.

Each of these partial contributions Fi will be found using the following standard expression:

(2.2) Fi = Ei − TSi,

where Ei is the internal energy and Si the corresponding entropy. We shall write each Fi over dis-
cretizations of the deformed solid, and then by a limiting procedure we shall derive a continuum model
for F .

3. The discrete model

3.1. Basic considerations.

We model the deformation from Ω0 onto Ω by a function u with continuous first order partial deriva-
tives. In the sequel, V0 and V represent the volumes of the initial and final configurations, respectively.

In the initial configuration Ω0, we distinguish between the lattice given by the cubic crystal system
and the lattices generated by the discretization. The first one is fixed (dashed lines in Fig. 3.1), the
nodes of the lattice are all the atoms of the solid and the smallest distance between them is the lattice
parameter a. On the other hand, the discretization gives rise to a set of cubic lattices Ω0 ∩ Lh, where
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Lh = hZ3 and h is the lattice mesh (solid lines in Fig. 3.1 for h = 2a). When h = a the number of
nodes (Nn(h)) is exactly the number of atoms (N). In the sequel the following parameter will be used:

(3.1) N(h) =

{
Nn(h) if h > a,

N if h ≤ a.

Moreover, we let uh the discrete deformation that coincides with u on the nodes of Lh ∩ Ω0.

Figure 3.1. Representation of the solid with its cubic simple structure with lattice
parameter a and its discretization with mesh h.

3.2. Contributions to the discrete total Helmholtz energy.

3.2.1. Helmholtz elastic energy. This energy is related to the displacements of the atoms in the
deformed configuration with respect to the initial positions, without considering the atomic vibrations.
For given h, we will describe the elastic deformation taking into account only the interactions between
first-neighbour nodes of the corresponding discretized lattice.

Figure 3.2. Representation of a standard lattice cell.
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For each h and node α ∈ Lh ∩ Ω0, we define the lattice cell as Chα = α+ h[0, 1]3 (see Fig. 3.2). The
internal elastic energy associated to each cell (Eh,αe ) is considered as the quotient between the total
internal energy of the solid and the number of cells (that is approximately N(h)). Similarly:

V0 ≈ N(h)h3 and V ≈
∑

α∈Lh∩Ω0

vhα

where vhα is the volume of the deformed lattice cell. Hence, performing a Taylor expansion of Eh,αe
around the initial equilibrium state h3 in terms of vhα, we obtain:

(3.2) Eh,αe =
∂Eh,αe
∂vhα

(vhα−h3)+
1

2

∂2Eh,αe
∂(vhα)2

(vhα−h3)2 + · · · = A

N(h)
(vhα−h3)+

1

2

B

N(h)h3
(vhα−h3)2 + · · · ,

where B is the Bulk modulus and A the elastic pressure of the solid, both at the initial equilibrium
state. In the sequel, we shall re-write (3.2) in terms of bond deformations.

For each lattice cell and for each permutation π ∈ S3 of the elements 1, 2, and 3, the deformation
of the edge with endpoints α + h(eπ(0) + · · · + eπ(i)) and α + h(eπ(0) + · · · + eπ(i) + eπ(i+1)) may be
quantified by:

(3.3) εh,iα,π :=
|uh(α+ h(eπ(0) + · · ·+ eπ(i) + eπ(i+1))− uh(α+ h(eπ(0) + · · ·+ eπ(i)))|

h

for i = 0, 1, 2 (where we take π(0) = 0).
The parameter (3.3) characterizes the edge deformation with respect to the reference configuration.

Therefore, the term vh,iα,π := h3εh,iα,π is an approximation of the final cell volume vhα. Indeed, an elastic
contraction gives rise to εh,iα,π < 1 and hence vh,iα,π < h3. Similarly, an expansion gives εh,iα,π > 1 and
vh,iα,π > h3. Averaging over all edges and permutations, we get the estimation:

(3.4) vhα ≈
1

18

∑
π,i

vh,iα,π.

Moreover, observe that the term vh,iα,π − h3 is h3(εh,iα,π − 1) and that εh,iα,π − 1 corresponds with the
standard linear thermal strain for the edge with endpoints α+ h(eπ(0) + · · ·+ eπ(i)) and α+ h(eπ(0) +
· · ·+ eπ(i) + eπ(i+1)).

