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Abstract

Under certain circumstances, an elastic cross section at very low energies could differ by
orders of magnitude above or below any reasonable estimate. The first case occurs near a
zero-energy resonance, while the second one is akin to the well-known Ramsauer—Townsend
effect. In spite of their intrinsic similarity, both effects are usually explained in very different
ways, either in terms of poles of the scattering matrix or by means of a partial-wave analysis,
respectively. In this paper we show that a unified description is actually possible. We
demonstrate that in a zero-energy resonance or transparency, the standard €2 threshold law of
the £-wave cross section is changed into €2~V (e~! for £ = 0) or €>“*1), respectively.
Finally, we show that while the zero-energy resonance occurs whenever the scattering length
associated to an individual zero of the Jost function diverges, the transparent scattering is a
collective effect, where the sum of all the individual scattering lengths plays a relevant role.

(Some figures may appear in colour only in the online journal)

1. Introduction

In the early 1920s, the low-energy electron collision
experiments developed by Ramsauer (1921a, 1921b) and
the electron swarm experiments pioneered by John Sealy
Townsend and his DPhil student Victor Bailey (Townsend and
Bailey 1921, 1922a, 1922b, 1922c¢) led to the independent
discovery of a pronounced minimum exhibited by the total
cross section for the scattering of electrons by argon at energies
of the order of 1 eV. As Ramsauer stated in his talk at the
Naturforscherversammlung at Bad Nauheim in September
1920, ‘while (the cross section of) other gases—as far as they
have been investigated to date—approach a constant value
with decreasing velocity of the beam, the cross section of argon
becomes extraordinarily small’ (Mehra and Rechenberg 2000).
Subsequent measurements by Ramsauer himself (Ramsauer
1923, Ramsauer and Kollath 1929) extended this discovery to
other noble gases, showing that the cross sections observed
at the minimum were two orders of magnitude smaller

0953-4075/13/065202+06$33.00

than estimates obtained from measurements in gas kinetic
experiments. It was not until the end of the 1920s, when
Schrodinger’s formalism of quantum mechanics had been
established (Schrodinger 1926), that Holtsmark (1929, 1930)
managed to explain this marked transparency of rare gases
over a small range of low energies by means of a partial-wave
description of scattering processes, as developed by Faxén and
himself (Faxén and Holtsmark 1927) a few years before.

On the following decade, the first measurements of the
scattering of slow neutrons by liquid hydrogen (Halpern
et al 1937, Brickwedde et al 1938) showed that the cross
section of ortho-hydrogen was several times larger than that
of para-hydrogen. Subsequent measurements with gaseous
targets (Alvarez and Pitzer 1940, Sutton et al 1947) finally
led to a full confirmation of these early findings (see, e.g.
Squires and Stewart (1953)). These results did not only
confirm the feasibility of a method proposed by Schwinger and
Teller (1937) for determining the triplet and singlet scattering
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amplitudes, but also that some kind of zero-energy resonance
was occurring in the latter due to the presence of a virtual state.

These two experimental findings showed that under
certain circumstances, an elastic cross section at very low
energies could differ by orders of magnitude from any
reasonable estimate of its geometrical size. In recent years, this
fact has recovered its original relevance due to its importance
in the study of ultracold atomic collisions, and the thrust
experienced in this area by the development of laser cooling
and trapping techniques.

It might be reasonable to assume that both the zero-energy
resonance and the low-energy transparency effects are prone
for a unified description. However, in most of the quantum
mechanics textbooks, as for instance in those by Schiff
(1949), Merzbacher (1961), Messiah (1964) or Gasiorowicz
(1974), just to mention some of the most traditional and
well-known books, the theoretical explanations of these two
effects seem to run over separate paths. On one side, even
though it might be rather cumbersome to exactly determine the
Ramsauer-Townsend minimum, the low-energy transparency
effect can be easily explained by means of a partial wave
analysis (Bohm 1951). On the other hand, the zero-energy
resonance effect is generally explained in terms of poles of the
scattering matrix (Newton 1966).

