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Response to perturbations as a built-in feature in a mathematical model for paced finger tapping
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Paced finger tapping is one of the simplest tasks to study sensorimotor synchronization. The subject is
instructed to tap in synchrony with a periodic sequence of brief tones, and the time difference (called asynchrony)
between each response and the corresponding stimulus is recorded. Despite its simplicity, this task helps to
unveil interesting features of the underlying neural system and the error-correction mechanism responsible for
synchronization. Perturbation experiments are usually performed to probe the subject’s response, for example,
in the form of a “step change,” i.e., an unexpected change in tempo. The asynchrony is the usual observable in
such experiments and it is chosen as the main variable in many mathematical models that attempt to describe the
phenomenon. In this work we show that although asynchrony can be perfectly described in operational terms,
it is not well defined as a model variable when tempo perturbations are considered. We introduce an alternative
variable and a mathematical model that intrinsically takes into account the perturbation and make theoretical
predictions about the response to novel perturbations based on the geometrical organization of the trajectories
in phase space. Our proposal is relevant to understand interpersonal synchronization and the synchronization to
nonperiodic stimuli.
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I. INTRODUCTION

Sensorimotor synchronization (SMS), that is, the ability to
synchronize our movement to a periodic external stimulus,
underlies specifically human behaviors like music and dance
[1] and involves time processing in the millisecond timing
range (i.e., hundreds of milliseconds [2]). SMS is a rare ability
among animals and it apparently correlates with the also rare
ability of vocal learning [3–5], with potential evolutionary
implications (although see Sec. 2.5.2 in Ref. [6]). The simplest
task to study this behavior is paced finger tapping, where
a subject is instructed to tap in synchrony with a periodic
sequence of brief stimuli (for instance, tones or flashes) like
keeping pace with music and while registering the occurrence
time of every response. The natural observable and one of
the variables most used to quantify the behavior [6,7] is the
difference between the occurrence times of every response
(Rn) and the corresponding stimulus (Sn), called synchrony
error or simply asynchrony:

en = Rn − Sn. (1)

The asynchrony of a single trial is a relatively noisy time
series with a standard deviation of up to a few tens of
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milliseconds (Fig. 1). Despite that none of the en are zero,
most people can achieve average synchronization with a
mean value that is typically negative (called negative mean
ssynchrony or NMA, hypothetically representing the point of
subjective synchrony) [8]. The main goal is to understand how
the brain can maintain average synchrony or recover it after a
perturbation.

The number of theoretical and experimental works ded-
icated to understand this behavior and its neural bases
is rapidly growing, especially imaging and electrophysiol-
ogy studies like electroencephalography (EEG), magnetoen-
cephalography (MEG), and functional Magnetic Resonance
Imaging (fMRI) [9–16]. It is very simple to show that there
is an error-correction mechanism in the brain in charge
of keeping average synchrony that operates based on past
performance [1,17]. On the theoretical side [17,18], such a
mechanism is easily conceptualized as a map or difference
equation for the observable en:

en+1 = f (en, Tn) + noise, (2)

where the asynchrony at the next step en+1 depends on its
previous value en (or several previous values in some models
[19]) and probably on some parameter like the sequence
period or interstimulus interval Tn:

Tn = Sn − Sn−1. (3)
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FIG. 1. (a) Schematic description of the task, variables, and pa-
rameters. A perturbation occurs at step n. (b) Isochronous sequence
from one subject (single trial, no averaging). Mean = 3.9 ms, SD =
12.1 ms.

Studies that aim at finding a linear correction function
f make use of mean values, standard deviations, and auto-
correlation functions and thus they analyze synchronization
to periodic stimuli sequences without any perturbation [19];
periodic sequences are also used by works that study the
structure of the noise term [20]. Alternatively, in order to find
the best correction function f that is the deterministic part of
the equation one can perform perturbations to an otherwise
isochronous sequence and analyze the resynchronization [17].
That is the approach we chose.

