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ABSTRACT

Single-molecule tracking (SMT) allows the study of
transcription factor (TF) dynamics in the nucleus,
giving important information regarding the diffusion
and binding behavior of these proteins in the nu-
clear environment. Dwell time distributions obtained
by SMT for most TFs appear to follow bi-exponential
behavior. This has been ascribed to two discrete
populations of TFs––one non-specifically bound to
chromatin and another specifically bound to target
sites, as implied by decades of biochemical studies.
However, emerging studies suggest alternate mod-
els for dwell-time distributions, indicating the exis-
tence of more than two populations of TFs (multi-
exponential distribution), or even the absence of dis-
crete states altogether (power-law distribution). Here,
we present an analytical pipeline to evaluate which
model best explains SMT data. We find that a broad
spectrum of TFs (including glucocorticoid receptor,
oestrogen receptor, FOXA1, CTCF) follow a power-
law distribution of dwell-times, blurring the temporal
line between non-specific and specific binding, sug-
gesting that productive binding may involve longer
binding events than previously believed. From these
observations, we propose a continuum of affinities

model to explain TF dynamics, that is consistent with
complex interactions of TFs with multiple nuclear do-
mains as well as binding and searching on the chro-
matin template.

INTRODUCTION

Transcription factors (TFs) are key regulatory proteins re-
sponsible for turning genes ‘on’ and ‘off’ by binding to en-
hancer or promoter elements across the genome (1). The
current consensus describes TFs as being able to transition
between three different states: (i) unbound from DNA (dif-
fusing in the nucleus), (ii) non-specifically bound and (iii)
specifically bound to chromatin (i.e. interacting with spe-
cific response elements) (2). However, biochemical studies
and live-cell imaging experiments appear to disagree on the
timescale that eukaryotic TFs can remain bound to chro-
matin, ranging from seconds to several hours or even days
(3–8).

Advances in fluorescence microscopy have revolutionized
our understanding of how TFs search and interact with
chromatin (9). Single-molecule tracking (SMT), which is
based on detecting and following through time the traces
produced by the light emitted from a single fluorophore, al-
lows the characterization of protein dynamics in live cells.
When applied to the study of TFs, important information
regarding the search and binding dynamics of these proteins
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can be extracted (9). SMT has been applied to over a dozen
TFs, and has revealed that the time TFs remain bound to
chromatin (i.e. residence time) is relatively short (seconds)
and follows a bi-exponential distribution (reviewed in (2)).
The bi-exponential behavior is consistent with decades of
biochemical studies, indicating that the DNA-bound pop-
ulation of molecules are composed of two distinct subpop-
ulations: a short-lived fraction (‘fast stops’) and a longer-
lived fraction (‘slow stops’). The fast fraction has been inter-
preted to represent non-specific binding to chromatin while
the slow fraction is thought to be consistent with specific
binding at enhancers or promoters (10–13). Experiments
wherein TFs were mutated in their DNA-binding domains
seem to confirm this model as the longer binding events
were reported to be dramatically reduced (11,13–16).

However, this view is at odds with our current under-
standing of the nuclear environment. Far from being ho-
mogenous, the nucleus is highly compartmentalized and can
impose constraints on the motion of many transcription-
related molecules (7,17,18). For example, the presence of
nuclear bodies, liquid–liquid condensates and distinct chro-
mosomal architectures can critically affect the searching
process of TFs for their target sites (6,19), implying that
TF dynamics should exhibit dynamics beyond the bi-
exponential model.

Recently, studies fitting TF dynamics to a three-
exponential model have found longer residence times for the
serum response factor (SRF) (over 4 min) (20) or CCCTC-
binding factor (CTCF) (∼15 min) (21) than would be ex-
pected from a bi-exponential model. Moreover, a multi-
exponential model was used to explain the dynamics of the
TF CDX2 (22). Finally, the bacterial proteins, tetracycline
repressor (TetR) and LacI, with no known endogenous tar-
gets in mammalian cells, show power-law behavior when
heterologously expressed (23,24). In fact, these non-specific
binding events could be as long as specific ones (23).

A random variable t follows a power-law (25) for t > tmin
if f (t) = At−β , where A is a constant and β is the ex-
ponent or scaling parameter. Power-laws are heavy tailed
(right-skewed), which makes rare events more likely to oc-
cur than for exponential distributions; and β is a measure
of the skewness. Many natural and artificial systems have
been found to follow power-law distributions (25). For pro-
teins interacting with chromatin, it would mean that the fre-
quency of binding events of a given TF will be inversely pro-
portional to the residence time of said TF. In fact, binding
times orders of magnitude longer than the average are likely
to be observed. More importantly, for mammalian TFs that
follow a power-law distribution, assigning discrete residence
times for specific and non-specific binding would not be
feasible. Whether this phenomenon occurs for endogenous
mammalian TFs remains an open question. While these dis-
cordant results regarding TF binding dynamics could reflect
the underlying biology, they may also arise due to the lack
of consensus in the field regarding tracking algorithms, pho-
tobleaching (PB) correction methods, and model fitting.

Here, we revaluated some of the core aspects of the SMT
technique, focusing on PB correction methods. We then de-
rived theory-based models for TF dynamics and a princi-
pled method to obtain optimal model parameters from em-
pirical residence time distributions, using Bayesian statis-

tics. With these methods, we analysed the dynamics of
several TFs, including the glucocorticoid receptor (GR),
the oestrogen receptor (ER), the ‘pioneer factor’ fork-
head box A1 (FOXA1), the chromatin remodeler BRG1
(SMARCA4), as well as the architectural protein CTCF.
Our data is consistent with power-law behavior for all tested
proteins. We further discuss theoretical considerations for
how the observed power-law distribution can arise from
broad effective distributions of binding affinities. We sug-
gest that TF dynamics is not explained by a simple separa-
tion between non-specific and specific binding but rather re-
flects the heterogeneous nature of chromatin structure and
binding strengths.

MATERIALS AND METHODS

Plasmid constructs

The pHaloTag–GR has been previously described (13). The
construct expresses rat GR fused with HaloTag protein
(Promega, Madison, WI, USA) in the C-terminal domain
under the CMVd1 promoter. The pHaloTag-H2B has also
been previously described (26). The N-terminus of H2B is
fused with the HaloTag. pHaloTag-H3 and-H4 were pur-
chased from Promega (pFN21AE1298 and pFN21AE0273,
respectively). The pHaloTag-ER and pHaloTag-FoxA1 has
been previously described (27). The pHalo-CTCF expresses
the mouse CTCF with HaloTag fused in the C-terminal do-
main. It has been generated by PCR amplification from the
pCTCF-GFP vector (28) and sub cloned into the pHalo-
GR previously cut with PvuI and XhoI restriction enzymes
(New England Biolabs). The pHalo-SMARCA4 was pur-
chased from Promega (pFN21AE0798). The pSNAP and
pSNAP-GR have been previously described (29).

