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Abstract. Depending on their depth, watertables can have a positive effect on plants by supplying water, a negative
effect by creating waterlogged and/or saline conditions or a neutral effect. Rhodes grass (Chloris gayana), a tropical
perennial forage adapted to saline soils, floods and droughts, is a viable choice for the lowlands in the Pampas region of
Argentina. The effects of the depth and salt concentration of the watertable on the growth dynamics and biomass
accumulation of Rhodes grass were quantified in a greenhouse experiment. The experiment consisted of 10 treatments,
resulting from the factorial combination of five watertable depths (25, 75, 125, 175 and 225 cm) and two salt treatments
(EC 1.4 and 20.5 dSm–1). The presence of non-saline watertable at a depth of 25 cm produced a 5-fold greater biomass
and showed an increase in water consumption of equal magnitude compared with deeper watertables. The increase
in shoot biomass was explained primarily by higher tiller and stolon density, which increased 3.3- and 7.7-fold
respectively, at watertables that were 25 cm deep compared with deeper treatments. Furthermore, groundwater use
efficiency was 30% higher in non-saline watertables at 25 cm depth. Similarly, at this depth, the leaf blades were 50%
longer compared with the deepest watertables evaluated. In contrast, the presence of saline watertables at 25 cm depth
had a detrimental effect on the production of biomass and its components, whereas the effect at 125 cm and greater
depths was neutral. Therefore, Rhodes grass is a species that can take advantage of the widespread shallow watertable
environments of the Pampas region as long as the salinity levels are low.
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Introduction

The Pampas region of Argentina is one of theflattest plains on the
planet and is playing an increasingly important role in global food
production. A low regional slope, together with a poor system
for surfacewater and salt evacuation (Taboada et al. 1998), causes
floods and high watertables (Jobbágy et al. 2008), as well as
vertical water movements (Lavado and Taboada 2009). These
effects cause salt redistribution in the soil profile and generate soil
salinity (Gorgas and Bustos 2008) with a highly heterogeneous
spatial distribution (Lavado and Taboada 2009).

The depth of watertables and their salt concentration are
dynamic attributes in space and time that can affect plants in
various ways. Deficient plant soil cover, together with climate
fluctuations, may favour bare soils with highwatertables because
of lowwater consumption, and can lead to a greater accumulation
of salts in the surface (Cisneros et al. 2008). These can have direct
effects on the vegetation (due to osmotic and/or toxic effects;
Passioura andMunns 2000; Munns 2002), indirect effects on the
soil (clay dispersion, loss of organic matter, occlusion of macro
pores and decreased infiltration; Cisneros et al. 1999, 2008) or
both plant and soil effects leading to poor ground cover and

creating a negative feedback loop. Selecting suitable pasture
species, in combination with effective management, could
result in better ground cover and root development, adequate
water consumption, improved infiltration and salt leaching and
a decrease in capillary salt rise to the surface (Cisneros et al.
2008).

The watertable can interact with vegetation to various extents.
Depending on its depth, it can be a valuable source of water or it
can become a stress agent by creating conditions of waterlogging
and/or salinity (Narain et al. 1998; Mueller et al. 2005; Nosetto
et al. 2009). In addition, changes in vegetation can alter the
balance of water and salt flow in the ecosystem (Scanlon et al.
2005) causing, in some cases, salt concentration and watertable
depression (Jobbágy and Jackson 2004). In such environments, it
is common to find plants stressed by water shortage (manifested
as decreased leaf growth and expansion and less tillering) or by
water excess (where hypoxic conditions affect root and shoot
growth) or by salinity.

There is some information available about optimal
watertable depths for different species, and their relationship
with root architecture, exclusion of solutes and water use
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efficiency (WUE) that provide key insights into land use
management and improved production efficiency, both at the
field and regional level (Narain et al. 1998; Jobbágy and Jackson
2004; Mueller et al. 2005; Nosetto et al. 2009). In general, C4
species are more water use efficient than C3 species (Beale et al.
1999) and perennial pastures offer longer periods of activity
and greater root exploration than annual crops (Jobbágy et al.
2008) and may have higher water consumption (Narain et al.
1998; Mueller et al. 2005). Rhodes grass, a C4 species,
combines several favourable features: vigorous initial growth
that mitigates weed competition, which is advantageous for
early establishment; and a high natural spreading potential
(through stolons and/or seeds) and long persistence (Bogdan
1969; FAO 2011). In addition, this species is suitable for saline
environments (Priano and Pilatti 1989) and temporary droughts
(Bogdan 1969; Taleisnik et al. 1997). These characteristics
make it especially suitable for halohydromorphic environments.