Plugging the expressions (3.3) and (3.4) into (3.2), we derive:

Eh,αe ≈ A

18N
h3
∑
π∈S3

[( |uh(α+ heπ(1))− uh(α)|
h

− 1

)
+

( |uh(α+ h(eπ(1) + eπ(2))− uh(α+ heπ(1))|
h

− 1

)

+

( |uh(α+ h(eπ(1) + eπ(2) + eπ(3))− uh(α+ h(eπ(1) + eπ(2))|
h

− 1

)]
+

B

36N
h3
∑
π∈S3

[( |uh(α+ heπ(1))− uh(α)|
h

− 1

)2

+

( |uh(α+ h(eπ(1) + eπ(2))− uh(α+ heπ(1))|
h

− 1

)2

+

( |uh(α+ h(eπ(1) + eπ(2) + eπ(3))− uh(α+ h(eπ(1) + eπ(2))|
h

− 1

)2 ]
.

(3.5)
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Observe that we used the convex approximation (
∑

i λixi)
2 ≈

∑
i λix

2
i for λi ∈ [0, 1],

∑
i λi = 1 and

xi small.
An approximation to the internal elastic energy of the lattice (Ehe ) will be the sum of (3.5) over

inner cells Chα ⊂ Ω0. On the other hand, the static entropy can be calculated using the formula
Ste = −kBN(h)

∑
i pi ln pi with i = 1, 2, where p1 = qh = N(h)v/V represents the fraction of cell

space occupied by nodes of volume v, and p2 = 1 − qh. Then, using (2.2), the discrete model for the
Helmholtz elastic energy of the solid may be written as:

(3.6) F he = Ehe +N(h)TkB

(
qh ln qh + (1− qh) ln(1− qh)

)
.

At the initial state, v can be estimated as 4/3π(a/2)3, where a is the lattice parameter. Then the space
filling coefficient when h = a satisfies q0 ∼ 0.5 that is expected for cubic simple lattices. Hence

qh → q =
q0V0

V
as h→ 0.

Observe that q < 1 provided V > 0.5V0. This restriction on the deformation will be assumed in the
rest of the paper.

A similar equation to (3.2) is obtained in [20, 21] where the internal elastic energy is expanded in
terms of the elastic strain ε = (V − V0)/V0. However, our approach is different: while ε only quantifies
the net change in volume, the strain of the present work (3.3) gives a local description of each edge
deformation.

3.2.2. Helmholtz vibrational energy. To describe the vibrational contribution, we treat the atoms
as a set of Einstein oscillators [23, 24] in the framework of the quasi-harmonic approximation (QHA).
In QHA is assumed that the atomic vibrations are harmonic but the frequency ω depends on V via
the following relation [22]:

γ := − ∂ lnω

∂ lnV
.

The parameter γ is a kind of Grüneisen parameter [25] that can be taken in a first approximation to
be constant. Hence, the above expression can be integrated between two states to obtain:

(3.7) ω = ω0

(
V0

V

)γ
where ω0 is the Einstein frequency at the ground state i.e., T = 0 and P = 0. The correction of
the Einstein model presented by equation (3.7) implies that the vibrational energy depends on the
deformation via the volume variation.

According to the above considerations, the vibrational contribution to the Helmholtz energy can be
expressed as [24]:

(3.8) F hvib = N(h)uh0 + 3N(h)kBT

[
θ

2T
+ ln

(
1− e−θ/T

)]
,

where θ = }ω(V )/kB. The quantity uh0 is related to the cohesive energy of the solid (Ecoh) as follows
[35]:

uh0 = EcohF(zh)
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with F(zh) = −(1 + zh)e−zh the standard Rydberg function [12, 19] and zh a dimensionaless variable
given as:

zh(V ) = (r − r0) /l,

where r = (3V/(4πN(h)))1/3 is the Wigner-Seitz radius, r0 is the Wigner-size radius at equilibrium
and l is a material-dependent scaling length [19]. We point out that (3.8) contemplates not only the
vibrational (kinetic) energy but the static (cohesive) energy as well.