The main variable for quantifying the behavior, the asyn-
chrony en, is always operationally well defined according to
Eq. (1) and Fig. 1. In this work, however, we show that en is
an ill-defined variable in terms of a map or difference equation
when the stimulus sequence has perturbations. This issue is
relevant not only during a controlled perturbation experiment
in a laboratory setting but also in a more natural, ecological
setting like music performance where the stimulus sequence
is not strictly periodic (e.g., a choir or orchestra conductor
performing a ralentando) or when the stimulus sequence
is intrinsically variable (e.g., interpersonal synchronization
where the stimulus sequence is the other person’s production).
We propose an alternative variable and a mathematical model
that reproduces the observed data including the effect of
perturbation and make theoretical predictions.

II. RESULTS

A. Predicted versus observed asynchrony

From a behavioral point of view, one of the approaches
to unveil the form of the error-correction mechanism in a
paced finger-tapping task is to find the best correction function
f (en) [Eq. (2)] that, based on the observed asynchrony en

[Eq. (1)] and the interstimulus interval Tn [Eq. (3)], predicts
the asynchrony at the next step. Figure 1 shows a graphical
definition of all variables and parameters.

According to Eq. (1), the asynchrony en takes as a reference
point the occurrence time of the stimulus Sn. The traditional
way of perturbing the system is to unexpectedly modify the
stimulus period, which is done by shifting in time one or
several consecutive stimuli, i.e., modifying Sn (and perhaps
the following stimuli too; see Fig. 1). An example is the “step-
change” perturbation, where the stimulus period changes un-
expectedly by a fixed amount � from a given stimulus Sn on
(in musical terms it is a sudden change in tempo). A critical
issue that has been overlooked in the literature, both exper-
imental and theoretical, is that the change of the occurrence
time of the perturbed stimulus Sn is arbitrary and thus is not
a well-defined time reference [21]. The consequence of this
is that the variable en becomes ill defined because its value
changes at the moment of perturbation but not because of its
own dynamics. In other words, if an unexpected perturbation
occurs at step n, then the actual asynchrony will be different
from the value predicted by the subject (or the model) because
the corresponding stimulus was shifted by an arbitrary amount
equal to the size of the perturbation.

In this work we propose the following way to resolve this
issue: We distinguish between the predicted asynchrony value
pn and the actually observed asynchrony value en (Fig. 1). If
a change in period occurs at step n:

�n = Tn − Tn−1, (4)

then the predicted asynchrony pn and the actually observed
asynchrony en are related by the following expression:

pn = en + �n. (5)

It is important to note that Eq. (5) is not a theoretical
assumption but the actual relationship between the variables.
Note also that if no perturbation occurs, then �n = 0 and thus
pn = en.

Taking this distinction into account, a model like Eq. (2)
must be written as (discarding the noise term for simplicity):

pn+1 = f (en, Tn) (6)

and by using Eq. (5) we can get a closed model for the
variable pn:

pn+1 = f (pn − �n, Tn). (7)

We can always go back to the observed asynchrony en by
means of Eq. (5).

B. Model implementation

In this section we proposed an improved model based on
our previous work and apply the distinction proposed above.

1. Previous work

In Ref. [17] we showed that nonlinear effects are im-
portant even for small perturbations of 10% of the period.
There are two main effects when step change perturbations
are performed. First, if the tempo is made faster [negative
perturbation �n < 0; Fig. 2(a)], then the resynchronization
is monotonic until a new baseline is reached; however, if
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FIG. 2. Experimental time series and phase-space reconstruction
(all experimental data shown in this work were published in Ref.
[17]). Perturbation sizes are in milliseconds and the preperturbation
period is T0 = 500 ms. (a) Negative step changes. (b) Positive step
changes. (c) Phase-space reconstruction by embedding the time se-
ries above. Note that there is a common region of phase space shared
by trajectories from large opposite perturbations (most notably +50
and −20 trajectories). Black curves are the estimated return points.

the tempo is made slower [positive perturbation �n > 0;
Fig. 2(b)], then the asynchrony overshoots before reaching
the new baseline. The existence of the overshoot makes it
necessary to introduce a second variable xn—otherwise, the
deterministic nature of the model would be violated [17,22].
Second, the asymmetry of the response in front of symmetric
perturbations requires the introduction of nonlinear terms of
even order (e.g., quadratic). In order to correctly reproduce
these two observations we have proposed a two-variable,
nonlinear model:

en+1 = a en + b(xn − Tn) + F (en, xn, Tn)

xn+1 = c en + d (xn − Tn) + Tn + G(en, xn, Tn), (8)

where F and G are nonlinear functions of their arguments.
An extensive discussion about modeling choices and non-

linear behavior in finger-tapping tasks can be found in our
previous work [17].