Cell culture and transfection

The 3617 mouse mammary adenocarcinoma cell line used
in this study as well as the GR knock-out subclone express-
ing Halo-GR has been previously described (15,29). Cells
were routinely cultured in high glucose DMEM supple-
mented with 10% fetal bovine serum and 2 mM L-glutamine
at 37◦C in a CO2-controlled humidified incubator. The cell
line contains a stable integration of the rat GFP–GR under
tetracycline regulation (30). To prevent expression of GFP–
GR, the cells were grown in the presence of 5 �g/ml tetra-
cycline (Sigma-Aldrich, St. Louis, MO, USA).

Five million cells were electroporated using BTX T820
Electro Square Porator (Harvard Apparatus, Holliston,
MA, USA) in 100 �l of DPBS with 2.5 �g of plasmid. 25
ms pulses of 120 V were used and cells were resuspended
in fresh media. Single-molecule imaging experiments were
set up as follows: 100 000 electroporated cells were seeded
onto each well of a two-well Lab-Tek chamber (1.5 Ger-
man borosilicate coverglass, Thermo Fisher, Waltham, MA,
USA) in high glucose DMEM supplemented with 10% FBS
(Life Technologies), 2 mM L-glutamine, 5 �g/ml tetracy-
cline, and cultured overnight. The media was then replaced
with high glucose DMEM supplemented with 10% char-
coal stripped FBS (Life Technologies), 2 mM L-glutamine,
5 �g/ml tetracycline, and incubated at 37◦C for at least 24
h before labeling.
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Fluorescent labeling of Halo-tagged molecules and hormone
treatments

Transfected cells were incubated with 5 nM JF549-HaloTag
or 10 nM cpSNAP-tag (31) ligand for 20 min at 37◦C.
Stably integrated Halo-GR cells were incubated with 0.5
nM JF549-HaloTag for 20 min at 37◦C. Free ligand was
depleted by washing three times with phenol red free
DMEM media (supplemented with 10% charcoal-stripped
FBS and 5 �g/ml tetracycline) in 15 min intervals at 37◦C.
Next, cells were treated with 600 nM Corticosterone (Cort)
(Sigma-Aldrich) or 100 nM Dexamethasone (Dex) (Sigma-
Aldrich), or 100 nM oestradiol (Sigma-Aldrich) and incu-
bated for 20 min at 37◦C before imaging. For wash-out ex-
periments, cells were washed with media three times for four
different intervals (every 15 min for 1 h or every hour for 4
h) after 20 min of hormone treatment and finally imaged.

Image acquisition for single-molecule tracking and analysis

A custom Highly Inclined and Laminated Optical sheet
(HiLO) microscope was used as previously described in de-
tail (29), with an objective heater to reduce drifting. Briefly,
the custom-built microscope from the CCR, LRBGE Op-
tical Microscopy Core facility is controlled by �Manager
software (Open Imaging, Inc., San Francisco, CA, USA),
equipped with an Okolab stage top incubator for CO2 (5%)
and temperature control (37◦C), a 150 × 1.45 numerical
aperture objective (Olympus Scientific Solutions, Waltham,
MA, USA), a 561nm laser (iFLEX-Mustang, Excelitas
Technologies Corp., Waltham, MA, USA), and an acousto-
optic tunable filter (AOTFnC-400.650, AA Optoelectronic,
Orsay, France). Images were collected on an EM-CCD cam-
era (Evolve 512, Photometrics). Tracking was performed
in MATLAB (version 2016a, The MathWorks, Inc., Nat-
ick, MA, USA) with the custom software TrackRecord [ver-
sion 6, originally developed elsewhere (32) and updated in-
house]. For step-by-step instructions, please refer to the
User Manual file in the supplemental files. Briefly, in Track-
Record, to analyse each time series, data were filtered using
top-hat, Wiener, and Gaussian filters, then particles were
detected, fitted to two dimensional gaussian function for
‘super resolution’ and finally tracked using a nearest neigh-
bour algorithm (29). Particle trajectories are divided into
mobile and immobile. The displacements of histones H2B
characterize the thermal jiggling of the DNA and from it,
two parameters are extracted called Rmin and Rmax. Rmin
corresponds to the maximum displacement of 99% of his-
tones at a time-lag of two frames (frame to frame displace-
ment) while Rmax corresponds to the maximum displace-
ment of 99% of histones at a time-lag of shortest track.
The shortest track is calculated using the diffusion coef-
ficient of GR (∼5 �m2/s) to minimize tracking errors as
explained elsewhere (26). The immobile tracks are used to
calculate the survival distribution using the Kaplan-Meier
estimate. The 95% confidence interval was estimated using
Greenwood’s Formula. All fits performed to the data were
implemented with the nonlinear least square method using
bisquare weights due to the noise on the tail of the sur-
vival distribution. Parameters used for acquisition condi-
tions and analysis are shown in Table 1.

Exported tracking data was further analysed in MAT-
LAB by a custom-made script (see User Manual for details).
For comparison and control purposes, we also performed
tracking using u-Tack (33). Briefly, we used the ‘Gaussian
Mixture-Model Fitting’ under default parameters for par-
ticle detection and localization. The tracking was then per-
formed with the following values: Problem dimensionality
= 2; Maximum Gap to close = 2; Minimum Length of
Track Segment from the First Step = 4; Do segment merg-
ing = checked; Do segment splitting = checked. Finally, we
chose the ‘Cost functions’ and ‘Kalman Filter functions’ to
the ‘Brownian + Directed motion’ model.

Photobleaching (PB) correction

The modified correction method is based on histone data as
a proxy for the fluorophore stability as originally performed
elsewhere (16,34–36). One caveat still common to all meth-
ods described and applied here is the assumption of ho-
mogenous illumination, which unfortunately does not occur
in HiLO set ups, as the laser hits the sample at an inclined
angle [discuss elsewhere (29)]. A first step involves SMT of
histones under the same conditions that the TF of inter-
est will be imaged, as previously described (16,34–36). We
tracked individual H2B, H3 or H4 molecules using HiLO
by sub-optimal transient transfection of HaloTag-fused hi-
stones, labeled with JF549 HaloTag ligand. The three hi-
stone variants we tested presented statistically similar dy-
namics (Supplementary Figure S1A). We continued with
H2B for all further experiments. Histone genes are primar-
ily transcribed upon entry into S-phase of the cell cycle (37).
Due to our transient transfection approach, HaloTag-H2B
proteins will be translated during interphase and therefore
some histones will not be incorporated into chromatin at
the time of acquisition (Video S1). Hence, the survival dis-
tribution of H2B will be composed of PB kinetics and a
diffusive/transient binding component. To account for this
behavior and assuming PB kinetics at the single-molecule
level is exponentially distributed, the survival distribution
of H2B is fit to an exponential family with three compo-
nents (Supplementary Figure S1B). This constitutes the sec-
ond step in the protocol, which only differs thus far from
previous works in the fitting to three exponentials rather
than two-exponentials (16,34,35), or fitting to two exponen-
tials with an offset (36). The faster components characterize
the dynamics of histones that have not been stably incorpo-
rated into chromatin, while the third (slower) component
describes the PB kinetics of the fluorophore. The invariance
of the first two components to PB conditions strongly sug-
gest that they are indeed due to the dynamics of unincor-
porated histones, tracking errors and shortest track selec-
tion (Supplementary Figure S1C). To confirm that the third
component quantifies PB kinetics and not the intrinsic dy-
namics of H2B, we calculated PB lifetimes using histones
H3 and H4 with the same statistical results (Supplementary
Figure S1D). Finally, the third step corrects the binding dy-
namics of the TF by using the experimental (observed) TF
distribution and the PB kinetics. This is the ideal measure-
ment where neither PB nor sample drift occur. The novelty
of our approach is that we use the third exponential distri-
bution of H2B as a proxy for PB, while other groups use
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Table 1. Parameters used for each acquisition condition, and analysis of SMT data