3.2.3. Helmholtz electronic energy. This contribution is estimated as the energy of a standard free
electron gas [22, 26]. In this framework, the electronic contribution to the Helmholtz energy can be
expressed as [26]:

(3.9) Fel =
3

5
n(h)εf

[
1− 5

12

(
πkBT

εf

)2
]

where εf is the Fermi energy at the ground state and is defined as [26, 6]:

εf =
}2

2m

(
3π2n(h)

V0

)2/3

.

Moreover, n(h) is the number of free electrons and can be taken as:

n(h) = N(h).nv

where nv is the number of valence electrons per atom.

4. The continuum model

The total discrete Helmholtz energy is obtained plugging the contributions (3.6), (3.8) and (3.9)
into (2.1), to get:

Fh : = Ehe +N(h)TkB

(
qh ln qh + (1− qh) ln(1− qh)

)
+N(h)EcohF (zh) + 3N(h)kBT

[
θ

2T
+ ln

(
1− e−θ/T

)]
+

3

5
n(h)εf

[
1− 5

12

(
πkBT

εf

)2
]
.

(4.1)

By applying finite element methods and letting h → 0 in (4.1), we derive a continuum model to the
total Helmholtz energy:

F =
A

3N

∫
Ω0

3∑
i=1

(|∂iu(x)| − 1) dx+
B

6N

∫
Ω0

3∑
i=1

(|∂iu(x)| − 1)2 dx+NTkB (q ln q + (1− q) ln(1− q))

+NEcohF (z) + 3NkBT

[
θ

2T
+ ln

(
1− e−θ/T

)]
+

3

5
nεf

[
1− 5

12

(
πkBT

εf

)2
]
,

(4.2)

where

(4.3) z = l−1

[(
3V

4πN

)1/3

− r0

]
.



7

We refer the reader to the Appendix for the calculations.
Integral representations, as those obtained in (4.2), are usually founded in models for the internal

elastic energy (see for example [27, 28] and the references therein). Moreover, the dependence of the
elastic part on the gradient of the deformation is also standard in the literature and it accounts for the
local deformation at each material point.

Equation (4.2) constitutes our basic model and from it, we can derive a complete thermodynamic
description, as we will show in the next section.

5. Discussion and implications of the model

5.1. Solid without deformation. As a basic example, suppose that the initial conditions of the solid
T0 = 0 and P0 = 0 do not change. In this case, the deformation is u(x, 0, 0) = x and its gradient is:

∇u(x, 0, 0) =

1 0 0
0 1 0
0 0 1

 .

Thus the elastic contribution in equation (4.2) disappears and the total energy reduces to:

F = −NEcoh +
3

5
nεf +

3

2
N}ω0.

which is the expected Helmholtz energy in the ground state.

5.2. Cubic solid under an homogeneous deformation. Suppose now that we have a cubic solid
[0, s0]3 with initial conditions V0 = s3

0, T0 and P0. The cube undergoes an homogeneous deformation
and it expands at the same rate over the directions e1, e2 and e3. A possible form for this deformation
is:

(5.1) u(x, T, P ) = (1 + c(T − T0) + k(P − P0))x

where c is a constant expressed in K−1 and k in (N/m2)−1. Observe that u satisfies the general relation
that the standard linear thermal strains over each edge of the cells are proportional to the change in
temperature. Below, we present interpretations of the constants c and k.

Recall that the linear thermal expansion coefficient (αL) at constant pressure (P = P0) can be
estimated as:

(5.2)
∆L

L0
= αL∆T,

where ∆T = T − T0, L0 = h and:

∆L = |u(α+ h(eπ(0) + · · ·+ eπ(i) + eπ(i+1)))− u(α+ h(eπ(0) + · · ·+ eπ(i)))| − h = c∆Th.

So, we derive:

(5.3) αL = c.

A similar relation to (5.3) for the whole solid may be deduced considering the volumetric thermal
expansion coefficient (αV ), estimated as:

(5.4)
∆V

V0
= αV ∆T.
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Indeed, using V0 = s3
0, we have that (5.4) gives:

[(1 + c∆T )s0]3 − s3
0

s3
0

= αV ∆T.

A first order Taylor expansion implies:

(5.5) c ≈ 1

3
αV .

The approximation (5.5) yields that αL ≈ (1/3)αV , that is a well known result for isotropic materials
[26].