The aim of this paper is to explore the viability of a
unified description of the zero-energy resonance and the low-
energy transparency effects in terms of the Jost function.
Actually, it is well-known that the function introduced by
Jost in 1947 (Jost 1947, Jost and Pais 1951) provides a
natural and very convenient framework for dealing with the
zero-energy resonance effect. Being analytically continued to
complex values of the impulse, its zeros are shown to be
univocally related to bound, virtual and resonant states of
the corresponding Hamiltonian. In particular, this formalism
helps to explain the appearance of a zero-energy resonance
as an emerging effect produced by a zero of the s-wave Jost
function near the origin of the impulse plane, i.e. a bound
or virtual state with a very small energy. In contrast, since
the transparency effect is clearly unrelated to any single zero
of the Jost function, a similar explanation in terms of Jost
functions might seem impossible or at least impractical. Here
we will show that this is not the case, and that an explanation
of the low-energy transparency in terms of the Jost function
is possible and that it can provide some new insights on two
effects that rank among the most interesting manifestations of
the quantum world.

2. Definition of the Jost function

Let us start by summarizing some relevant and basic concepts
of the Jost function description of non-relativistic scattering
processes as given, for example, by Taylor (1972). Consider
a two-particle system of reduced mass m moving with
relative energy E = h*p*/2m and angular momentum £.
The interaction between the particles is provided by a real
spherically symmetric potential V (r), where r is the distance

among them. The corresponding radial Schrodinger equation

reads
&, e+1) 2m
(@ -~ ﬁV(r)> Ve(p, 1) =0.

Now we employ a length R, characteristic of the potential V (1),
to scale this equation as follows

d2
(-
where we have defined the dimensionless distance » = /R,

wave number k = pR and potential

U(r) = 2mR?*y V (r) /.

L +1
E—li;l—UUOwﬂkﬂ:Q

Here we have arbitrarily introduced a coupling parameter y,
which for the time being we set equal to 1. Let us assume that
the potential U () is continuous for r > 0, except perhaps at
a finite and discrete set of finite discontinuities, and satisfies
the conditions > U (r) — 0 when r — oo and #*?U (r) — 0
when r — 0, which guarantee that the bound spectrum of U (r)
is non-degenerate and finite in number and that the standard
assumptions of the scattering theory apply, as described for
instance by Taylor (1972).

We introduce regular solutions v, (k, r) with the condition
that for » — 0 they have to behave as the free regular solution,
namely,

(k,.)€+l
Qe+ D
It can be shown that for » — oo, the regular solution v (k, 1)
approaches a linear combination of free solutions

Yok, r) =

wwmw%QOW%m—ﬂ&maw*mm(n

where f, (k) is the so-called £-wave Jost function of impulse k.
Since the Schrodinger equation and the boundary conditions
are real, so is the regular wave function v (k, r), and therefore
the Jost function verifies f;(—k) = fy(k)* for real values of
k. Comparing with the asymptotic form of any solution of the
radial Schrodinger equation

Yotk r) o 0D gy (k) e ibrtn),
we obtain the following relation with the S matrix elements,

_ L=k o= 2i8e(k)
Je(k) 7

where we have defined the phase shifts

8¢ (k) = —arg fi (k).

It is clear that through these phase shifts, the Jost functions
contain all of the information about the asymptotic behaviour
of the radial wave function. For instance, the elastic cross
section is given by

s¢ (k)

o(k)y =Y ou(k),
=0

where the partial-wave cross sections oy (k) are usually written
as

ATR2(2¢ + 1)

B sin® 8, (k), 2)

oy (k) =
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or, in terms of the Jost functions,

4TR* (20 + 1) (Imfg(k))z

k2 Ife®) )
which implies the so-called unitarity limit (Newton 1966)
4TR*(2¢ + 1)
— “)
In particular, we see that o, (k) reaches its maximum value
when §,(k) = m/2 (modulo m), i.e. Re (fy(k)) = 0.
Comparing the two expressions (2) and (3) for o, (k) in terms of
the phase shift &, (k) and the Jost function f; (k) respectively,
it might be thought that the former is all that is needed to
fully develop a non-relativistic scattering theory and that the
last expression—which also involves the modulus of the Jost
function—is somehow unnecessary. We can say that as long as
we are interested in elastic processes, this observation seems
to be fair and sound. However, as it will be shown in the
following sections, equation (3) will provide us with a much
better starting point for the description of the zero-energy
resonance and transparency effects.