Interval
(ms)

Exposure
(ms)

Laser power
(mW)

Frame
Number

Maximum
(Pixels)

Shortest track
(frames)

Gap
(frames)

Rmin
(�m)

Rmax
(�m)

200 10 0.96 600 4 4 2 0.23 0.31
200 100 0.29 900 4 4 2 0.21 0.29
500 500 0.16 800 4 2 2 0.23 0.29
1000 500 0.16 800 4 2 1 0.29 0.33

the entire distribution (16). In this sense, no assumption on
the survival distribution of the TF is made, and the empir-
ical survival distribution is corrected by the third exponen-
tial component of the H2B survival distribution. More for-
mally:

Let P(τTF ≥ t), P(τp ≥ t), P(τTFreal ≥ t) be the survival
distribution of an experimental particle, photobleached
particle and a dynamic particle, respectively. The survival
distribution of an experimental particle is the one typically
measured in a SMT experiment; the survival distribution of
a dynamic particle corresponds to the ideal measurement
where neither PB nor sample drift occur. We are interested
in P(τTFreal ≥ t)

P(τTF ≥ t) = P(τp ≥ t; τTFreal ≥ t) (1)

If a molecule is observed to live longer than t then it nei-
ther photobleached nor unbound from the DNA. These two
processes are independent:

P(τTF ≥ t) = P(τp ≥ t) P (τTFreal ≥ t) → P (τTFreal ≥ t)

= P(τTF ≥ t)
P(τp ≥ t)

(2)

If the empirical survival distribution of PB at the focal
plane is available, then the dynamic survival distribution can
be extracted from the microscopy data.

P(τp ≥ t ) is estimated by fitting the survival distribution
of H2B by a triple exponential function of the form:

P(τhis ≥ t) = f1e−γ1t + f2e−γ2t + f3e−γ3t (3)

where γ3 corresponds to PB and γ1; γ2 the parameters of
the dynamics of diffusive and/or unincorporated histones.
The survival distributions are normalized with respect to
the shortest track. For a shortest track of six frames and an
acquisition interval of 200 ms, the survival distribution is
set up to P(τ ≥ 1.2 s) = 1.

Finally, assuming that the third component of P(τhis ≥ t)
corresponds to PB:

P(τp ≥ t) = e−γ3t (4)

P (τTFreal ≥ t) = P(τTF ≥ t)
e−γ3t

(5)

If we correct the H2B survival distribution with this
method, we observe a predictable upward shift of the dis-
tribution (Supplementary Figure S1E), in contrast to our
previous methodology (15), wherein H2B data still artifac-
tually resembled the dynamics of a TF. The high fluctua-
tions at the tail of the distribution are likely due to noise
in the data and the appearance of multiple particles within

the point spread function, as illustrated in Supplementary
Figure S1F.

Quantification and statistical analysis

For statistical analysis, all the parameters are reported by
the ensemble average, standard deviation (s.d.) and num-
ber of observations. At least three biological replicates of
SMT experiments were performed per condition. Two sam-
ple K–S test on the survival distribution were performed
between replicates to confirm statistical reproducibility. Be-
tween 10 and 20 cells were imaged per SMT replicate. Each
condition had at least 15 000 tracks after analysis of SMT
experiments. For survival distribution analysis, a statistical
threshold of five tracks was implemented for visualization
purposes only. Any point in the survival distribution with
less than 5 cumulative tracks was not displayed in the fig-
ure. Data was not removed for fitting purposes. Fitting was
done using non-linear least squares, initially a best local fit
was found and then 50 iterations were run to find a global
solution.

Simulations were written in MATLAB to numerically
verify the different models of TF using the Gillespie al-
gorithm (38). Graphical inspection was used to qualita-
tively determine if a straight line was observed for multiple
decades in the case of a power-law fit in a log–log plot. Two
different metrics were used to determine the difference be-
tween exponential models and power-law models. The first
metric corresponds to Bayesian information criterion (BIC)
using the probability distribution function (PDF) corrected
for PB as the likelihood function. BIC is a criterion for
model selection that penalizes for model complexity (num-
ber of free parameters in the model). The PDF of TF dwell
times was normalized between the minimum and maximum
observation range (BIC1). BIC1 is given by (39):

BIC1 (M) = kln (n) − 2ln
(
P(D|θ̂ , M)

)
(6)

where M corresponds to the model (power-law, bi-
exponential or triple-exponential), k corresponds to the
number of parameters of the model, θ̂ corresponds to the
model parameters found by fitting, D the observed data
and n the number of observations. P(x|θ̂ , M) corresponds
to the realization probability of x given the model PDF
with parameters θ̂ . For SMT, D is the set of independent
and identically distributed discrete experimental events and
P(D | θ̂ , M) is calculated as follows:

P
(
D | θ̂ , M

) =
∏
x∈D

x+ δt
2∫

x− δt
2

p
(
x | θ̂ , M

)
dx (7)

where p(x | θ̂ , M) corresponds to the PDF of the model af-
ter PB correction. For instance, the bi-exponential PDF is
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given by:

p
(
x | θ̂ = (α, β) , MDE

) = C
(

f1γαe−(γ+α)t + (1 − f1) γαe−(γ+β)t
)

(8)

where α, β are the exponential parameters, γ the PB rate
and C a normalization constant.

The second metric, the evidence, in decibels (dB), for a
particular model given the observed data and priors, was
calculated to compare the alternative models explored. The
evidence measures the probability of a particular model be-
ing the best predicting model in comparison with another
model. For instance, for the power-law model (MPL) the evi-
dence versus the bi-exponential model (MDE)$and the triple
exponential model (MTE) is given by (40):

E
(
MPL | D, θ̂ , A

) = E (MPL | A) + 10log10

[
P(D|MPL, θ̂)

P(D|M, θ̂)

]

(9)

Where M = MDE ∪ MTE

E (MPL | A) = 10log10
P(MPL|A)
P(M|A)

(10)

P
(
D | M, θ̂

) = P
(
D | MDE , θ̂

)
P (MDE | A) + P

(
D | MTE , θ̂

)
P (MTE | A)

P (MTE | A) + P (MDE | A)
(11)

where A corresponds to the priors; P, D and θ̂ as defined
for BIC1. Uniform priors were used for all model compar-
isons. For instance, an evidence of 30 Db corresponds to
a probability higher than 0.999 that the power-law model
better describes the data in comparison with an alternative
model tested. In general, a positive value of the evidence
indicates that the corresponding model is a better predic-
tor of the data in comparison to the other tested models.
If the evidence was not high enough to reach a conclusion
about the comparison between the different models, more
data was acquired until the evidence reached a satisfactory
value.