Analogously, the isothermal compressibility (κ) can be estimated as:

∆V

V0
= −κ∆P

where ∆P = P − P0. In this case:

[(1 + k∆P )s0]3 − s3
0

s3
0

= −κ∆T

and then the constant k in (5.1) can be interpreted as:

k ≈ −1

3
κ.

5.2.1. Helmholtz total energy. In view of (5.1), we can write:

V = (1 + c∆T + k∆P )3V0.

Hence, equation (4.2) gives:

F =
A

N
V0

[(
V

V0

)1/3

− 1

]
+

B

2N
V0

[(
V

V0

)1/3

− 1

]2

+NTkB

[
V0

2V
ln

(
V0

2V

)
+

(
1− V0

2V

)
ln

(
1− V0

2V

)]

+NEcohF (z) + 3NkBT

[
θ(V )

2T
+ ln

(
1− e−θ(V )/T

)]
+

3

5
nεf

[
1− 5

12

(
πkBT

εf

)2
]
.

(5.6)

Observe that B/N ∼ 10−19 − 10−18N/m2, θ ∼ 102 − 103K [29] , εf ∼ 10−19J [29], and kB ∼
10−23J/K. Since the solid is a unit cube with simple cubic structure, we have N ∼ 1030. Therefore,
(5.6) yields (∂2F/∂T 2)V < 0 that indicates a thermodynamically stable state.

5.2.2. Equation of state (EOS). From equation (5.6) it is possible to obtain a complete description of
the thermodynamics of the system. In particular, using the relation P = −(∂F/∂V )T , we can get the
following equation of state:

P = − A

3N
x−2/3 − B

3N

(x1/3 − 1)

x2/3
− NkBT

2V0

ln (2x− 1)

x2
+

3NkBγθ

V0
x−3

(
1

2
+

1

eθ/T − 1

)
− Ecoh

4πl

(
4πN

3xV0

)2/3

z(x)e−z(x),

(5.7)
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where x = V/V0 and z(x) is given by (4.3). At the ground state, where T = 0 and P = 0, equation
(5.7) gives:

(5.8)
A

3N
=

3NkBθγ

2V0
.

Hence, the elastic pressure around the equilibrium cancels out the pressure generated by the atomic
vibrations.

Equation (5.7) is easy to implement and the input parameters used to apply it are well known
[29, 19]. Moreover, the present theory does not need fitting parameters.

5.2.3. Numerical analysis. In Figure 5.1 we show the agreement between the present EOS (5.7) and
the experimental data for Na, Mo and Au. The model is successful in representing the isothermal EOS
of the different metals. The values of Ecoh, B and θ were obtained from [29], whereas l and r0 from
[19]. For simplicity, we take γ = 2 [26]. For the particular case of Na, we show two different samples,
one with V0 = 24 cm3/mol (T = 20K) and the other with V0 = 22.38 cm3/mol (T = 51K, 150K and
250K).

Figure 5.1. Relationship between pressure and x = V/V0 for Na (a), Mo (b) and Au
(c) at different temperatures. Squares represent experimental values from [30, 31, 32],
respectively. The solid lines show the predictions given by eq. (5.7).

Observe that, even do the model was derived from cubic simple lattices, it can be satisfactorily
applied to obtain the EOS of bcc and fcc metals. The accuracy is better for small deformations which
is consistent with the theoretical approach. Moreover, for highest deformations (x ≈ 0.8) the relative
error between (5.7) and experimental data is 5.9% for Au, 1.6% and 2.5% for Na at T = 20K and
T = 51K, respectively, and 11.9% for Mo.

In Figure 5.2, we compare (5.7) for Mo with other EOS: Rose-Vinet [22] (in (a)), and Kamal et al.
[7] (in (b)). The gray zones represent a probable range of P-V values, considering different estimations
of the EOS parameters, viz. B [7, 19, 29, 33] and the pressure derivative of the bulk modulus (B’)
[7, 19, 34, 35]. These well known models have a sensitive dependence on B’, whose predicted values
present a huge relative difference in the literature. On the other hand, the red zone shows the range
of P-V given by eq. (5.7) for several values of B [7, 19, 29, 33], θ [29, 36, 37] and Ecoh [19, 29, 33]. It
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is evident that the effect of the parameter variations in our model is much less significant that in the
EOSs involving B’.