Biomass production in Rhodes grass established on saline
soils in the area of Marcos Juárez, located in the south-east of
Córdoba province (328S, 628W), Argentina, may vary between
5 and 15 t dry matter (DM) ha–1 (Bertram et al. 2010). This
wide range may be attributed, in part, to salinity, which exerts
negative effects on the establishment and persistence of
pastures (Pérez et al. 1999; Bertram et al. 2010). Currently,
there are no experimental data to assess the extent to
which spatial and temporal variations in the depth and
salinity of watertables can affect pasture productivity. The
aim of the present study was to describe the interaction
between watertable conditions and Rhodes grass biomass
production.

Materials and methods
Site and experimental material

The experimental research was performed under semi-controlled
conditions in a greenhouse at the INTA Marcos Juárez
Experimental Station (328430S, 62860W) in Argentina. The
average mean daily temperature during the evaluation period was
22.78C (Fig. 1), whereas the average daily effective heliophany
(daylight hours) was 7.7 h. The temperature was measured in
the greenhouse, whereas heliophany was registered in a weather
box.

Treatments and experimental design

Individual Chloris gayana cv. Topcut plants were used for these
experiments. Pots (polyvinyl chloride (PVC) plastic tubes, 20 cm
diameter and 50, 100, 150, 200 or 250 cm long) were filled with
typical argiudol soil Marcos Juárez series, representing the
different profile horizons, and mixed with sand (3 : 1 soil : sand
volume) in order to reduce water retention and ease root
measurements (Table 1). Subsequently, 2-year-old C. gayana
plants were transplanted from field plots to the pots, and kept at
field capacity for approximately 60 days until the beginning of
the experiment in order to restore capillarity, stabilise pore spaces
and allow for new root growth. The surface of each pot was
covered with a 4 cm layer of dry plant residues to minimise
evaporation.

Watertable depth

Watertable depth simulation was performed by immersing the
pots in buckets containing water columns of 25 cm of either
tap water (electrical conductivity (EC) 1.4 dSm–1) or a 10 g L–1

NaCl solution in tap water (EC 20.5 dSm–1). These levels were
maintained throughout the entire experiment by periodically
adding water or NaCl solution (depending on the treatment).
There were 10 treatments, resulting from the factorial
combination of five watertable depths (25, 75, 125, 175 and
225 cm) and two salt treatments. The experiment lasted for
71 days, period during which 1082 degree-days were
accumulated, and where two biomass harvests were made. The
first harvest occurred when all the accumulated water in the soil
profile was consumed and occurred 27 days (498 degree-days)
after the experiment commenced, and the second harvest
occurred at 44 days (584 degree-days) with the plants only
using watertable water. The design of the experiment was
a completely randomised block design (RCBD), with each
treatment consisting of four replicates.
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Fig. 1. Mean daily temperature and mean daily effective heliophany from
28 March to 12 May.

Table 1. Textural characteristics of the different horizons of the soil
profile of Marcos Juárez Series in its natural composition (Series MJ)

and after the addition of 25% sand (Series MJ+ 25% sand)

Horizon Series MJ Series MJ + 25% sand

A (0–20 cm) Clay (%) 25.1 20.1
Silt (%) 68.9 55.1
Sand (%) 6.0 24.8

B (20–80 cm) Clay (%) 29.7 23.8
Silt (%) 61.4 49.1
Sand (%) 8.9 27.1

C (+80 cm) Clay (%) 18.9 14.9
Silt (%) 70.8 56.7
Sand (%) 10.3 28.4
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Shoot growth

After each growth period (~500 degree-days from the initial cut),
plants were cut to 9 cm above the ground surface. Harvested
biomass was dried at 608C to a constant weight. Shoots were
separated into tillers and stolons.Thenumber of tillers and stolons
was counted, and separated into pseudostems and blades.

Root growth

At the end of the trial, the pots were cut longitudinally and split
into two halves without damaging the soil column. The substrate
in one half was cut into layers (0–10, 10–20, 20–40, 40–60 and
60–100 cm).Roots in each layerwere isolated bywashing them in
a centrifuge streamwashing table before suspending them in 10%
ethanol and storing them at 4�58C. Subsequently, roots were
passed through a 0.25-mm sieve and placed on a 30� 40 cm
transparent tray with a water film to extract impurities. Clean root
samples were scanned with a HP 1000 scanner and images were
analysed with 2007 WinRHIZO Pro. The following variables
were estimated: root length, area, volume and density. Scanned
samples were then dried at 608C to constant weight.

Leaf elongation

Representative tillers from each treatment were selected and
marked. The length of all the blades was measured every
3 days and rates of leaf elongation were calculated.

Water consumption

The amount of water consumed by the plants was
measured weekly by recording water that was added to each
bucket by means of a graded cylinder. The direct evaporation
from pots was reduced to negligible levels by the addition of a
mulch layer in each pot.