Refer to Supplementary Table S1 for all statistical results.
Supplementary Table S1 lists the evidence in dB for the
models, the difference of BIC1 (denoted as Delta-BIC1) be-
tween the power-law model and bi/triple exponential mod-
els. A positive value of the difference in BIC1 implies a
preference for the power-law model over the bi- or triple-
exponential models.

Model selection was performed in the following manner:
graphical inspection for linearity of the survival distribu-
tion in log–log plot for at least 1.5 decades for power-law
model consideration, the model with an evidence higher
than 30 dB and a difference of BIC1 in accordance with
the model (a positive value for power-law as a better model,
negative value for bi/triple exponential models) was chosen.
Evidence does not take into account model complexity and
therefore the model selection is done jointly with BIC1.

RESULTS

Photobleaching (PB) correction methods and their effect on
survival distributions

When tracking TFs at the single-molecule level, the ex-
perimental information that is recovered is the time the

molecule ‘remains’ visible before it bleaches or moves out of
the focal plane. Thus, binding events can be observed as sta-
tionary spots (Figure 1A–C, Video S2A–D). From these ob-
servations, one can obtain a local dwell time for TFs, which
is defined as the time interval between a single molecule
transitioning from a diffusive state to a bound state and
its subsequent return to diffusion. The dwell time distribu-
tion is generated by integrating the ensemble-averaged dis-
tribution of bound times (Figure 1D and Supplementary
Note 1.1). Most often, a ‘survival’ distribution, defined as
1-CDF, where CDF is the empirical cumulative distribution
function of dwell times, is used for further analysis [Figure
1E, GR dynamics adapted from (15)]. This plot represents
the probability P that a molecule will last t number of time
points, or longer. This survival distribution is fit to a bi-
exponential distribution [Figure 1E and reviewed in (41)],
and interpreted as the ‘three population model’ (i.e. diffu-
sive, fast bound or non-specific binding, slow bound or spe-
cific binding) as illustrated in Figure 1F. However, as can be
seen in Figure 1E, the data shows a distinct departure from
the bi-exponential fit, especially at longer dwell times.

The upper temporal limit in SMT experiments is ulti-
mately determined by the intrinsic photostability of the cho-
sen fluorophore (42). When the affinity of bound TFs re-
sults in dwell times longer than those resulting from the
average photostability of their fluorescent dyes, residence
times cannot be resolved. Importantly, even when bound
molecules have relatively lower affinities, they will appear
to have shorter experimental dwell times due to photo-
bleaching (PB) bias. To illustrate this known phenomenon,
we conducted single-molecule imaging by transiently trans-
fecting 3617 mouse mammary adenocarcinoma cells with
GR, a ligand-dependent transcription factor (43), tagged
with HaloTag-Janelia Fluor 549 (JF549) (29) and stimu-
lated with GR’s natural ligand corticosterone (Cort, 600
nM). When we artificially modulated the PB conditions
by changing acquisition parameters (exposure time, imag-
ing interval, laser power), the resulting kymographs have
different typical lengths (Supplementary Figure S2 and
Video S1) and thus appear to have originated from dif-
ferent TFs. Therefore, PB must be properly corrected to
prevent artifacts in the analysis of SMT data (32). Since
PB correction methods vary widely among research groups
(11,13,16,23,26,34–36,44) there is no standard approach to
overcome the PB bias of SMT strategies. Therefore, we de-
cided to test the most common methods and our proposed
approach by comparing how well they can correct the ar-
tifacts generated in GR dynamics measured with different
acquisition conditions.

First, we tested the approach of estimating PB rates by
counting, frame-by-frame, the number of particles of the
TF of interest in the focal plane, then fitting the time-
dependent decay of the molecule count (which is taken as
a proxy for PB) to a bi-exponential model (10,13,15,26,45).
This bi-exponential fit is finally used to normalize the sur-
vival distribution of the TF of interest, in this case, GR
(Figure 2A, B, method #1). However, this method under-
estimates PB because most of the ‘counted molecules’ are
diffusive ones, and as such they are exposed to less laser illu-
mination than bound molecules at the focal plane. Accord-
ingly, this method fails to correct the apparent differences

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkab072/6138597 by guest on 17 February 2021



6 Nucleic Acids Research, 2021

Figure 1. The current SMT pipeline and interpretation of TF dynamics. (A) A HiLO set-up is most commonly implemented to increase signal-to-noise ratio.
A laser beam is tilted and hits the sample creating a thin illumination layer in the focal plane. (B) Several images are taken at specific yet variable acquisition
and interval time conditions. (C) A tracking algorithm is used to follow individual molecules and classify them as either bound or unbound. (D) Histogram
plotted from the bound population showing the frequency of TF molecules that are bound for a specific time (dwell time). Data acquired at 200 ms interval
for HaloTag-GR activated with its natural ligand corticosterone (15). (E) Fitting of the survival distribution (1-CDF; cumulative distribution function)
calculated from the data shown in D (circles) is fit to single-exponential (blue line) or bi-exponential (red line). Inset shows semi-log plot of the same. (F)
Schematic showing the bi-exponential model according to which TFs occupy three different states: unbound from the DNA (diffusing in the nucleus),
specifically bound (slow stops), and non-specifically bound (fast stops).

in GR survival distributions obtained from different acqui-
sition conditions (Figure 2B).

Another family of methods uses histones as a proxy for
obtaining PB rates (Figure 2C). Histones are a good repre-
sentation of stably bound proteins because, after integration
into chromatin, their residence time is much longer than
the photostability of any currently available organic fluo-
rophore (46). Therefore, by measuring the residence time of
histones, one can obtain, in principle, a direct representa-
tion of PB for particles in the focal plane, since the disap-
pearance of a long-lived particle will most likely represent a
PB event. Different methodologies have been used under the
umbrella of histone PB correction, ranging from measuring
‘bulk’ histone levels and fitting the mean nuclear fluores-
cence (11), to variants of measuring histone dynamics at the
single-molecule level (16,34–36). We will focus on the latter
methods, as they use the same acquisition conditions as the
TF of interest. One variant (34,35) fits the histone data to an
exponential family (usually two components). However, in-
stead of using the information of the entire histone survival
distribution, only the decay rate of the longest component
is used to correct the residence time of the TF by subtrac-
tion (method #2), effectively assuming that both TF and
PB dynamics follow exponential forms. Unfortunately, this
method still gives different residence times for different ac-
quisition conditions (Figure 2D). Another variant (16,36) is
similar to method #1 but uses the survival distribution from

histones instead of the number of molecules to normalize
the TF data (Figure 2E, method #3). Although much better
than method #1 (and #2), it fails to normalize GR distribu-
tions obtained with different acquisition conditions (Figure
2E) because the survival distribution of histones still has a
significant population of diffusive molecules that are not in-
corporated into chromatin.