2. New evidence and improved model

Before introducing the distinction between predicted and
observed asynchrony, we propose improved functions F and
G based on new experimental evidence. We take the experi-
mental data of step change perturbations from Ref. [17] and
reanalyze them as follows. First we perform an embedding of
the time series shown in Figs. 2(a) and 2(b) to reconstruct the
qualitative geometrical arrangement of the underlying phase
space [23]. Figure 2(c) shows the result, where we added the
detection of return points for every trajectory (see methods in
Appendix A 1).

The shape of the curve of return points of a map gives us
information about the underlying system, meaning whether
linear or quadratic or cubic terms, etc., are needed to model it
(in much the same way as the nullclines of a flow do; see dis-
cussion in Appendix A 1). The geometrical organization of the
return points in Fig. 2(c) shows a certain degree of asymmetry
and saturation (especially for the vertical axis), which tells us
that quadratic and cubic terms are needed. In a two-variable
model there are six possible quadratic terms (e2, x2, ex for
each equation) and eight possible cubic terms (e3, e2x, ex2, x3

for each equation), yet we want to use the smallest number
of terms that correctly represent the behavior. However, we
cannot use normal form theory to choose among the nonlin-
ear terms because within the regime analyzed in this work
(synchronization to a periodic sequence or resynchronization
following a tempo step change of fixed size) the behavior
does not show any bifurcations but a robust convergence to a
single fixed point representing average synchrony [17,24–26].
After testing many combinations of nonlinear terms with
qualitatively similar results, we choose the following:

F (en, xn, Tn) = αe3
n + βen(xn − Tn)2 + γ (xn − Tn)3

G(en, xn, Tn) = δe2
n. (9)

In Sec. II C we display a summary of the obtained phase
spaces with our selection of nonlinear terms. We emphasize
that our choice of nonlinear terms is not unique—it is not
possible to solve for unique F and G from the shape of the
return points in the embedding.

Now we incorporate the distinction between predicted and
observed asynchrony. According to the previous subsection
we must substitute en+1 → pn+1 and en → pn − �n:

pn+1 = a (pn − �n) + b(xn − Tn) + F (pn − �n, xn, Tn)

xn+1 = c (pn − �n) + d (xn − Tn) + Tn + G(pn − �n, xn, Tn)

(10)

and to get a closed system we define the auxiliary variable
sn+1 = Tn. This leads us to

pn+1 = a (pn − (Tn − sn)) + b(xn − Tn)

+ F (pn − (Tn − sn), xn, Tn)

xn+1 = c (pn − (Tn − sn)) + d (xn − Tn) + Tn

+ G(pn − (Tn − sn), xn, Tn)

sn+1 = Tn (11)
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where F and G are defined according to Eq. (9). It is worth
noting that Tn is a parameter whose value is up to the experi-
menter.

3. Parameter interpretation

It is always difficult to establish analogies or correlates
between a behavioral model and the underlying processes in
the brain. The reports of neural correlates and mechanisms
in SMS are still very scarce, despite a growing literature (for
a review see Ref. [6]). However, the way we model allows
us to advance possible interpretations and make theoretical
predictions leading to further experiments. The qualitative
features of our model, Eqs. (11) and (9), can be interpreted as
follows. Variable p can be interpreted as the representation in
the brain of the predicted asynchrony, i.e., the predicted result
of the error correction, while variable x can be interpreted
as the representation of the interstimulus interval T . The
linear coupling between them (parameters a, b, c, and d)
can be interpreted as the way they influence each other at
first order; e.g., a > 0 means that if the p percept is positive
(tap lagging beep), then p shall decrease in the next step

(a)

(b)

FIG. 3. Model fitting. (a) Experimental ±50-ms time series and
model fitting results. (b) Model phase space. Response to pertur-
bations occuring at n = 0, �0 = ±10, ±20, ±30, ±40, ±50, ±60,
and ±70 ms. Larger perturbations begin farther away from the origin
(preperturbation steps not shown for visual clarity). Note the region
of phase space that is shared between trajectories corresponding
to positive and negative perturbations (upper right and lower right
quadrants).

