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Resumen 

La combinación de la síntesis por aerosol (o secado por pulverización) con la química Sol-Gel se ha 

trasformado en las últimas décadas en la más promisoria ruta para la obtención de materiales 

mesoporosos a escala industrial con variadas aplicaciones como energía, catálisis, purificación de agua, 

etc. 

En el método de secado por pulverización, se atomiza una solución precursora para formar gotas 

mediante nebulización ultrasónica. Cada gota se puede considerar como un microrreactor individual. 

Estas gotas resultantes luego son impulsadas mediante un gas portador y pasan a través de un tubo 
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caliente, donde el solvente se evapora rápidamente y las especies precursoras disueltas se ensamblan para 

generar los productos. 

Este método permite la producción continua de una amplia variedad de materiales, minimizando el uso de 

precursores y reduciendo considerablemente los residuos generados durante la síntesis. También permite 

obtener partículas con alta pureza, de una manera simple, económica y continua; posibilitando la  

obtención de partículas esféricas, no aglomeradas y con un tamaño monodisperso. 

En este mini-review, presentamos los principios básicos de la síntesis de nanomateriales utilizando el 

método de secado por pulverización y discutimos la posibilidad de adaptar estos procesos a los principios 

de la química verde.     

 
Abstract 

The combination of aerosol (spray drying process) with sol–gel chemistry has become in, the lasts 

decades one, of the most promising synthesis routes for the synthesis of industrially scalable mesoporous 

materials for various applications such as energy, catalysis, water purification, etc. 

In the spray drying method a precursor solution is atomized to form droplets by ultrasonic nebulization. 

Each drop can be considered as an individual microreactor. The resulting droplets are then driven by a 

carrier gas and pass through a hot tube where the solvent is rapidly evaporated and the dissolved 

precursor species are assembled to generate the products. 

This method allows the continuous production of a wide variety of materials minimizing the use of 

precursors and considerably reducing the waste generated during the synthesis. The spray drying method 

permits to obtain particles with a high-purity in a simple, economical and continuous way. This method 

allows to produce spherical shaped particles that are agglomeration free and have a relatively 

monodisperse size, which is very useful for material processing. 

In this mini-review, we present the basic principles of nanomaterials synthesis using aerosol methods and 

we discuss the possibility to adapt these processes to the principles of green chemistry. 
 

Palabras Clave: secado por pulverización, materiales mesoporosos, síntesis de fácil escalado, química 
verde 
 
Keywords: spray drying process, mesoporous materials, easy scalable synthesis, green chemistry.  
 
 
 

1. Introduction 

An aerosol, system belonging to the family of colloids, consists of a relatively stable suspension 

of solid or liquid droplets in a gas or vapour. The term 'aerosol' originates in military research 

during the First World War.1, 2 In the 19th century, aerosol particles represented the smallest 
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known division of matter and the fundamental properties of aerosols have been studied for more 

than 100 years.  

Aerosol technology is of great interest in numerous applications. Its use is well established in the 

food industry3-11, chemical industry12, 13, pharmaceutics production14-18, energy applications 19, 

just to name a few of its many applications. 

The size of the particles is of enormous interest in the establishment of the behavior of the 

aerosols. The sizes can vary from structures of about 0.001 microns to fog droplets and dust up 

to 100 microns, which significantly affects the behavior of suspended particles. That is why there 

are several types of aerosols that are classified according to the physical form and the generation 

method. The terms commonly used are:20 

• Dust: a solid particle formed by the mechanical disintegration of a material. 

• Fume: solids produced by physicochemical reactions such as combustion, sublimation or 

distillation. 

• Smoke: a visible aerosol produced by the disintegration of the liquid or the condensation 

of the vapor. 

1.1. Drying spray devices 

In this review we will focus on the aerosols produced by spray drying techniques. Spray drying 

is a simple, rapid, reproducible and scalable drying technology,21 which allows mild temperature 

conditions suitable for biopharmaceuticals sensitive to heat. Compared to other drying 

technologies used in drug delivery applications, spray drying is a continuous process for directly 

transforming various liquids (e.g., solutions, emulsions, dispersions, slurries, pastes or even 

melts) into solid particles with adjustable size, distribution, shape, porosity density and chemical 

composition. 
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A wide variety of instruments for the production of aerosols have been described in the 

literature22-24 and the techniques used are basically similar to the mechanisms of formation of 

natural aerosols.  