To date, we have considered the impulse k as a real
physical observable. However, one of the most powerful
techniques in scattering theory comes from extending physical
(real) parameters to the complex plane. Two important
properties of the extended Jost function are relevant for the
following sections (Taylor 1972). Firstly, the Jost function has
a kind of reflection symmetry about the imaginary axis,

Je(=k*) = fo (), )
which is an extension to the whole k-plane of the relation
fe (=k) = fy(k)* for real k mentioned before. The above
equation implies that the Jost function is real onto the
imaginary axis. Secondly, if k, is a zero of f;(k), then —k,
cannot be a zero at the same time, namely f;(k,) = 0 =

[t (—k,) # 0; otherwise the regular solution will be identically
zero for such a value of k.

o¢(k) =

3)

oe(k) <

3. Zeros of the Jost function

If the Jost function has a zero in the upper half of the & plane,
we see in equation (1) that the regular solution decreases
exponentially for r — oo. This means that vy (k,, r) is
a bound solution of the radial Schrodinger equation with
energy E, = h?k?/2mR?. Since this energy has to be real
and negative, k, has to be located onto the imaginary axis.
Similarly, if v, (k,, r) represents a bound state of energy
E, = —h?|k,|?/2mR?, then it has to be exponentially bounded,
and equation (1) implies that f;(ilk,|) = 0. In other words,
there is a one-to-one relation between zeros of the Jost function
f¢(k) in the positive imaginary axis and £-wave bound states.

If we reduce the coupling parameter y, the potential
becomes less attractive, and each zero would move downwards
along the imaginary axis and eventually reach the origin.
From then on, it can be shown (Taylor 1972) that the zero
will continue along the negative imaginary axis if £ = 0 or
move into the fourth quadrant tangentially to the real axis if
£ > 0. These zeros no longer represent bound states, and
are referred to as virtual and resonant states, respectively. For

certain potentials and for a decreasing coupling parameter,
even a virtual state might also reach a point below the origin
where it would also move into the fourth quadrant.

Due to equation (5), for each zero on the fourth quadrant,
there has to be another one on the third quadrant symmetrically
located about the imaginary axis. Note that when the coupling
parameter y is decreased so that a zero associated to a bound or
a virtual state reaches a point where it is about to abandon the
imaginary axis, that same point has to be reached by another
zero moving upwards. Both zeros have to meet in order to
move apart from the imaginary axis ‘symmetrically’.

4. Effective range expansion

To understand the behaviour of the cross section at
low energies, in particular the zero-energy resonance and
transparency effects we are interested in, we need to expand
the Jost function in powers of k. Under certain restrictive
conditions on the potential U (r), the Jost function can be
written as

fo(k) = ge(k) + ik hy (),

where g(k) and /i (k) are even functions in k. Expanding them
in powers of k, we obtain

fe(k) = [gor + gaek”> + O(kH)]
+ ik hoy + hook® + O (k)] (©6)

This equation resembles the well-known effective range
expansion for cot §, (k) as first introduced in nuclear scattering
by Bethe (1949) on the basis of an idea by Schwinger (1947)