Based on experimental or numerical P-V values, the usual approach is to treat B’ as a fitting
parameter. However, when P-V data are not available, Figure 5.2 suggests the use of models not
involving B’. In this sense, our framework presents a clear advantage, even for Mo where the agreement
is less accurate.

Figure 5.2. Comparison of isothermal EOS for Mo at 293 K, obtained from different
sources. The shadowed regions represent the range of values in the P-V relation for
several estimations of the EOS parameters. The lower curves were obtained by the
smallest founded values of B and B’ (black curve) and for B, θ and Ecoh (red curve).
Similarly, the upper curves correspond to the highest values.

6. Concluding remarks

The main goal of the present paper is to develop a full theoretical description of metallic solids
under deformation. This deformation is caused by changes in pressure or temperature and is described
in terms of a smooth mapping that connects each point in the initial configuration with its final state.

The model is derived from a discretization of the solid in cubic lattices. On each discrete structure,
we consider the total Helmholtz energy as the sum of three contributions: elastic, vibrational and
electronic. The elastic part is modelled through a local strain defined in terms of the final distance
between first neighbour nodes in the lattice. The vibrational contribution is given by a quasiharmonic
Einstein model with a volume-dependent cohesive energy where the Rydberg function intervenes.
Lastly, the electronic part is described in the framework of the free electron gas.

From the discrete setting and using finite element method, we obtain the continuum Helmholtz
free energy F . The convenience of constructing F is to obtain a complete thermodynamic description,
including an equation of state. Hence, it is straightforward to derive other thermodynamic quantities
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such as the isobaric thermal expansion (αT = −(∂P/∂T )V /V (∂P/∂V )T ) and the heat capacity at
constant volume (CV = −T (∂2F/∂T 2)V ).

The present framework can be applied to any smooth deformation, without phase transitions, and
where V/V0 > 0.5. In particular, we make an exhausted analysis in the case of an homogeneous
deformation. A comparison with experimental P-V data for Na, Mo and Au, shows that the obtained
EOS accounts for the experimental trends at T << Tmelting with a very good agreement. Hence, even
do the model is developed from cubic simple lattices, it can be satisfactory applied to other cubic
structures. Finally, the present EOS is compared with other known equations of state, concluding that
it is more stable under the variations of its parameters. This advantage is due, in part, to the absence
of B′.

7. Appendix

In this section, we give full details in the derivation of the continuum model (4.2).

7.1. Standard triangulation in R3. Throughout this section, Ω is an open bounded subset of R3.
For s > 0, we denote:

Ωs = {x ∈ Ω; dist(x, ∂Ω) > s},
where dist(x, ∂Ω) stands for the distance of x to the boundary ∂Ω of the set Ω.

Figure 7.1. Triangulation of the cell taking in the standard form.

The standard triangulation of the 3-dimensional cube C3 = [0, 1]3 is defined as follows (see Fig. 7.1).
For all permutations π ∈ S3 of 3 elements, let T π be the 3-simplex obtained by:

T π = {(x1, x2, x3) ∈ C3; xπ(1) ≥ xπ(2) ≥ xπ(3)}.
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Introducing the canonical vectors:

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),

we notice that T π is the convexification of its vertices:

T π = conv
{

0, eπ(1), eπ(1) + eπ(2), eπ(1) + eπ(2) + eπ(3) = e1 + e2 + e3

}
,

and that all simplices T π have 0 and (1, 1, 1) = e1 + e2 + e3 as common vertices. The collection of 3!
simplices {T π}π∈S3 constitutes the standard triangulation of C3, which can also be naturally extended
to each lattice cell α+ hC3 where α ∈ hZ3:

T πα = conv
{
α,
{
α+ h

j∑
i=1

eπ(i)

}3

j=1

}
.

Moreover, we call Th,3 the whole triangulation, that is:

(7.1) Th,3 = {T πα ; α ∈ hZ3, π ∈ S3}.