The steps of the spray drying process are basically: (1) heating the drying gas, (2) generating 

droplets, (3) drying the droplets and (4) collecting the particles. 

Figure 1 illustrates a principle flow diagram of a spray dryer. First, the liquid feed is atomized in 

a nozzle. The reduction in the size of the drop leads to a large increase in the surface area. In the 

drying chamber, the solvent in the sprayed drops is quickly removed by the continuous flow of a 

hot drying gas. The dried particles are formed, separated from the gas stream and collected in a 

collection vessel. 

A great deal of time and effort has been devoted to the research and development of aerosol 

generation devices. This research is usually carried out with the objective of having control of 

the particle size distributions. Spray drying equipment is commercially available and the 

production cost is generally lower compared to other drying technologies.4, 6, 25 

 

Figure 1. Principle flow diagram of a traditional spray dryer. 
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Polydispersed aerosols have many industrial applications (for example, agricultural spraying), 

making the applications cheaper because most of the environmental sprays are polydispersed.  

Aerosols of very narrow (monodisperse) distributions have many applications in aerosol 

engineering, for example, for size measurement, equipment calibration, filtration efficiency tests, 

lung inhalation studies and, ultimately, in the production of ceramic powders. To achieve 

practical monodispersity, the standard geometric deviation must be less than 1.2. 

Atomization generally produces a broad distribution of relatively thick droplets, with the 

minimum particle size determined by an equilibrium between surface tension forces that resist 

droplet formation at pressure or other forces that attempt to disrupt the fluid surface. Common 

methods used to mechanically disperse liquids to form aerosols include air nebulizers,26,27 

rotating discs,28, 29 ultrasonic nebulizers,30-32 and vibrating orifice generators.33 The last three 

techniques are not strictly based on atomization and are capable of producing monodisperse 

aerosols.24, 34 

Another important factor to consider is the concentration of the precursors. The high initial 

concentrations result in rapid agglomeration and a highly polydispersed aerosols. In addition, 

smaller primary particles are produced when the temperature increases,35 although the same 

increase can cause the decomposition of aerosol precursors. 

The aerosol particles generated by the direct sol-gel feeding spray dry method are quite 

monodisperse for particles in the submicron range,36-39 although in the case of core-shell 

particles, dispersion often depends on the initial size of the nuclei core. 

Japuntich et al.40 found that monodispersity depends on a balance between free and forced 

convection in the condenser tube. Furthermore, they found that the most successful condensates 

are those with low diffusion coefficients. Thus, a linear correlation between the Reynolds 

number (Re) or the flux in the capacitor and the Rayleigh number was found. Therefore, for a 

chosen Re, the Rayleigh number can be found and for a chosen temperature, parameters of the 

tube radius can be calculated. 
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2. Synthesis methods 

The combination of spray drying with the sol-gel technique allows to obtain porous particles in a 

simple, fast and cheap way, with the possibility of industrial scaling; although the obtaining of 

mesoporous spherical particles ordered and monodispersed pores is not trivial. The process is 

usually optimized to produce particles with the desired size, although in general the size 

distribution is relatively broad. The properties of the sol (concentration and rheology) are 

important, as are the operating conditions of the dryer (rotor speed, nozzle characteristics, 

temperature, humidity, etc.). 

Most commonly used methods for obtaining porous particles are: 

a) Using a surfactant or a block copolymer as template agent. In general, the synthesis 

involves Evaporation Induced Self-Assembly (EISA)41, this method consist in solvent 

evaporation, allowing templated agent to reach the critical micellar concentration 

(c.m.c.), which induces the formation of the desired mesoporous structure. 

b) Using a polymeric hard template agent. In this case the templates are polymeric 

nanoparticles which are eliminated after synthesis.42  

c) Using previously synthesized nanoparticles as precursors. These particles can be well 

dispersed or aggregated.43 

Lu and co-workers44 reported a method of spherical silica mesoporous particles synthesis. They 

started from an acid solution of silica in ethanol/water, where the different surfactants (CTAB, 

Brij-58, Brij-56 or P123) were far below their c.m.c. By incorporating metal complexes or 

organic dyes they were also able to obtain nanostructured hybrid mesoporous particles. Although 

the obtained particles were spherical, they did not achieve monodisperse sizes (see Figure 2). 