(ack)* T cotd(k) = =1+ Sroa k> + O(k*). (7

Here we have modified the standard definition (Taylor 1972)
of the scattering length a, for £ # 0 so as to make it
actually a length (Macri and Barrachina 2002). Except for
that, equation (7) coincides with the standard effective range
expansion, where the scattering length a, and the effective
range 1y can be written in terms of the real coefficients in
equation (6) as follows,

h 1/(20+1) 2 /h
agz(ﬂ) and r@:_<ﬁ_@).
goe ag \hoe  goe

Note that only two parameters, a, and r; , are relevant for the
calculation of the phase shift up to the second order in k, while
we have included four parameters in the expansion of the Jost
function itself. This might seem as an unjustified redundancy
since both (6) and (7) are second order expansions in k. Thus,
the same order of approximation would be reached when they
are inserted in (2) or (3) and, in principle, the two expansions
would provide similar results. However this is not always the
case. The reason is that the scattering length a, and the effective
range r, might present singularities, while the coefficients in
the effective range expansion (6) of the Jost function do not.
As we shall see in a moment, this simple difference implies
that the extra parameters are not only relevant but absolutely
essential to describe the effects we are interested in.
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5. Zero-energy resonances

It is clear that the Jost function vanishes at k = 0 each time
a bound state is at the verge of becoming a virtual state (for
£ = 0) or a resonance (for £ # 0). In terms of the effective
range expansion, this means that the coefficient gy, vanishes,
and therefore the scattering length a, diverges. As can be seen
from equation (6) in the previous section, this zero is simple
for s-waves and double for ¢ > 0. So we have to analyse
these two cases separately. For s-waves, the Jost function reads
fo(k) = goo+ ikhoo +g20k> +0(k*) and replacing in the partial
cross section (3) we get

hoo® + 2hoohaok?

00> + (hoo” + 2800820)K>”
which, in the low-energy limit reads

oo (k) ~ 4 R? 8)

h2
oo(k) ~ 4rR* X = 4nR%ag.
800
Now, for gogo = 0 (i.e. a9 = hoo/go0 — 00), equation (8)
diverges like
4 R?
k2
i.e. the unitarity limit equation (4) is reached. Note that
equation (8) cannot be written in terms of the coefficients
ay and ry alone. The same occurs for £ > 0, namely
hog 2k

(go¢ + g20k*)*
For go; # 0 the partial cross section behaves like

oo (k) ~

or (k) ~ 47w R* (20 + 1)

h 2
or (k) ~ 4R (20 + 1) <ﬂ> o
8oe

=47 (a; R)* (20 + 1) (a; b)*,

which is nothing else but the elastic scattering version of the
celebrated threshold law founded by Wigner (1948) for the
energy dependence of the cross sections close to the opening
of an inelastic channel. However, whenever go, = 0, the
£-wave cross section reads

82t

which goes to zero slower than in the absence of a resonance.
Actually, for the ¢ > 0 cases, the threshold behaviour of the
£-wave cross section changes to that of an ‘4 — 1’ wave. Note,
however, that this modification of the regular k** behaviour
of the ¢ partial cross section does not strictly represents a
resonance since the unitarity limit (4) is not reached unless
the whole real part of the Jost function vanishes, i.e. g, = 0.
In particular, the previous equation violates equation (4) for
k > (g2¢/ hoe)? =2 thus establishing a limit for its validity.
Even then, the validity of the unitarity limit can be extended by
the simple prospect of including one extra term in the previous
equation, namely

h 2
oo (k) ~ 4TR*(20 + 1) (ﬂ) JHED,

hog 2k
(gor + 820k*)? + (hoek?t+1)?’

so that, whenever go, = 0, the £-wave cross section reads
4(0—1)

(g2e/hoe)? + k2

o (k) ~ 47 R*(20 + 1)

o (k) ~ 47w R* (20 + 1)

It is important to point out that this kind of effect can also
be observed in inelastic collisions. As we already mentioned, in
1948 Wigner demonstrated that the energy dependence of cross
sections near the threshold of an opening reaction channel
with ¢ symmetry is governed by the celebrated threshold law
o, o k**!. However, in order to deal with some deviations
which were observed in recent experiments, the following
generalization was proposed (Macri and Barrachina 2003, see
also Barrachina and Macri (2004))

K20+

RTAGIE

where f; (k) is the elastic £-wave Jost function corresponding
to the final state interaction. If the system is far from
a resonance, the Jost function is nearly constant and the
numerator gives the usual Wigner law. Else, the Jost function
depends strongly on k and the denominator describes the
observed deviations. In particular, at a zero-energy resonance,
the Wigner threshold law drastically changes from a k**! to a
k**~3 dependence for £ > 0 and a k*~! dependence for £ = 0.