We therefore propose a modification to the previous PB
correction methods, by combining the best of the three
methodologies (Figure 2F, method #4, see methods for de-
tails). First, as in method #2 and #3, we fit the histone
(HaloTag-H2B) SMT data, taken under the same imag-
ing conditions as the TF of interest, to a family of ex-
ponentials. Second, we use the exponential distribution of
the longer component (the entire exponential distribution
rather than just the rate of the exponential) to normalize
the TF survival data. In this way, we only correct for PB
by taking into account the bound histone population, with-
out making any a priori assumptions about the survival dis-
tribution of a TF, as done in method #2. Using this mod-
ified version of PB correction, we find that GR survival
time distributions obtained under different imaging con-
ditions fall along the same curve as they should (Figure
2F). Taken together, our analysis suggests that this method
more accurately corrects for PB bias, as we obtain simi-
lar survival distribution of the TF irrespective of the PB
kinetics.
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Figure 2. Effect of different photobleaching (PB) correction methods on the survival distribution of GR. (A) The number of particles (normalized to
the initial number of particles for each cell at time zero) from frame-to-frame as a function of time shown for three different acquisition conditions as
indicated in the legend (‘e’ denotes exposure time and ‘i’ denotes inter-frame interval). In method #1, this is taken as a proxy for PB, which is fitted to a
bi-exponential function (black lines). (B) Effect of method #1 on GR dynamics at different acquisition conditions (e, exposure time; i, interval time). The
corrected survival is obtained by dividing the observed TF survival to the bi-exponential distribution obtained in A. Number of cells/number of tracks
are 67/9374 for GRe10ms/i200ms; 65/23172 for GRe100ms/i200ms; and 34/37953 for GRe500ms/i500ms. (C) In methods #2–4, the survival of H2B,
taken under the same acquisition conditions as the TF, is used as a proxy for PB, which is fitted to either two or three family of exponentials. Number of
cells/number of tracks are 100/36625 for H2Be10ms/i200ms; 63/40652 for H2Be100ms/i200ms; and 36/20307 for H2Be500ms/i500ms. (D) Method #2
does not correct the entire TF survival distribution but rather uses the slowest rate of the histone survival fitting (k3) to correct by subtraction the rate of
the TF fitting (ks), thus obtaining the ‘real’ rate (ks(real)). The panel shows the residence time (1/ ks) for the three experimental acquisition conditions. (E)
Method #3 is similar to method #1, except that it uses H2B survival as a proxy for PB correction. The panel show GR dynamics at different acquisition
conditions. (F) In Method #4, the exponential distribution of the slowest component in H2B survival is used as a proxy for PB correction. The panel show
GR dynamics at different acquisition conditions. See Supplementary Table S1 for more data points details.

GR dwell time distribution deviates from bi-exponential be-
havior

We had previously used method #1 and characterized
GR’s survival distribution as bi-exponential (15,27). Sim-
ilarly, other groups have characterized other TFs as bi-
exponentially distributed using their own PB correction
methods [For example (7,11,14,34,36)]. Remarkably, when
we apply our newly proposed method (method #4) of PB
correction to the dwell time distribution derived from SMT
data of HaloTag-GR activated with corticosterone (Cort,
600 nM), we find that the distribution now deviates from a
bi-exponential distribution (Figure 3A, Supplementary Ta-
ble S1). The data look strikingly linear on a log–log plot
(Figure 3B), which suggests power-law behavior. The devi-
ation from exponential is not due to an artifact of HaloTag,
as dynamics of HaloTag-alone remain bi-exponentially dis-
tributed with no detectable ‘bound’ molecules longer than

20 s (Figure 3C). To rule out artifacts from the imaging of
exogenously expressed GR, we performed SMT on a GR
knock-out cell line stably expressing Halo-GR at endoge-
nous levels (15). The results are indistinguishable from the
exogenous Halo-GR (Figure 3D), validating our transient
expression strategy. Our data thus far suggests that a bi-
exponential function does not describe GR dynamics at the
single-molecule level, and a power-law might better explain
the data.

Theoretical models for TFs kinetics to interpret SMT data

Deviation from bi-exponential behavior has been described
previously using heterologous expression of the bacterial
proteins TetR and LacI (23,24) and mammalian TFs SRF
(20) and CDX2 (22). To better understand the link between
TF binding and the observed residence time distributions,
we explored different theoretical models that may explain
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Figure 3. Impact of PB correction on GR dynamics. (A, B) Single-molecule tracking data of GR activated with corticosterone (Cort). Data was acquired at
100 ms exposure time with 200ms interval. The survival distribution is shown (black), fit to a bi-exponential (A) or a power-law (B) function. Dashed lines
show 95% confidence intervals (CI). Number of cells = 65; number of tracks = 23172. (C) Comparison of survival distributions of HaloTag-alone (blue)
with a bi-exponential fit and HaloTag-GR (black) with a power-law fit. Data was acquired at 100 ms exposure time with 200ms interval. Number of cells
= 64; number of tracks = 19436. (D) Survival distributions of HaloTag-GR, treated with Dex, either transiently transfected in 3617 cells (blue) or stably
integrated in a GR knock-out subclone (red), expressed at endogenous levels. Data was acquired at 10ms exposure time with 200ms interval. Number of
cells = 60; number of tracks = 7068 for GR transient. Number of cells = 60; number of tracks = 16450 for GR stable. Colored lines show power-law fits.
See Supplementary Table S1 for details on fits.

the emergence of different behaviors of the survival distri-
bution.

Calculation of dwell time distributions is a first-passage
time problem in stochastic analysis and has been widely
used to characterize the kinetic properties of molecular mo-
tors and ion channels (47). When simple kinetic schemes are
involved, dwell time distributions can be calculated analyt-
ically. However, for more complex systems, other methods
must be used. One particularly powerful approach is to as-
sign one or more states to ‘act’ as an absorbing boundary,
and then solve the associated first-order kinetic equations to
obtain dwell time distributions (48) (Supplementary Note
1.1). We assume that the diffusive state (unbound) corre-
sponds to an absorbing boundary state since tracked par-
ticles end with such transitions. The single molecule either
photobleaches, disappears from the focal plane or begins
diffusing. Any rebinding of the TF is considered an inde-
pendent event.

We first examined the widely used bi-exponential model
under this framework (Figure 4A). According to this model,
TFs can occupy three different states: diffusive, slow and
fast. In our analytic framework, the diffusive state plays the
role of an absorbing boundary state, since particles entering

the state are no longer tracked. The slow and fast states cor-
respond to the empirically observed specific and nonspecific
binding, respectively (reviewed in (41)). With this assump-
tion of a well separated and narrow distribution of affini-
ties, the expected behavior of the survival distribution cor-
responds to a bi-exponential with the exponential param-
eters determining the average residence time of each state,
as determined by analytic calculation (see Supplementary
Note 1.2) and confirmed with stochastic simulations (Fig-
ure 4B) using the Gillespie algorithm (38). We note that this
model does not allow for transitions between fast and slow
states, which can be hard to interpret biologically, as search-
ing (fast) should lead to specific binding (slow).