TABLE I. Fitted parameter values. All simulations in this work
use this unique set of parameter values unless stated otherwise.
Linear coefficients a, b, c, and d are nondimensional; quadratic
coefficient δ has units of ms−1; cubic coefficients α, β, and γ have
units of ms−2. The preperturbation interstimulus interval is T0 =
500 ms.

a = 0.981 α = −2.21 × 10−5

b = 0.266 β = −7.84 × 10−5

c = −0.823 γ = 5.34 × 10−5

d = 0.0238 δ = 3.35 × 10−3

(tap closer to the beep), while b > 0 means that if the x
percept is less than the current interstimulus interval, then p
shall decrease in the next step, both as expected. Nonlinear
terms are interesting in that they suggest mechanisms and
restrictions. While the linear term ap means that asynchrony
is corrected as a fraction of the previous asynchrony, the term
αp3 would mean that the rate of correction itself changes as a
function of the asynchrony: ap + αp3 = (a + αp2)p. On the
other hand, the cross-term βpx2 might point to an interference
between the two percepts, possibly due to shared resources or
common circuits supporting p and x, bottleneck effects, etc.
See Ref. [17] for further discussion and the next sections for
predictions.

C. Model fitting, model simulations, and fitting analysis

As we did before [17], we use a genetic algorithm to fit
the model [Eqs. (11) and (9)] to the experimental time series
shown in Figs. 2(a) and 2(b); see methods in Appendix A 2.
The results are shown in Fig. 3. The obtained parameter values
are shown in Table I. The full fitting results (all perturbation
sizes) are shown in Appendix A 3.

The fitting goodness is noteworthy, especially when com-
pared to previous attempts in the literature with a similar or
even greater number of parameters (for instance, our own pre-
vious work [17] and many others’ work, e.g., Refs. [24–29]).
It must be taken into account that, contrary to ours, modeling
and fitting efforts in the finger-tapping literature usually per-
form separate fits for different perturbation sizes and types,
effectively multiplying the number of parameters by a factor
of 2 at least (effective 10-parameter model in Ref. [25]; effec-
tive 12-parameter model in Ref. [24]; effective 24-parameter
mode in Ref. [27]; effective 72-parameter model in Ref. [28]).
In addition, none of them included the perturbation in the
modeling or the fitting.

In order to analyze the robustness of the fitting results
we proceeded as follows. Every run of a genetic algorithm
provides a solution that best fits the data according to the
fitness function. As we describe in Appendix A 2 (also in
our previous work [17]) we decided to run the algorithm
200 times to choose the absolute best among those 200
converged solutions. This, in addition, allows us to perform a
statistical and dynamical analysis of all solutions. The distri-
butions of obtained values for every parameter can be seen in
Appendix A 4. Most of the distributions are unimodal, which
speaks in favor of the robustness of the fitting procedure
(Fig. 10). On the other hand, there is some interdependency
between some of the linear parameters, i.e. a correlation
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FIG. 4. Variety of solutions from the fitting procedure. (a) Type-I phase space and time series (58% of all solutions; the fittest solution of
all, shown in Table I and Figs. 3, 5, 6, and 7, is this type). (b) Type-II phase space and time series (40% of all solutions; parameter values in
Appendix A 5). (c) Type-III phase space and time series (2% of all solutions; parameter values in Appendix A 5).

between their converged values, for instance between b and
c (Fig. 11). Nonlinear parameters are mostly uncorrelated
(Fig. 12). Linear and nonlinear parameters are mostly uncor-
related, except perhaps among b, c, and α (Fig. 13). All this
means that the model might be overparameterized and might
fit the experimental time series with a smaller number of linear
terms, but our choice of nonlinear terms is appropriate.

We plotted the phase space of every obtained solution and
made an exhaustive visual search in order to qualitatively
classify them. We found three types of phase portraits (Fig. 4).
All have one hyperbolic equilibrium. Type I and III have two
different eigenvalues and eigenvectors, and the flow rotates
clockwise and counterclockwise, respectively; type II is a
degenerate node (two equal eigenvalues and a single eigen-
vector) and the x variable has a particularly fast dynamics. The
fittest of all 200 solutions is the set of parameter values shown
in Table I and belongs to type I (that is the most frequent
type of phase portrait, and the most frequent among the best
solutions; the parameter values corresponding to types II and
III are in Appendix A 5).