Oy

6. Zero-energy transparency

The ¢-wave scattering length a, changes its sign regularly
when the control parameter y varies. Actually it is positive for
a bound state (i.e. when the zero is in the positive imaginary
axis) and negative otherwise. Therefore there have to be values
of y for which it vanishes. In this work, we will show that when
this occurs for £ = 0, the s-wave partial cross section goes to
zero instead of reaching a constant value at £ = 0; while
oy (k) vanishes faster than k* whenever g, = 0. This effect
was partially discussed by Greenhow (1993) but only for the
particular case of the square-well potential and with no relation
to the scattering length neither to the Jost function description
employed here. Actually, we show that this effect occurs
whenever the coefficient of lowest order in the imaginary part
of the Jost function, A, vanishes, and so does a,. For a general
potential, the partial cross section at the energy threshold
reads

2
ou(k) = 4nR* 20+ 1) <@> KD,
8oe
Let us point out that, again, it is not possible to express this
result in terms of the effective range r, since it diverge like
a, 2D for @y — 0. Actually it can be easily shown that
re a2t converges to 2(go¢hoy — gzghog)/g%)e in this limit.
Thus, when Ay, vanishes the £-wave cross section has an £ + 1
wave behaviour and, in particular, the partial cross section oy
vanishes along with the other £-wave components. This implies
that the scattering might be negligible at very low energies, i.e.
the particles become ‘transparent’ to each other.

Let us investigate how we can understand this effect by
means of the zeros k, of the Jost function on the complex
k plane. We consider a potential that vanishes beyond some
finite range. Let us point out that the same conclusions could be
reached for more general interactions, but with more involved
math. For s-waves we can write

N
fok) = fo) [ T ka — k),

n=1
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Figure 1. Left panel: modulus of the s-wave Jost function for the Hulthén potential with a coupling parameter y = +/2mZR ~ 100.91 in
logarithmic scale showing its zeros and poles on the complex k-plane. Right panel: corresponding s-wave partial cross section.

where we have singled out all of the N (possibly infinite) zeros
of the Jost function. An expansion up to the first order in k

reads
; -

fo(k) oc 1+ idok (Z:; kﬂ) k.
Here we have defined the reduced scattering length ay =
—id1In fo/dkl|i—o. By applying equation (5) it can be shown
that this quantity is real. Similarly, since all these zeros are
always located on the imaginary axis or symmetrically on
the third and fourth quadrant, it is easily shown that their
sum is imaginary. Thus, we characterize the contribution of
each zero k, by means of an ‘individual’ scattering length
a, = —Im (1/k,), so that

N

folk) o< 1+1) "y k,
n=0
which, upon comparing with equation (6) yields that the
scattering length ay in the effective range expansion is related
to the sum of the individual scattering lengths associated
to the zeros of the Jost function in the complex k plane,
namely,

N
ag = E d,,.
n=0

We see that while the zero-energy resonance is a kind of single-
zero effect, which occurs whenever any of the individual
scattering length diverges, this ‘transparent’ scattering is a
collective effect, where all the individual scattering lengths
add to zero. Let us succinctly investigate how this mechanism
works. We start by assuming that all the zeros of the Jost
function are located below the real axis, a situation that
occurs for a coupling parameter y that is small enough
to prevent the potential from sustaining bound states. The
collective contribution ), dnzo of all these zeros to the
scattering length is negative. In return, the non-resonant part
ap is positive, but its contribution is not enough for g to
vanish (except, of course, at y — 0). Thus for the zero-
energy transparency to occur, the potential has to sustain

one (or more) bound states so that the corresponding zeros
on the positive imaginary axis equilibrate those in the lower
half of the k plane. In other words, this effect would never
occur if the potential cannot sustain bound states. Note that
a similar provision is necessary for the Ramsauer—Townsend
effect. In the presence of a given number n of s-wave bound
states, 80(0) — 89(00) = nym in accordance with the theorem
demonstrated by Levinson in 1949 (Levinson 1949). Thus,
for np > 1, this s-wave phase shift would equal a multiple
of w at some given value of k. Then, if this impulse is
close enough to threshold, where all the other partial cross
sections are negligible, the Ramsauer—Townsend effect will
occur.