Alonso and co-workers45 also used EISA and spray-drying to obtain mesoporous silica particles. 

They used iPrOH as solvent in most cases, but they also tested the use of water. A Büchi Mini-

Spray 190 apparatus was employed and cetyl-trimethyl-ammonium bromide (CTAB) was the 

mesoporous template. They varied the composition of the sols (solvent and siloxane oligomers) 
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but did not varied operating conditions. When the solvent used was iPrOH, some degree of pore 

order was obtained, but not for the case where the solvent was water. The shape of the particles 

obtained was spherical in most of the samples with iPrOH as solvent, in case of water they 

obtained particles inside particles with a broad size distribution. 

In addition to silica, there are also reported syntheses of other porous particles such as TiO2
46-48, 

ZrO2
48, CeO2

48 and Al2O3
49. 

The most common hard templated agent are polystyrene latex (PSL) colloidal suspensions. 

Precursor of matrix particles can be either nanoparticles42, 50, 51 or molecular precursors.52 Then, 

the polymers are removed by calcination, obtaining structures similar to the ones presented in 

Figure 3. As expected, the pore sizes increased with PSL particle size. Interestingly, with this 

approach it is possible to obtain macropores, something that is difficult when the pore size is 

determined by the size of the micelles, as discussed earlier. 

 

Figure 2 (a) Faceted calcined particles with a hexagonal mesophase (d100 = 32.5 Å). The sol was prepared 

using 5 wt% CTAB as template. (b) Calcined particles showing cubic mesostructure. The sol was 

prepared using 4.2 wt% Brij-58 as template. (c) Calcined particles showing a vesicular mesophase (d100 = 

92  Å). The sol was prepared using 5% P123 as the triblock copolymer template. (d) Uncalcined silica 

particles showing ‘growth’ of ordered vesicular domains from the liquid–vapour interface. The sol was 

prepared using 2.5% Brij-56 as the template. Reprinted with permission of Springer Nature from 

reference 44. 
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Figure 3. SEM images of silica powders prepared using 5 nm of silica particle size and 178 nm PSL 

particle size: (a) low magnification and (b) high magnification of surface particles. Reprinted with 

permission from Nano Letters 2002, 2, 4, 389-392. Copyright 2002 American Chemical Society. 

 

The third mentioned synthesis method consists in the coalescence of previously synthesized 

nanoparticles that can be well dispersed or forming small aggregates. These particles coalesce 

when the drop dries, giving rise to new particles bigger than the ones used as precursors and 

leaving small cavities between them that form to the porosity.42, 50, 51 

Another interesting application involves the formation of core-shell films that can be produced 

by the condensation of vapours in already existing cores (heterogeneous condensation) or in 

higher supersaturations, by instantaneous formation of vapour particles, which are grouped and 

converted into particles when their size exceeds a critical value (homogeneous condensation). 

Heterogeneous condensation is typically used. In such generators four processes, not necessarily 

separated, are common: (1) Production of cores, (2) steam generation, (3) mixing of steam cores 

and (4) condensation through controlled cooling of the carrier gas. Even though, there is great 

interest in the development of core-shell particles obtained by processing by spray drying in a 

single step.53 

The spray drying method has also been adapted to produce thin fibbers (approximately 10 

microns).  High-viscosity sols and low viscoelastic characteristics are required for this purpose. 
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Gel particles were also formed using emulsion drying techniques; here droplets of aqueous sol 

are formed in a partially miscible solvent (for example, trichlorethylene). The water is 

progressively removed from the sol by transfer to the organic phase, and eventually rigid gel 

particles are formed. The size of the emulsion droplets can be controlled by adding an 

appropriate surfactant to the sol and by controlling the stirring conditions used to disperse the 

aqueous phase in the organic solvent. This method generally produces highly uniform particles 

that can have a size in the range > 1 µm to about 30 µm. In the two previous methods, narrower 

size distributions can be achieved by a subsequent centrifugal classification. 