D. Benefits of the proposed approach

The most important feature of our model is that it incorpo-
rates the perturbations to the stimulus period in the modeling
approach, leading to autonomous dynamics once the stimulus
period sequence Tn is chosen as input. We achieved this by
developing a closed equation for variable pn [Eqs. (11) and
(9)] based on a model-free relationship between pn and the
observable en [Eq. (5)]. An advantage of having a closed
model with built-in perturbations is the ability to perform a
bifurcation analysis on it, which is the subject of future work.

In the absence of bifurcations, as is the case in this
work, our approach still offers advantages in the form of
autonomous dynamics without any need to modify the value
of the variable “by hand” whenever the stimulus period

changes. This is illustrated in Fig. 5, where we show three
common experimental manipulations of the stimulus period Tn

[Fig. 5(a), step change; Fig. 5(b) sinusoidal variation; Fig. 5(c)
random variation]. Once the stimulus period sequence is set
(top row), our model evolves in time without any intervention
from the experimenter (second row). The traditional way
of doing this (third row) consists in considering the model
without distinguishing between pn and en, that is, Eq. (8),
but this of course needs adjusting the value of the variable
en → en − �T by hand (shown in the figure as orange circles)
every time there is a change in the parameter Tn → Tn + �T
to produce the correct time evolution (in the sinusoidal and
random variations the experimenter needs to adjust en at every
step). Finally, a naive version is shown in the bottom row
where Eq. (8) is used without adjusting the value of en by
hand.

Note that we decided to plot en instead of pn throughout
this work mainly for historical reasons so it is easier to
compare to previous models’ results and experimental results.
Keep in mind, however, that all numerical simulations of our
proposed model in this work were performed by solving the
closed equation for pn [Eq. (11) with nonlinear terms as in
Eq. (9) and coefficient values as in Table I), and then translated
pn → en by means of Eq. (5).

E. Theoretical predictions

1. Geometrical organization of phase space

The geometrical arrangement of the trajectories in the
experimental phase space [Fig. 2(c)] is remarkable in that the
trajectories corresponding to the largest positive perturbations
share a region of phase space during the overshoot with
some of the trajectories of the negative perturbations (that do
not have overshoot). This suggests that the error-correction
mechanism in the brain might not distinguish between both
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FIG. 5. Three common experimental manipulations of the stimulus period (top row) and response of our model (second row). (a) Step
change in stimulus period. (b) Sinusoidal change. (c) Pseudorandom change. For comparison, the third row shows the behavior of the model
when no distinction between predicted pn and observed en is made, which is the traditional way of modeling where by-hand modification of en

is needed (shown as orange filled circles when en must be increased and open circles when it must be decreased); fourth row shows a “naive”
approach where neither distinction pn/en nor by-hand modification are made.

types of trajectories while they are roughly in the same region
of phase space. The approximate location of such region is
clear and is labeled “B” in the bottom panel of Fig. 6(a) but
corresponds to very different time instants in the time series
(top panel).

The remarkable similarity between the experimental phase
space [Fig. 2(c)] and the model phase space [Fig. 3(b)]
should not be construed quantitatively as a measure of good-
ness but qualitatively as equivalent geometrical arrangements
of the trajectories—both have trajectories with asymmetric

FIG. 6. Model predictions (I). (a) Response to a step change perturbation and choice of points for the second perturbation. Points labeled
“B” and “C” have similar asynchrony values and correspond to the perturbations in panels (b) and (c), respectively. (b) Response to the proposed
manipulation: Both conditions of perturbation 1 (−40- and +70-ms step changes) give similar responses to perturbation 2 (−40-ms variable
only). The perturbed points are labeled with stars and correspond to the “B” label in panel (a). (c) Response to consecutive perturbations as in
(b) but the second perturbation takes place in different points of phase space: The response after perturbation 2 depends on the condition of
perturbation 1, despite having similar initial asynchrony values (positive control). The perturbed points are labeled with stars and correspond
to the “C” label in panel (a).