We next extended the bi-exponential model to allow for
transitions between the slow and fast components, which
we call the kinetic model (Figure 4C). This model is a
generalization of the bi-exponential model above. We note
that due to the resolution limit (∼30 nm), any transitions
between specific and non-specific bound states cannot be
distinguished experimentally. We found that for this ex-
tended model, the resulting survival distribution again cor-
responds to a bi-exponential distribution, with the expo-
nential parameters as the eigenvalues of the transition ma-
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Figure 4. Theoretical models for TF kinetics. (A) State diagram (left) and schematic (right) of the bi-exponential model. TFs (orange oval) can bind to
specific sites (blue square) or non-specific sites (grey circles) with rate constants k1 and k2 or unbind and return to the diffusive state with rate constants,
k’1 and k’2 respectively (A). Transitions between specific and non-specific sites are forbidden. (B) Numerical simulation showing the emergence of bi-
exponential behavior for the model in A. The first and second exponential components are also shown as indicated. (C) State diagram (left) and schematic
(right) of the Kinetic model. In addition to binding/unbinding to/from specific and non-specific sites, TFs can transition from specific sites to non-specific
sites (with rate constant k3) and vice versa (with rate constant k’3). Transitions between non-specific sites are considered indistinguishable (denoted by
*). (D) Simulation results showing survival distributions arising from the kinetic model. (E) State diagram (left) of the continuum of affinities model,
showing that transitions from a non-specific site to any other site occur with rate constant k1 and from a specific to a non-specific site with rate constant
k2. Transitions to the diffusive state from the specific site occur with rate constant k2 and from a non-specific site with rate constant k3. Schematic (right)
illustrating that a TF arrives at a random site and scans the DNA until it finds a specific site from which it can subsequently unbind. (F) Simulation of (E)
to calculate the dwell time, which is defined as the time spent on the DNA, either bound or sliding, showing the emergence of power-law behavior (red line,
PL exponent 0.5, k1 = 10 a.u., k2 = 1 a.u., k3 = 10 a.u.). (G) Schematic of the energy landscapes, representing the different binding affinities and the local
microenvironment denoted as potential wells with different depths. (H) Numerical simulation of (G) showing the emergence of power-law behavior (blue
line). See also Supplementary Note 1 for details.
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trix (Supplementary Note 1.3). Stochastic simulations were
performed as before, and the resultant distribution, dis-
played in Figure 4D, again clearly demonstrates exponen-
tial behavior. An implication of the kinetic model is that
simple interpretations of the exponential parameters as ki-
netic transition rates in either of the exponential models is
not straightforward, since each rate constant might repre-
sent transitions between multiple hidden states and there-
fore the average dwell time may not necessarily represent
the characteristic timescale of a particular interaction with
chromatin.

Several theoretical studies have posited that TF search-
ing for and ‘final’ binding to its cognate site on the DNA
involves a combination of bulk diffusion in the nucleus, 1D
sliding along the DNA, hopping and translocation, and the
theoretical search times for the TF to find specific sites in
this framework have been estimated (49–51). In this model,
TFs will have a multiplicity of short-lived bound states that
must be accounted for in the analysis of dwell time data. To
do so, we modeled TF movement on the DNA as hopping
on a circular chain composed of specific and non-specific
sites (Figure 4E). The main assumption in this model (Sup-
plementary Note 1.4) is that the number of non-specific sites
on the DNA is much larger than the number of specific
sites. This is biologically reasonable as only a few to tens
of thousands of specific sites are bound by any TF accord-
ing to genome wide studies (52), while the entire genome
contains millions of ‘other’ potential chromatin sites. Since
the length of time spent bound to the DNA depends on the
number of non-specific sites visited before binding to and
dissociating from the specific site, this will manifest itself as
a continuum of effective binding affinities. An analytical so-
lution can be found for the simplest case in which there is a
single specific binding site and the TF can only unbind from
this specific site (Supplementary Note 1.4.3). Biologically,
this situation represents the case in which the TF finds the
specific site and stays bound or rebinds rapidly upon disso-
ciation. This has been hinted at by evidence of asymmetric
diffusion prior to TFs binding (53) and protein-protein in-
teraction mediated phase separation of different transcrip-
tion factors (54). A simulation based on the model gives rise
to asymptotic power-law behavior at time scales compatible
with specific binding, for a number of representative param-
eter values (Figure 4F).

Finally, TFs can bind chromatin regions with varying
physical microenvironments and motif degeneracy (55–57).
These local properties affect the binding affinity of the TF.
Given the heterogeneities in local organization and nuclear
structure, TF binding sites on chromatin can be viewed
as a collection of traps with a distribution of trap depths
(Figure 4G), analogous to binding affinities. If the binding
affinities across different nuclear microenvironments and re-
sponse elements are broadly and continuously distributed
(for instance, exponentially distributed binding affinities),
we can analytically demonstrate that the dwell times will
asymptotically approach a power-law (58,59), as confirmed
by simulations (Figure 4H and Supplementary Note 1.5).
In summary, we present phenomenological models that
give us a framework to evaluate possible outcomes in
SMT data.

Dwell time distributions of GR and other TFs follow power-
law behavior

Having developed a theoretical framework to evaluate TF
dynamic behavior, we next explored which model better ex-
plains GR dynamics. We fit the survival distributions of
GR activated with Corticosterone (GR-Cort, Figure 5A),
or with dexamethasone (Dex, 100 nM), a more potent, syn-
thetic hormone (GR-Dex, Figure 5B) to bi-exponential, ki-
netic and power-law models. As evident from the distribu-
tions, the bi-exponential and kinetic models show qualita-
tive deviations from the data. We then used metrics based on
the Bayesian information criterion (BIC) (60) test to choose
the best predictive model (see Methods). Indeed, our statis-
tical analysis confirms that a power-law corresponds to the
best predictive model based on these metrics over a fit to
the bi-exponential or kinetic model [Delta-BIC1 is 114423
(1047.3) for GR-cort; 13572 (942.8) for GR-Dex for the
power-law fit compared to kinetic model (bi-exponential
model)]. Moreover, the power-law fits were also superior
to a tri-exponential fit (20,21) (see Supplementary Table S1
for all statistical comparisons). The apparent deviation in
the tail of the distribution is due to the low number of data
points, as shown by the increased confidence intervals. Sur-
prisingly, we find that GR-Dex has a larger power-law ex-
ponent (�) than GR-Cort (cf. Figure 5A and B), suggest-
ing longer dwell times for the less potent ligand (Cort). This
counterintuitive result is nevertheless consistent with a pre-
vious report correlating residence times with transcriptional
bursting, wherein longer residence times (GR-Cort) corre-
spond to a larger burst size, while overall transcriptional
output is greater in GR-Dex due to a higher bound fraction
(61).

We found that the power-law model better describes the
data independent of the acquisition conditions (Supple-
mentary Figure S3A), yielding the same exponent for dif-
ferent PB rates (Supplementary Figure S3B). In contrast, a
fit to a triple-exponential model showed that the parameters
are dependent on acquisition times (Supplementary Figure
S3C, D). Further, the survival distributions obtained using a
different tracking software [uTrack, (33)] were very similar
to our tracking algorithm, ruling out any artifacts due to
tracking (Supplementary Figure S3E). Finally, the power-
law behavior of the survival distribution of GR is conserved
even if we use a different tag such as SNAP-Tag (62) (Sup-
plementary Figure S3F).