3. Applications 

3.1. Pharmaceutical applications 

By spray-drying encapsulation, various particle designs can be prepared depending on the 

required functionality. In the case of pharmaceutical applications, core-shell particles, multi-wall 

particles, and multi-core or composite particles are commonly used (Figure 4). Spray drying 

allows the generation of smaller particle sizes than conventional aerosol synthesis methods, 

which improves the bioavailability and the release of bioactive components and drugs, because 

they have a higher surface to volume ratio, a higher penetration rate in the cells, stability, and 

possibility of directed release through the decoration of the surface.54 Also, a change of 

crystalline drugs to more amorphous structures provides a faster drug release kinetics. Micro and 

nanonization is used to change the morphology of the particles from a coarse grain to a very fine 

powder. This improves the solubility of the final pharmacological product due to the higher 

surface-to-volume ratio of nanoparticles and due to the more amorphous structures, in which the 

solvent (e.g., water) can penetrate more efficiently. 

Practical applications include, for example, polymeric wall materials, such as gum arabic, serum 

protein, polyvinyl alcohol, modified starch or maltodextrin55, 56. Typical examples are drugs with 

poor water solubility57, 58 and salts.59 
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In nanoencapsulation, typically a liquid product is embedded within a solid matrix. The 

encapsulated oil-in-water nanoemulsion is a common example, in which the oil droplets serve as 

a reservoir for a lipophilic pharmacological product. 

 

Figure 4 (A) Optical images of C/C hydrogel microspheres: (a) CMC-based microgels, (b) C/C core–

shell hydrogel microspheres, and (c) a magnified view of the edge of a C/C microsphere. (B) Optical 

images of the C/A hydrogel microspheres, containing (a) one, (b) two and (c) three CMC-based microgel 

cores. (C) (a-c) fluorescence images of A/A microspheres encapsulating CdTe QDs.W. Lai, A. S. Susha, 

A. L. Rogach, G. Wang, M. Huang, W. Hu and W. Wong, RSC Adv., 2017, 7, 44482 - Published by The 

Royal Society of Chemistry. 

 

Depending on the application, there is an optimized set of process parameters. The optimization 

of process parameters is usually done by trial and error. However, experimental design studies 

(DOE) help to optimize the nano spray drying process, as shown by several authors.14, 25, 55, 60-67 

The DOE studies allow determining the optimal conditions of the process with fewer 
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experiments, which reduces the cost of the experiments and the materials use, which constitute 

determining factors for pharmaceutical applications. 

3.2. Energy applications 

The large-scale development and generalized use of materials for energy applications, such as 

catalysts for water electrolysis, nanomaterials for hydrogen storage or electrodes for lithium 

batteries, is significantly hampered by the high cost of materials and the low reproducibility. 

Thus, it is highly desirable to develop cost effective but efficient alternative materials for 

different energy applications.68-70 

The implementation of mesoporous materials in electrocatalysis has allowed in recent years to 

considerably increase the real surface area of the used materials and, therefore, its effective 

activity.71, 72. In particular, mesoporous TiO2 materials are of great interest for different energy 

applications, due to their intrinsic properties and because these materials can be obtained in the 

form of mesoporous particles by methods that allow the continuous particles synthesis.73 

Additionally, the spray dry technique allows the encapsulation of nanomaterials. This core-shell 

type of structures can be advantageous due to the individual properties of each component 

material as well as the synergetic properties generated when the used layers are rationally 

chosen. For example, the use of a mesoporous Co3O4 core with a mesoporous TiO2 shell forming 

an hybrid electrode with nickel (or nickel alloys) can increase the activity due to the modification 

of the Fermi level of Ni while the TiO2 can protect the Co3O4 from the corrosive environment 

found in a conventional alkaline electrolyzer.74 

3.3. Environmental applications 

Heavy metals are especially toxic to humans because they can be bioaccumulated. There are also 

law regulations on other pollutants such as pesticides and other organic molecules that come 

from wastewater from a variety of industries. In this context, mesoporous materials and 

nanotechnology represent one of the areas of greatest development of the last twenty years and 