7. Does a Jost function’s zero close to the origin
guarantee a zero-energy resonance?

As we mentioned before, in scattering theory low-lying
resonances are explained as poles of the S-matrix or,
alternatively, as zeros of the Jost function close to the origin of
the complex k-plane (Newton 1966, Taylor 1972). However, as
we will show here, this can be a highly misleading conception.
Let us consider, for instance, an attractive (Z > 0) Hulthén
potential

voo Z_ L
r ~ Rexp(t/R)—1

On the left panel of figure 1 we show the modulus of the
s-wave Jost function fy(k) in logarithmic scale, over the
complex k-plane for y = +/2mZR ~ 100.91. The zeros and
poles of the Jost function are located at

. 2 .
= L n— Y and k, = —ln,
2 n 2

respectively, with n a natural number. The presence of a zero
at the position kj9; ~ —i10.09 with a corresponding single
scattering length a;9; = —Im(1/kjp;) ~ —10.7 might be
anticipating an important enhancement of oy (k) close to the
energy threshold. However, on the right panel of figure 1
we show that this prediction is completely wrong. In fact,

Ky
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the cross section displays a ‘transparency’ effect, with a
s-wave scattering length equal to zero which is clearly far from
the previous estimate. Of course, whenever a zero of the s-wave
Jost function is ‘exactly’ located at the origin, oy (k) diverges
at k = 0. However, we see that the presence of a zero in the
vicinity of the origin does not guarantee a resonance at zero
energy. However, as can be seen in the figure, the destructive
interference provided by neighbours zeros cannot be sustained
for every k and the cross section peaks at k ~ 0.2. Therefore,
we can see that the proper description of both the (almost) zero-
energy resonance and transparency effects require the analysis
of the ‘collective’ contributions of all of the zeros of the Jost
function.

8. Conclusions

The early explanation by Schwinger and Teller (1937) of the
n—p singlet scattering in terms of a virtual state demonstrated
the valuable insight that can be achieved by studying
the relation between zeros of the Jost function and the
parameters of an effective range expansion. In particular,
the knowledge of these low-energy coefficients is relevant
for the analysis of ultracold atomic and molecular collisions
where, for instance, the sign of the s-wave scattering length
controls the stability of an entire Bose—Einstein condensate.
In this context, the study of those situations where this
scattering length diverges or vanishes is relevant and of actual
importance.

In this paper we have presented a unified description of the
zero-energy resonance and transparency effects in an elastic
scattering process in terms of the Jost function. As it is well-
known, the presence of a single zero of the Jost function at the
origin is responsible for the resonance. Here we demonstrated
that the transparent scattering can also be explained in a similar
way, but more as a collective effect, where all the individual
bound, virtual and resonant states contribute so that the sum
of the individual scattering lengths cancels. This theoretical
framework lets us show that for the transparency effect to
occur, the potential has to sustain both bound ‘and’ virtual or
resonant states. Furthermore, we proved that in a zero-energy
resonance or transparency, the standard threshold dependence
of the ¢-wave cross section is changed into that of an £ — 1
or £ + 1 partial wave, respectively. We showed that although
a zero-energy resonance is always associated to a zero of the
Jost function close to the origin, the inverse proposition is not
generally true. The presence of a zero near the origin does
not guarantee a resonance effect. In this situation it is even
possible to find any other behaviour such as the contrasting
transparency effect we presented. Let us finally point out that
all these results are based on very general grounds and are
basically independent of the particularities of the collision
itself.
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