062412-6



RESPONSE TO PERTURBATIONS AS A BUILT-IN FEATURE … PHYSICAL REVIEW E 100, 062412 (2019)

overshoot and both have trajectories that share a common
region in phase space despite coming from opposite perturba-
tions. Our model allows us then to make the following predic-
tion: A perturbation to the variable in the region labeled “B”
in phase space [see Fig. 6(a)] should show the same postper-
turbation time evolution no matter what original trajectory it
belongs to.

This prediction, however, must be tested carefully. For the
very same reasons exposed in Sec. II A, in the history of paced
finger-tapping experiments it has been intrinsically difficult to
perturb the value of the stimulus period Tn without perturbing
the variable en and, conversely, to perturb the variable without
perturbing the stimulus period. In a recent work [21], however,
we pointed at this overlooked issue and showed the feasibility
of novel experimental manipulations to the variable only to
avoid the confounding. Here we propose to use these novel
perturbations to study the response of the model in front of
two consecutive perturbations:

(i) first a traditional step change perturbation (in two con-
ditions, positive and negative);

(ii) second, and while the resynchronization from the first
perturbation takes place, a perturbation to the variable only
(i.e., without changing the stimulus period).

Our prediction is that the time evolution following the
second perturbation will be the same for both conditions
(positive or negative first perturbation), provided the second
perturbation is performed when the system is approximately
in the same region of phase space. The rationale behind
this proposal is that if we, on the contrary, performed two
consecutive traditional step change perturbations, then we
would not be able to resolve the following confounder: In
case an overshoot appears in both conditions after the second
perturbation it may be due either because our hypothesis is
valid or because it is the known response to the (second) step
change perturbation.

Numerical simulations supporting our prediction are in
Fig. 6, where we show the results of [Fig. 6(a)] a single step
change (negative control) and the definition of perturbation
points; [Fig. 6(b)] the proposed manipulation; and [Fig. 6(c)]
two consecutive perturbations as in Fig. 6(b) but performed
in different points of phase space (positive control). In the
consecutive perturbations [comparison of Figs. 6(b) and 6(c)]
the time evolution after the second perturbation is either very
similar between conditions [Fig. 6(b)] or different [Fig. 6(c)].

2. Perturbations to the variable only

Our second prediction is that the response to large-enough
symmetric perturbations to the variable might be asymmetric.
This can be seen in the phase space of Fig. 7, after noting that
large negative perturbations (i.e., jump to the left) display an
overshoot while large positive perturbations (i.e., jump to the
right) do not. This would prove that a step change perturbation
is not needed to display nonlinear behavior—perturbations to
the variable without changing the stimulus period might elicit
it, too, provided they are large enough. On the other hand,
if the perturbation size is small enough, then the response to
symmetric perturbations might look symmetric (see Fig. 7).

Last, the predictions described in this subsection and the
previous subsection are valid if the perturbations are per-

FIG. 7. Model predictions (II). Response to perturbations to the
variable only (large: ±60 ms; small: ±20 ms). The response to large
perturbations is asymmetric (i.e., it overshoots after the negative
perturbation only); the response to small perturbations is mostly
symmetric. (a) Asynchrony time series. (b) Trajectories in phase
space.

formed on time series displaying asymmetric overshoot; oth-
erwise, conclusions would be flawed.

3. Generalization to other experimental paradigms

Within our modeling approach, a step-change perturbation
is the elemental perturbation: the stimulus period (the main
parameter) is changed only once by a fixed amount. All
other period perturbations can be understood as consecutive
step-change perturbations [17]. This allows us to generalize
the applicability of our model to other SMS phenomena like
interpersonal synchronization. Here the stimuli sequence is
the other person’s production; it is of course naturally variable
and can be considered a sequence of small, consecutive step-
change perturbations. Our model takes any period perturba-
tion into account as a built-in feature and could be a new tool
to understand and conceptualize many findings in the field.
This would be relevant also in group synchronization and
leader-follower relationships (like in choirs and orchestras),
as any naturally occurring variability in the timed actions of
any participant or tempo change by the leader will act as a
perturbation to the rest.