Statistical analysis

Accumulated biomass, biomass components, leaf elongation and
root biomass variables were analysed using linear mixed models
in SAS version 9.2 (SAS Institute Cary, NC, USA) taking into
consideration, where necessary, heterogeneous variances for
depth. To calculate WUE, simple linear regression was applied
to biomass and water consumption for each treatment. Fisher’s
least significant different testwas used to comparemeasurements.
A two-sided P < 0.05 was considered significant.

Results

Effects on plant mortality

The shallowest watertable (25 cm deep) caused 50% plant
mortality, probably due to waterlogging effects. However, in
the treatment with the non-saline watertable depth of 25 cm,
surviving plants showed the highest growth rates, producing 5-
fold more biomass than in any of the other treatments (Fig. 2).

Effects on biomass production and yield components

A significant interaction was found between watertable depth
and salinity for accumulated biomass (P = 0.0005), but not for
the density of tillers (P= 0.0714) and stolons (P= 0.0725).
Nevertheless, tiller density was 3.3-fold higher at the most
shallow non-saline watertable (Fig. 3a). Salinity in the 25- and
75-cm deep watertables significantly reduced tiller density (to

~50%), but there were no negative effects of salinity when the
watertable was deeper than 75 cm. Tillers that grew at the most
shallow watertables (25 and 75 cm) were approximately twice as
big as in the deeperwatertables (Fig. 3b), but salinity did not exert
a significant effect on tiller size.

Themost shallowwatertables also favoured stolon generation,
which was 7.7-fold higher than at deeper depths (Fig. 3c), but it
was significantly reduced by salinity (to ~30%). Stolon weights
also reflected these effects (Fig. 3d).

Effects on leaf blade length

Leaf blade lengths were 25% and 50% longer in plants growing
in non-saline watertables close to the surface (i.e. 25 and 75 cm
deep) than in plants growing in saline watertables at the same
depths (Fig. 4), and were longer than in plants growing in soil
with watertables exceeding 75 cm depth, regardless of salinity.
Therefore, plants growing under conditions with a non-saline
watertable near the surface had leaf elongation rates (2mm per
degree-day) that were 2-fold higher than in plants that were
growing under conditions with a saline watertable that was
close to the surface and 4-fold higher than in plants growing
under conditions where the watertable was >75 cm deep.

Effect on root growth

There was a direct relationship between root proportion and
shoot and depth of the watertable, since as the depth of
watertable increases, root biomass increases and shoot biomass
decreases (Fig. 5). A 70 : 30 (aerial part : root part) relationship
was found in saline watertables at both 25 and 75 cm depths
(P= 0.0012), whereas in the treatments in which the watertables
were >125 cm deep, the relationship was reversed. With non-
salinewatertables the effectwas similar but of a lessermagnitude;
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Fig. 2. Accumulated shoot biomass in Chloris gayana grown at various
watertable depths and at two salinity levels (non-saline: 1.4 dSm–1; saline:
20.5 dSm–1). The vertical bars represent the standard error of the mean.
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for example, at the depths of 125 and 225 cm the ratio of aerial
parts : root parts was 60 : 40.

Effect on WUE

Rhodes grass showed a greater efficiency in the use of the
watertable when it was not saline, showing efficiencies 30%
higher compared with values for plants in saline watertables
(Fig. 6). An increase of 4.62 g DM was observed per litre of
water consumed per plant. Plants grown in non-saline watertable
environments consumed 3-foldmorewater, which led to biomass
production that was 6-fold higher than for plants growing in
saline watertables.

Discussion

The present study evaluated the effect of watertable depth and
salinity on the growth and production of Rhodes grass. As with
other forage species (Vignolio et al. 1994), there was a higher
level of plant mortality (50%) at superficial watertable depths

(25 cm). However, it was observed that when these watertables
had low salinity levels, both biomass production and watertable
consumption were 5-fold higher compared with situations
where the watertable was deeper, possibly due to a positive
feedback in the watertable–soil–plant interaction, where more
living coverage and root development resulted in increased
water consumption, improved soil aeration and a reduction in
capillary salt rise to surface compared with shallow watertable
conditions (Cisneros et al. 2008).

The yield components that were most affected by the
experimental treatments were the densities of tillers and
stolons, which showed maximum values under shallow non-
saline watertables and decreased in the presence of saline
(Zeng et al. 2001; Castillo et al. 2007) or in deeper watertables
(Chaturvedi et al. 1981; Assuero et al. 2000).

Even though Rhodes grass is a species that is characterised as
tolerating salts (Bogdan 1969), in the presence of shallow
watertables with a high salt concentration, there were marked
reductions in biomass production, its components, andwatertable
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consumption.However, it is suggested that this speciesmay show
great potential for waterlogged environments with low salinity
under conditions where many annual crops fail (Nosetto et al.
2009).