Previous work has largely assumed that the dynamics of
non-specific binding is well described by a single exponen-
tial component with a much shorter dwell time than spe-
cific binding (11,13,26,29,34). However, heterologous pro-
teins have also been reported to show power-law behavior
for dwell times (23,24). To examine the dynamics of non-
specific binding, we inactivated GR by washing out the hor-
mone for 20 min, which greatly reduces specific binding as
measured by chromatin immunoprecipitation (63). Interest-
ingly, GR still exhibits power-law behavior both for brief (20
min) washout, as well as longer washouts (4 h) (Figure 5C),
although with shorter dwell times as indicated by a larger
power-law exponent (Figure 5D and Video S2E).

To further establish the generality of our observations,
we tested the dwell time distributions of different proteins
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Figure 5. Dwell time distribution of GR follows power-law behavior. (A, B) Survival distribution of GR activated with corticosterone (Cort, panel A,
acquired with 500ms exposure time and 1000 ms interval) and dexamethasone (Dex, panel B, acquired with 100 ms exposure time and 200 ms interval)
obtained from SMT data. Number of cells/number of tracks are 30/15 732 for GR (Cort); 40/29211 for GR (dex). Red lines show the best fit obtained
for the bi-exponential model (left), the kinetic model (center) and a power-law (right). Dashed lines show the 95% confidence intervals (CI). (C) Survival
distribution of GR activated by Cort (black symbols) or following washout of the hormone under a 20 min (red) or a more stringent 4h washout protocol
(blue). Solid lines show fits to power-law model. Data acquired with 100 ms exposure time and 200ms interval. Number of cells/number of tracks are
65/23 172 for GR (Cort); 62/22 530 for GR (Cort 20 min washout); 61/16 611 for GR (Cort 4h washout). (D) Aggregate data for power-law exponents of
fits to survival distribution of GR following stimulation by Cort, 20 min washout following stimulation and 4 h following washout. Errors represent 95%
confidence interval. See Supplementary Table S1 for details on data acquisition and statistical comparisons.

previously characterized as bi-exponentially distributed by
SMT (15,27,34). As with GR, both ER and FOXA1 exhibit
power-law distributions (Figure 6A), with similar dynamics
(� = 0.698 ± 0.005 for ER and 0.742 ± 0.003 for FOXA1)
but slower compared to GR (� = 0.828 ± 0.004). This re-
mains consistent with our previous observations wherein
GR was more dynamic than ER and FOXA1 (27). Simi-
larly, one of the major ATPase subunits of the SWI/SNF
chromatin remodeling complex, SMARCA4, also exhibits a
residence time distribution compatible with power-law be-
havior (� = 0.845 ± 0.005, Figure 6B). Surprisingly, even
the dynamics of the 11-zinc finger DNA-binding protein
CTCF, involved in genome architecture among other func-

tions (34), is better described by a power-law (� = 0.55 ±
0.02, Figure 6B). Taken together, our results indicate that
the bi-exponential model might not properly reflect the dy-
namics of a wide range of chromatin interacting factors, and
that it underestimates TF dwell times on chromatin. Thus,
the power-law distribution emerges as a better descriptor of
single-molecule dynamics, at least for the proteins tested.

In conclusion, our analysis reveals hitherto unobserved
features of the distribution of mammalian TF residence
times (power-law versus bi-exponential). This, in turn, sug-
gests that specific and non-specific binding cannot be iden-
tified as two distinct populations with discrete (and measur-
able) residence times.
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Figure 6. Dwell time distributions of TFs and other chromatin associated
proteins show power-law behavior. (A, B) Survival distribution calculated
from SMT data of the Halo-Tagged oestrogen receptor (ER, activated with
oestradiol, E2) (green), FOXA1 (magenta), CTCF (red) and SMARCA4
(cyan). GR (activated with dex, black) is shown for comparison in both
plots. Data was acquired at 10 ms exposure time with 200ms interval.
Number of cells/number of tracks are 60/17 823 for ER; 41/12 864 for
FOXA1; 50/7023 for SMARCA4, 40/29 211 for GR (dex). CTCF data
was acquired with a 10 ms exposure time and a 2000 ms interval. Number
of cells/number of tracks are 48/11606 for CTCF. Symbols are SMT data
and solid lines are power-law fits to the data (see Supplementary Table S1
for comparison and number of data points).

DISCUSSION

In the present study, we propose a modified SMT pipeline
with an improved photobleaching (PB) correction method
to prevent bias of the dwell time distribution of TFs, and
test underlying models using different statistical metrics. We
are now able to reconcile data acquired under different ex-
perimental conditions whereas previous attempts were not
successful (15).

We find that GR, as well as other TFs (ER and FOXA1),
the chromatin remodeler SMARCA4 (also known as
BRG1), and the insulator protein CTCF, all appear to ex-
hibit power-law dynamics. It is generally accepted that to
confirm this distribution, at least two orders of magnitude
(both in x and y axes) should behave linearly on a log–log
plot (64). This would require measuring TF binding up to
several minutes (>10 min), which is not currently feasible

by SMT. Nevertheless, while there is a possibility that the
power-law truncates at some point for really long binding
times, we have enough statistical evidence to conclude that
the power-law fit is a better predictor than a bi-exponential
model over the observable experimental timescales. Exam-
ining whether more (or all) of the TFs originally charac-
terized by bi-exponential behavior are better described by a
power-law exceeds the scope of this work and needs to be
evaluated on a TF-by-TF basis.

Our observation of power-law behavior of GR resi-
dence times suggests a model with a continuum of DNA-
bound states rather than discrete non-specific/specific bind-
ing times (Figure 7). Consistent with this model, inactiva-
tion of GR by washing-out of the hormone revealed that
the dwell time distribution also follows a power-law, indi-
cating no apparent dynamical differences between specific
and non-specific binding, as previously observed for bacte-
rial proteins expressed in mammalian systems (23,24). Nev-
ertheless, the overall residence times decrease when the re-
ceptor is less active, suggesting that a majority of the longer
events observed with the fully activated receptor are asso-
ciated with productive transcription as previously reported
(11,13,15,16,26).

If all binding affinities lie on a smooth continuum, is
it possible to distinctly define non-specific binding or as-
sign such states to a set of sequences that can be bound
but are kinetically indistinguishable? TFs can interact non-
specifically with chromatin through electrostatic interac-
tions with predicted short binding times and can also
diffuse along DNA in vitro (65). On the other hand,
non-specific protein-DNA interactions can be broadly dis-
tributed with high binding energies at the tail of the dis-
tribution due to symmetric sequences in DNA that might
facilitate long search times on chromatin (66). In an SMT
experiment, due to resolution limitations and natural ther-
mal fluctuations, the kinetics of diffusion along DNA,
rapid binding/rebinding to non-specific sites, and transient
trapping of a protein due to protein-protein interactions
may appear indistinguishable from specific binding (kinetic
model, Figure 4C). Therefore, non-specific binding is de-
fined by the limits of the measurement, and not necessarily
discernible as a different mode of binding. However, any se-
quence with higher affinity (with long dwell times) is likely
to be specific.