062412-7



GONZÁLEZ, BAVASSI, AND LAJE PHYSICAL REVIEW E 100, 062412 (2019)

FIG. 8. Estimation of return points. (a) Return points of en (top panel; labeled “horiz” in Fig. 2(c)) and corresponding zn value (bottom
panel). (b) Return points of zn [bottom panel; labeled “vert” in Fig. 2(c)] and corresponding en value (top panel).

III. CONCLUSIONS

We showed that the asynchrony en, the most important
variable in the literature of paced finger-tapping experiments
and theoretical models [6,7], is actually an ill-defined variable
for a map or difference equation model when perturbations to
the stimulus sequence are present. We proposed a distinction
between predicted and actually observed asynchrony and de-
veloped the first mathematical model to solve the inherent ill
definition. This is also the first mathematical model in sensori-
motor synchronization that takes into account the response to
a temporal perturbation as a built-in feature. Our own previous
attempt [17], though successful at unifying, fell short of
completely including the perturbation in the model dynamics.

Our model is able to fit the step change perturbation
data remarkably well [Figs. 3(a) and 9], reproducing the
response time series very accurately at all steps (including
the perturbation step) with no modification of the variable “by
hand” and with basically the same number of parameters than
comparable models. It is only surprising that no published
works so far in the paced finger-tapping literature, up to our
knowledge, deal with the issue of ill definition of the main
model variable when the sequence period is perturbed. On
the other hand, models based on forced or coupled nonlinear
oscillators [28,30–32], traditionally classified as belonging to
a “dynamical systems” approach, are naturally well defined
even in the presence of perturbations to the period.

Temporally displaced auditory feedback (either delayed
or advanced) is also a usual way of probing the system
[33–36] and it does not suffer from the issue of ill definition
of the variable we addressed in this work. It remains to be
shown, however, how it relates to changing the asynchrony in
the models as it produces a modification in the asynchrony
value but it also introduces a dissociation between auditory
feedback and proprioceptive and tactile feedback [35].

We also showed that nonlinear behavior (asymmetry of
responses) might be observed when the variable only is per-
turbed, i.e. even in the absence of a perturbation to the stimu-
lus sequence, if the perturbation is large enough. Experimental
perturbations like the ones proposed in Ref. [21] but with
larger magnitudes are needed. We acknowledge that similar
results can be obtained by using a different set of nonlinear
terms, and this calls for more experimental data showing any
kind of bifurcation in the behavior so as to choose the correct
set of parameters via normal form theory.

Our model assumes, as many others, that the origin of the
asynchrony is not important for keeping average synchrony
or for achieving resynchronization. Qualitative features of
resynchronization after a perturbation are thus similar in-
dependently of whether the asynchrony was produced by a
perturbation to the parameter or to the variable or both. This
is a common theoretical assumption in the literature only
recently supported by experimental results [21].

Our theoretical results show that past (observed) and future
(predicted) asynchronies play different roles in the model,
and the remarkable fitting to the experimental data thus offers
indirect evidence for a separate cerebral account of predicted
versus actually observed asynchrony. Further experimental
work is needed to decide whether this holds true.
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FIG. 9. Model fitting: Experimental time series vs. fitted time series. The obtained set of coefficient values is displayed in Table I.

APPENDIX: METHODS AND PARAMETER
DISTRIBUTIONS

1. Estimation of return points

The return points of a map en+1 = f (en) are the values en

such that en+1 = en (the analogous concept in a continuous-
time flow is the nullcline, that is, the points in phase space
where the rate of change associated to a given variable is
zero). In the time series en the return points appear as local
maxima or minima.

In a two-dimensional map:

en+1 = f (en, xn)

xn+1 = g(en, xn), (A1)

the return points for the variable en are the solutions of
the implicit function en = f (en, xn) and for the variable xn are
the solutions of the implicit function xn = g(en, xn). Here it is
clear that the return points give us information about the shape
of f and g.

In our case we want to find the return points in the cho-
sen bidimensional embedding (en; zn), where zn = en − en−1.
That is, on the one hand we want the points (en; zn) such
that en is a local maximum or minimum (return points for
the variable en) and on the other hand the points (en; zn) such
that zn is a local maximum or minimum (return points for the
variable zn).