90  M.V.  Lombardo et al. 

Anales AQA – Div. Jóvenes Profesionales                                               An. Asoc. Quim. Argent. 2019, 106(2), 79-96 
 FB @djpq.aqa – TW @jovenes_AQA 

with excellent environmental application perspectives.75-77 Combination of this kind of materials 

with synthesis by spray drying makes these materials have better perspectives for their use at 

industrial scale. In fact, spray drying has been developed for many industrial applications due to 

its capacity to produce high volumes of particles.78 

There is a wide variety of materials synthesized for environmental applications such as modified 

carrageenan microparticles for adsorption of pharmaceutical compounds79, magnetic chitosan 

microparticles grafted with methyl acrylate and tetraethylenepentamine for Cd (II) removal80, 

lanthanum oxide functionalised silica microspheres for phosphate adsorption81, graphene-Fe3O4 

hollow hybrid microspheres for heterogeneous Fenton and electro-Fenton reaction82 (Fenton 

reaction has been widely used to treat wastewater containing dyes, herbicides, antibiotics, etc), 

and many other materials.47, 83, 84 

Previously, these of kind materials for environmental applications were obtained by other 

synthesis routes; nowadays they can be produced by aerosol, significantly reducing the costs and 

production times. 

4. Perspectives and Green chemistry approaches 

As shown throughout this work, there are a variety of methods for the production of materials by 

spray drying. For example, mesoporous powders spray drying production methods using EISA 

procedure have been recently patented. These methods use volatile and flammable solvents in 

high proportion which makes their synthesis more expensive, because closed circuits must be 

used to avoid the ignition of solvents at high drying temperatures. In summary, these synthesis 

methods have the following limitations: 

a) high concentration of volatile organic compounds represent environmental risk, 

b) flammable components present risk of ignition and 



Templated Mesoporous Nanomaterials...  91 

Anales AQA – Div. Jóvenes Profesionales                                               An. Asoc. Quim. Argent. 2019, 106(2), 79-96 
 FB @djpq.aqa – TW @jovenes_AQA 

c) to control the hydrolysis-condensation processes of the inorganic precursors mineral acids in 

high concentration (pH < 0) are used, which also represent an environmental risk and require 

special materials for their processing. 

These limitations make necessary the development of new synthesis methods to obtain 

mesoporous materials by spray drying. 

In this direction, our working groups have developed and patented a synthesis method for 

obtaining spherical particles of mesoporous metal oxides having composition, surface area, 

porosity and size controlled.85 In this method, the solvent can have a low proportion of organic 

solvents (less than 25% by mass) or can even be pure water. Thus, risk of ignition is eliminated. 

This allows to work under an air atmosphere, resulting in a safe and low cost method. The 

amount of volatile organic compounds is low, which reduces the environmental risk and the 

precursor solutions are less acidic than in other reported methods.86 

This new method, friendly to the environment, generates high expectations for obtaining and 

using large-scale mesoporous materials obtained by spray drying, which have a wide spectrum of 

applications, some of which were described in this review, but are not only limited to them. 

5. Conclusions 

In this review we have covered some of the basic principles in the synthesis of aerosols, 

particularly nanostructured aerosols in different ways, including both hard template, and 

different types of soft template and sol-gel method. We have also explored some of the many 

facets of the multifunctionality of these materials, considering the possibility of using both 

organic and inorganic precursors. These materials present an enormous potential for industrial 

applications due to the fact that the aerosol synthesis methods are easily scalable, in comparison 

with other nanomaterials synthesis methods. Finally, there is a great interest in developing 

methods for the synthesis of nanostructured aerosols using environmentally friendly methods 

that allow the synthesis of multifunctional nanomaterials with a minimum impact on the 
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environment. In this sense, nanostructured aerosols appear as highly promising materials for 

many applications. 
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