An important characteristic of power-law distributions is
that for exponents lower than or equal to one (as in our
case), the mean is not a well-defined quantity (25). This im-
plies that the mean can vary enormously from one measure-
ment to the next and is a limited measure of the process.
Interestingly, the heavy tails of power-law distributions im-
ply that the probability of long-lived events is not negligible.
This raises the possibility that productive binding events, al-
though rare, may have dwell times much longer than previ-
ously appreciated, as indicated by the right-skewness of the
distribution. We have recently shown a temporal correlation
between GR dwell times and bound fraction with the length
and frequency of transcriptional bursting (61). A similar
behavior has been observed in yeast with the Gal4/GAL3
model (67). However, non-specific binding can also result
in TF binding events with long residence times, the impli-
cations of which are still not known. Critical efforts are re-
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Figure 7. Heterogeneity in binding affinities can lead to a power-law behavior of survival time distributions. (A) Schematic of the binding affinity distribu-
tions for a bi-exponential model. In this model, specific sites (blue) and non-specific sites (red) have a well separated and narrow distribution of affinities
(�E, left graph), which results in a bi-exponential behavior of the overall survival distribution (right graph, black curve). (B) Schematic showing a broad
distribution of TF affinities (black line) which arises as a superposition of multiple sites with closely spaced affinity distributions (depicted in different
colors in the left graph). Note that the distributions get progressively wider. This distribution of affinities may explain the emergence of power-law behavior
(characterized by the exponent, �) in the residence time of TFs (right graph).

quired to investigate whether the slow(er) stops seen in SMT
are matched exclusively to specific interactions with chro-
matin (7). For example, GR binding precedes RNA synthe-
sis by ∼3 min (61). Alternatively, a sub-population of these
‘stops’ could correspond to microscopic regions in the nu-
cleus where diffusion is severely limited, due to transient in-
teraction with ‘clustered’ structures such as foci observed
for GR (68), or another hitherto unknown mechanism.

The emergence of power-law might reflect the wide distri-
bution of binding affinities in the nucleus. This broad dis-
tribution of affinities is puzzling but may be explained by
a diverse set of non-mutually exclusive mechanisms. First,
the intrinsic affinity of TFs for DNA likely follows the
dwell time power-law model, ranging smoothly from ‘non-
specific’ to the highest affinity. Indeed, it has been shown
that TF-DNA binding affinities range from low-affinity, not
necessarily detectable by ChIP, to high affinity, correspond-
ing to strong CHIP-seq peaks (69). In addition, microflu-
idic studies (k-MITOMI) of the mouse TF Zif268 reported
binding times in the 0.2–200 s range, consistent with our ob-
servation of in vivo dwell times (70). Moreover, tag density
in ChIP-seq experiments has been correlated to TF affin-
ity, and are also power-law distributed, at least for CTCF
and a few TFs (71). While this suggests a potential connec-
tion between ChIP-seq data, occupancy, and dynamics of
TF binding, further experiments are needed to demonstrate
causation.

Second, nuclear structure and the chromatin environ-
ment is known to be highly heterogeneous (9,17). Thus,
TFs will encounter a wide variety of chromatin states (com-
pacted fibers, different nucleosome modification conditions,
etc.). Moreover, affinities for the thousands of alternative
binding sites in response elements likely vary significantly.
Furthermore, recent work points to the presence of tran-
scriptional hubs and liquid-liquid phase separation do-
mains (54,72–76) that contribute to the complexity of nu-
clear organization. If TFs exhibit different dynamical prop-
erties in these structures, it would not be surprising to find a
broad variation in binding affinities. Third, power-law dis-
tributed dwell time distributions can emerge as a conse-
quence of the molecular kinetics of the protein itself, as re-
cently reported in vitro by RNA polymerase II in bacteria
(77). Fourth, the heterogeneity in the searching mechanism
of TFs may affect the effective affinity constant observed in
SMT experiments (78). In support of the latter, while het-
erologous expression of TetR in mammalian cells showed
power-law behavior for non-specific binding, it could still
be described as an exponential on an artificially (and sin-
gle) specific DNA binding array (23). Thus, the intrinsic
nature of the searching mechanism of any DNA-binding
protein in native chromatin may be governed by power-law
dynamics. In addition, the heterogeneity of dwell times in
the thousands of response elements for an endogenous TF
could explain why GR can exhibit power-law tails as op-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkab072/6138597 by guest on 17 February 2021



14 Nucleic Acids Research, 2021

posed to TetR, which can only bind to one artificial array
site. Interestingly, a study in yeast (79) reports that both the
TF Ace1p and the chromatin remodeler RSC binding fol-
low a bi-exponential binding distribution in cells containing
a natural tandem of ten CUP1 (Ace1p responsive) genes.
This dynamic and discrete behavior, in contrast with our
GR data, can be explained by the particular and homoge-
neous chromatin environment of a single array of specific
sites. Consequently, we speculate that a broad distribution
of binding affinities due to a whole population of different
binding sites (thousands in the case of GR) may result in
power-law behavior (Figure 7).

Overall, independent of the mechanism behind power-
law behavior, the resulting broad distribution of binding
affinities in these scenarios goes against the widely held
assumption that TF dynamics on chromatin results from
well-separated and narrow distributions of specific and
non-specific binding with well-defined binding times (Fig-
ure 7). In this sense, a few defined states and the con-
tinuum may just be two ends of a spectrum. Thus, we
might need to revisit the classification of non-specific TF
binding solely as static interactions with random DNA se-
quences but rather arising from a dynamical process in-
volving biophysical properties of the nuclear microenviron-
ment, chromatin, and protein-protein interactions. Consis-
tently, we have recently described ‘binding events’ which
are independent of chromatin interactions, power-law dis-
tributed, and depend on intrinsically disordered regions
(IDRs) (76).

While SMT methodology gives us the opportunity to
study TF dynamics with unprecedented temporal and spa-
tial resolution, it still has some major drawbacks. The sparse
labeling conditions needed to resolve individual molecules
severely limits the possibility of following all functional
TFs at a time, and therefore may affect the implementa-
tion of a two-color version where two different proteins in-
teract at the single-molecule level. In addition, we still do
not have direct measurements of the affinity at specific sites
which makes it difficult to functionally distinguish between
specific and non-specific binding. Nevertheless, the current
major limitation in SMT is the photostability of the fluo-
rophore, which limits the dynamical range of experiments
and prevents accurate analysis of long TF trajectories that
sample over different binding and/or diffusive events. Our
temporal measurement window will improve with better,
more stable fluorophores. Until then, our proposed pipeline
allows us to have better estimates on the dynamics and the
residence time distribution of TFs.

In summary, by incorporating an improved PB correc-
tion method and testing different models, we showed that
the survival distribution of GR and other TFs dwell times
does not follow an exponential model. Ultimately, if there
is a way to define or distinguish non-specific from specific
binding, our results indicate that it cannot be based on their
global residence times. However, the data is consistent with
a power-law distribution, which we suggest may arise gener-
ically due to heterogeneities in TF interactions with DNA or
in the diffusive environment in the nucleus. Thus, the slope
of the residence time distribution does provide an estimate
of the overall affinity and can be used to compare TFs and
their function under different conditions.
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