We exemplify the procedure with the calculation for the
variable en (see Fig. 8):

(i) Define a 5-point time window from n = 0 through
n = 4;

(ii) Fit a fourth-order polynomial to the en time series in
such window;

(iii) Find the local maximum or minimum eret of the fitted
function and the corresponding value nret;

(iv) Interpolate the zn time series with a polynomial of the
same order and compute the value z(eret );

(v) The return points are the set of values (eret; z(eret )).

Same procedure applies for the variable zn after switching
en ↔ zn.

2. Genetic algorithm

We fitted the model to the data by using a genetic algorithm
in C with both custom-written code and the GAUL libraries
[37].

The eight model parameters were arranged into a single
chromosome with eight genes and were initialized randomly
from a uniform distribution in the ranges −1.0 < a, b, c, d <

1.0, −0.01 < δ < 0.01, and −0.0001 < α, β, γ < 0.0001.
The number of generations was 200, the population size 2000,
the crossover rate 0.9, and the mutation rate 0.1.

The fitness function was defined as minus the square root
of the average squared deviation between model series and
experimental series:

F = −
√√√√ 1

10 × 26

10∑
j=1

20∑
n=−5

(
e j

n − E j
n
)2 + P, (A2)

where e j
n are the experimental time series and E j

n are the
model time series plotted in Fig. 9; n = −5, . . . , 20 is the
step number, and j = 1, . . . 10 represents the 10 conditions
−50, −40, −30, −20, −10, +10, +20, +30, +40, +50 ms
used to fit the model. The fitness function F decreases as
the differences e j

n − E j
n get larger in absolute value. Note

that fitting and simulations in this work encompass all steps
n = −5, . . . , 20, including the perturbation step n = 0 as
shown in Fig. 3(a), making no distinction whatsoever among
preperturbation, perturbation, and postperturbation.

In order to prevent survival of unrealistic solutions (for
instance damped oscillations or alternating series), penalties
were included as a positive term P inside the square root that
depends on the linear coefficients only and takes a large value
in any of the following cases:

(i) the eigenvalues are complex (in order to avoid oscilla-
tory approach to the equilibrium);
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FIG. 10. Distribution of parameter fitted values.

(ii) the eigenvalues are real but any of them is either
greater than 1 or negative (in order to avoid solutions with
unstable manifolds, and convergent solutions that alternate
sides);

otherwise, P = 0.
In order to prevent the selection of a surviving local opti-

mum and to perform a statistical and dynamical study of the
obtained solutions, the whole procedure described so far was
repeated 200 times; the chosen solution was the one with the
highest fitness of all.

FIG. 11. Joint distributions of linear parameter values.

To improve fitting, a postperturbation constant baseline
was added to the model variable pn with a fixed value equal to
the experimental postperturbation baseline of the correspond-
ing perturbation size.

3. Fitting results from all perturbation sizes

Figure 9 shows all experimental time series used for the
fitting procedure (perturbation sizes ±50, ±40, ±30, ±20,
and ±10 ms) and the corresponding model time series.

FIG. 12. Joint distributions of nonlinear parameter values.
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FIG. 13. Joint distributions of linear vs. nonlinear parameter values.

4. Fitted parameter distributions

See Figs. 10, 11, 12, and 13.

5. Parameter values of Type-II and Type-III phase spaces

See Tables II and III.

TABLE II. Fitted parameter values for a representative solution
of Type-II phase space [Fig. 4(b)]. Units as in Table I.

a = 0.801 α = −8.04 × 10−5

b = 0.699 β = −8.06 × 10−5

c = −0.220 γ = 9.76 × 10−5

d = 0.0167 δ = 3.48 × 10−3

6. Data and code

See Supplemental Material [38] or at the Sensorimotor
Dynamics Lab’s webpage [39] for C and MATLAB code to
reproduce all figures and data in this work.

We use the morgenstemning colormap [40] for color blind-
friendly and grayscale-friendly plots.

TABLE III. Fitted parameter values for a representative solution
of Type-III phase space [Fig. 4(c)]. Units as in Table I.

a = 0.915 α = 8.06 × 10−5

b = −0.0550 β = −9.22 × 10−6

c = 0.861 γ = −3.48 × 10−5

d = 0.364 δ = −2.77 × 10−3
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