Some anatomical and morphological changes occur in some
species, such as Rhodes grass, in situations of stress and these
could explain some of the responses that we saw in the present
study. Thus, when there is oxygen deficiency caused by pore

saturation in the soil profile, the diameter of the rootsmay increase
and aerenchymamay form (Imaz et al. 2012). In addition, species
may showother responses, such as some architectural adjustment
in root systems. Some species tend to concentrate most of their
roots in the surface soil layers (Beale et al. 1999; Craine et al.
2002; Gonzalez-Dugo et al. 2005; Durand et al. 2010), whereas
in other species the roots exhibit greater penetration to deeper
soil layers (Pagès and Pellerin 1994; Canadell et al. 1996; Palta
and Watt 2009). Using the information from a number of
research works as cited above, and including our own present
studies, we found a positive relationship between the maximum
depth of root exploration and the optimum watertable depth
where potential yields are obtained across different forage and
crop species (Fig. 7). Despite this general finding, we suggest
that, within Rhodes grass, some plants showed active growth in
areas with deeper watertables (125 and 225 cm), suggesting a
possible coupling with the groundwater. However, this may not
take place in every plant.

It should be noted that, in all cases, the optimal depth is found
within the zone of root growth and, in the present greenhouse
study, optimalwatertable depthsmay be closer to the surface than
in thefield. In experiments conducted inpots in thegreenhouse, an
average of 70% of the final length of the plant root system was
found within the watertable, whereas in experiments performed
under field conditions only 15% of the root system was found
within the watertable (Pagès and Pellerin 1994; Canadell et al.
1996; Narain et al. 1998; Beale et al. 1999; Mueller et al. 2005;
Nosetto et al. 2009; Palta and Watt 2009). These differences can
be related to the presence of side streams that favour water
recharge and discharge, and the wetting and drying processes
that manifest in the field in the presence of a fluctuating
watertable, which do not occur in typical pot trials with an
artificial watertable (Mueller et al. 2005). Therefore, even
though the present study can help our understanding of some
of the interactions of forage plants with watertables, under field
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conditions the optimal watertable depths for Rhodes grass may
be deeper than those observed under semi-controlled conditions
(Mueller et al. 2005).

Growing Rhodes grass in low salinity environments with
shallow watertables, which are common in the Pampas, would
be an efficient use of the landscape, because the root growth of
this species would cause a decrease in the capillary rise of the
watertable (diminishing the contribution of salts to the surface),

increased water consumption and salt leaching down the soil
profile, resulting in increased biomass production (Cisneros et al.
2008). In contrast, in environments where the watertables are
shallow and saline, Rhodes grass would survive, but would
have very low water consumption and biomass production
rates, suggesting that other species with higher salt tolerance
may achieve better results.

It is important to highlight that in areas with deep watertables
(>75 cm), the contribution of these watertables in providing
water for biomass production is likely to be negligible for
Rhodes grass, which is similar to that found in other forage
grasses (Mueller et al. 2005). However, the high survival of our
experimental plants (>50% after 35 days with no rainfall input)
suggests that under deeper groundwater levels, individual
Rhodes grass plants could persist through extended droughts
when the soil profile water potential in which more than 90%
of the roots are located is below the permanent wilting point.
This also suggests that the deepest fine roots of Rhodes grass
could have had access to soil layers with greater water content,
which would be important in the survival of the species (Craine
et al. 2002).

Although superficial watertables are favourable for biomass
production, under these conditions management of grazing on
Rhodes grass may be critical to its persistence. If the animal
trampling that occurs under these conditions is to be avoided,
the ideal time to use the species could be affected, which, in the
summer season in the Pampas region, is ~500 degree-days,
affecting the quality and durability of the species due to the
reduction of tiller density.

Rhodes grass in the presence of a low salinity watertable is
a viable option to stabilise biomass production of the lowlands in
the Pampas, and would contribute to the regulation of hydrology
and reduce the risk of flooding lowland environments where
excess water is collected from higher topographic positions.

Conclusions

Rhodes grass is a species that can take advantage of watertable
inputs when they are near the surface (<75 cm), provided that
they are low in salinity. The species shows great plasticity and
may usewater resources strategically, being efficient in water use
when water is widely available (increasing density of tillers and
stolons) or very conservativewhen there is lowwater availability,
diminishing the number of tillers, stolonisation or decreasing
the length of leaves, without affecting survival in the short and
medium term. This information will be useful to determine the
environments in which this grass could be used and to express its
full production potential, especially where there is great soil and
climatic heterogeneity. Forage options designed to respond to
the environmental conditions of each region are desired that
are able to maximise both shoot and root production, improve
infiltration, reduce the concentration of salts in the surface and
reduce flood risk.
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