7.2. The discrete model. Let Uh ⊂ Ω0 be the set of those nodes so that the lattice cell Chα is
included in Ω0, and let Uh be the region covered by those cells. For a given deformation u ∈ C1(Ω0)
with continuous first-order derivatives in Ω0, we consider the lattice Helmholtz total energy as:

Fh : =
∑
α∈Uh

Eh,αe +N(h)TkB

(
qh ln qh + (1− qh) ln(1− qh)

)

+N(h)EcohF(z) + 3N(h)kBT

[
θ

2T
+ ln

(
1− e−θ/T

)]
+

3

5
n(h)εf

[
1− 5

12

(
πkBT

εf

)2
]
.

7.3. Integral representation of the elastic contribution. Extend u to the whole space R3 so that
u ∈ C1

0(R3,R3). By the fundamental estimate of finite elements [38], the P1-interpolation uh of u on
Th,3, i.e. the continuous function affine on the simplices in Th,3 which coincides with u on hZ3, satisfies:

(7.2) ‖uh − u‖W 1,2(Ω) → 0

as h→ 0 for any Ω open and smooth domain in R3 and moreover:

(7.3) ‖∇uh‖L∞(Ω′) ≤ ‖u‖L∞(Ω′),

for all h and bounded set Ω′ compactly contained in Ω.
Recalling the expression for the internal elastic energy associated to a cell (3.5) and using the

piecewise affine interpolation of u in the triangulation, we may write:

h3

( |uh(α+ heπ(1))− uh(α)|
h

− 1

)
= h3

(
|∂π(1)uh(α)| − 1

)
= 6

∫
Tπα

(
|∂π(1)uh(α)| − 1

)
dx

h3

( |uh(α+ h(eπ(1) + eπ(2))− uh(α+ heπ(1))|
h

− 1

)
= h3

(
|∂π(2)uh(α)| − 1

)
= 6

∫
Tπα

(
|∂π(2)uh(α)| − 1

)
dx,
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and finally:

h3

( |uh(α+ h(eπ(1) + eπ(2) + eπ(3))− uh(α+ h(eπ(1) + eπ(2))|
h

− 1

)
= h3

(
|∂π(3)uh(α)| − 1

)
= 6

∫
Tπα

(
|∂π(3)uh(α)| − 1

)
dx.

Similarly, we derive integral expressions for the second order terms. Therefore, the discrete model takes
the form:

Fh =
A

3N(h)

∫
Uh

3∑
i=1

(|∂iuh(x)| − 1)dx+
B

6N(h)

∫
Uh

3∑
i=1

(|∂iuh(x)| − 1)2dx+N(h)EcohF(zh)

+N(h)TkB
(
qh ln qh + (1− qh) ln(1− qh)

)
+ 3N(h)kBT

[
θ

2T
+ ln

(
1− e−θ/T

)]
+

3

5
n(h)εf

[
1− 5

12

(
πkBT

εf

)2
]
.

7.4. The limiting model. In this part, we shall describe the limit behaviour of the discrete Helmholtz
total energy Fh for a given deformation u ∈ C1(Ω0).

First, as before, we may consider u as a function in C1
0(R3,R3). In view of the strong convergence

(7.2), we derive that:
uh → u, ∇uh → ∇u as h→ 0,

at almost every point in Ω0. Call χh := χUh the characteristic function of the set Uh. Writing:∫
Uh

(|∂iuh(x)| − 1) dx,

∫
Uh

(|∂iuh(x)| − 1)2 dx

as: ∫
Ω0

(|∂iuh(x)| − 1)χh(x)dx,

∫
Ω0

(|∂iuh(x)| − 1)2 χh(x)dx,

respectively, and recalling the uniform bound (7.3) of the gradients together with the convergences
|∇uh|χh ↗ |∇u| and |∇uh|2χh ↗ |∇u|2as h→ 0, almost everywhere in Ω0, we deduce from Lebesgue
Dominated Convergence Theorem that:

lim
h→0

(
A

3N(h)

∫
Uh

3∑
i=1

(|∂iuh(x)| − 1)dx+
B

6N(h)

∫
Uh

3∑
i=1

(|∂iuh(x)| − 1)2dx

)

=
A

3N

∫
Ω0

3∑
i=1

(|∂iu(x)| − 1)dx+
B

6N

∫
Ω0

3∑
i=1

(|∂iu(x)| − 1)2dx.

(7.4)

In this way, as h goes to 0, the discrete total Helmholtz energy converges to (4.2).
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