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Abstract 

A key parameter in the transmission of vector-borne infections, including Chagas disease, is 

the ability of the different host species to transmit the parasite to the vector (infectiousness). 

Here, we determined infectiousness to the vector of Trypanosoma cruzi-seropositive humans 

examined by artificial xenodiagnosis (XD), established its relationship with T. cruzi DNA levels 
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(a surrogate of intensity of parasitemia) quantified by real-time PCR (qPCR), and assessed 

whether infectiousness was associated with the body mass index (BMI), age, ethnic 

background and parasite genotype. XD was performed to 117 T. cruzi-seropositive residents 

from Pampa del Indio and parasite load was quantified in 81 of them. By optical microscopy 

(OM) 32.7% of the people were infectious and this fraction doubled (60.5%) when XD 

triatomines were examined by molecular methods. The mean infectiousness (defined as the 

percentage of infected triatomines among the total number of insects examined by OM 30 

days post-feeding) was 5.2%, and the mean parasite load was 0.51 parasites equivalents per 

ml. Infectiousness to the vector was associated negatively with age and BMI, and positively 

with the detection of parasitemia by kDNA-PCR, and parasite load by qPCR in univariate 

analysis. Patients with a positive XD by OM exhibited a significantly higher mean parasite load. 

Using multivariate regression, infectiousness was associated with parasite load (positively) and 

with the household presence of T. infestans and Qom ethnic group (negatively); no significant 

association was observed with age or its interaction with ethnicity. Infectiousness was 

aggregated: 18% of the people examined by XD generated 80% of the infected triatomines. 

Detecting and treating the super-infectious fraction of human hosts would improve their 

prognosis and disproportionally impact on domestic transmission risks. 

Keywords: Xenodiagnosis; Triatoma infestans; Parasite load; Ethnicity; Trypanosoma cruzi 

1. Introduction 

Chagas disease is a vector-borne Neglected Tropical disease (NTD) which affects millions of 

people worldwide; nearly 70 millions are at risk in the Americas (WHO, 2015). Trypanosoma 

cruzi, its etiological agent, is mainly transmitted by triatomines (Hempitera: Reduvidae), and in 

Argentina the main vector is Triatoma infestans (Dias et al., 2002; Schofield et al., 2006). 

Vector control efforts have strongly reduced its geographical distribution in the Southern Cone 

of South America and interruption of domestic transmission mediated by T. infestans has been 
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accomplished in Chile, Uruguay, Paraguay, Brazil and parts of Argentina and Bolivia (OPS / 

WHO, 2018). However, domestic infestation and parasite transmission mediated by T. 

infestans are still present in vast areas of Bolivia, Argentina and southern Peru.  

Infectiousness to the vector is a key parameter related to parasite transmission. Despite 

the broad range of mammal hosts that can be naturally infected with T. cruzi, their 

infectiousness (defined as the percentage of uninfected insects that become infected after 

blood-feeding once on an infected host) varies widely among species (Gürtler and Cardinal, 

2015). Human infectiousness is generally low compared to other non-human species. For 

example, dog infectiousness (ranging between 27.5-62.3%) is 10 times higher than that of 

chronic humans (mean = 4.4%) (Gürtler y Cardinal, 2015). Moreover, infectiousness of 

seropositive humans is widely variable among studies, ranging from 2.6% (Gürtler et al., 1996) 

to >50% (Schenone et al., 2000) (Table S1). This variability is in part due to methodological 

differences (number, stage and species of triatomine employed; artificial or natural tests) as 

well as targeting different groups (children, adults, acute or chronic Chagas disease cases, 

immunocompromised patients) (Braz et al., 2001; da Cruz Oliveira et al., 1997; dos Santos 

et al., 1995; Sartori et al., 2002; Schenone, 1999; Teixeira de Freitas et al., 2011). An additional 

source of variability is the patients’ epidemiological context (current or past), which in most of 

these studies was ill-defined since they included patients attending hospitals.  

Recent studies have focused on the relationship between parasitemia and infectiousness 

to the vector and their impact on transmission of leishmaniosis (Courtenay et al., 2014; Miller 

et al., 2014; Seblova et al., 2013; Silva et al., 2016), malaria (Slater et al., 2019) and Chagas 

disease (Enriquez et al., 2014; Saavedra et al., 2016). Infectiousness is affected by parasitemia 

since the probability that a triatomine becomes infected after a single bloodmeal depends on 

whether there are (and the amount of) circulating parasites in the blood (Moll-Merks et al., 

1988). However, the quantitative relationship between infectiousness and parasite load is still 
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unclear. T. cruzi parasitemia in humans ranged from 0 to more than 10,000 parasites per ml 

(Bua et al., 2013), and the expected parasite load might depend on several factors described 

below. Whether parasitemia values are considered low or high depends on the particular study 

population and its peculiarities. 

 Trypanosoma cruzi parasitemia is controlled by the host’s immune system, which may be 

affected by factors related to the host and the parasite: age, disease phase, nutritional state 

(Muñoz et al., 2004; WHO, 2000), parasite genetic makeup, and co-infections with other 

etiological agents (Bustos et al., 2019). Higher parasite loads have been found in people with 

acute T. cruzi infection compared to chronic infections (Ramírez et al., 2015), and infants 

congenitally infected exhibited parasitemia several orders of magnitude higher than that of 

their respective mothers (Bua et al., 2013, 2012; Virreira et al., 2007). People co-infected with 

HIV and T. cruzi presented elevated parasitemias (Burgos et al., 2005; Teixeira de Freitas et al., 

2011), whereas immunocompetent chronic patients usually have low parasitemia (Melo et al., 

2015). In children up to 18 years of age, a negative relationship was observed between 

parasitemia and age (Duffy et al., 2009). No differences were found in parasite load among T. 

cruzi genotypes (Ramírez et al., 2015). Immune response boosted by reinfections may explain 

why pregnant women who lived in areas under vector surveillance exhibited higher 

parasitemia than those who lived in areas with active vector-borne transmission (Rendell et al., 

2015) or exhibited higher congenital transmission rates (Sanchez Negrette et al., 2005). 

Variations in parasitemia were explained by circadian rhythm variations in several parasitic 

diseases (Rijo-Ferreira et al., 2017). However, no circadian rhythm has been found in T. cruzi so 

far (Castro y Prata, 2000). 

Here, we studied a well-defined human population from the Argentine Chaco to: i) 

determine infectiousness to the vector and parasite load, ii) establish the quantitative 

relationship between them, and iii) assess whether infectiousness is associated with age, 
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gender, ethnicity, body mass index, domestic infestation with T. infestans (as a proxy of 

exposure to reinfection during the lifetime of the person) and parasite genotype. Based on 

previous knowledge, we predicted that: i) infectiousness, measured by artificial xenodiagnosis, 

and parasite load, quantified by qPCR, would be low since all study individuals were in the 

chronic phase of infection, and ii) infectiousness would increase with parasite load given that 

human infectiousness rarely reaches 100%. 

 

2. Material and Methods 

2.1. Study area 

Fieldwork was conducted in the rural area of Pampa del Indio Municipality (25º55’S 

56º58’W), Chaco Province, Argentina. The rural area was subdivided for operational reasons in 

sections named I-IV and houses were georeferenced. The study area has been under vector 

surveillance since 2007-2008, when a community-wide spraying with residual pyrethroids 

insecticides occurred. Annual or bi-annual post-intervention surveys aiming at full coverage of 

rural houses were conducted (Gaspe et al., 2015; Gurevitz et al., 2011; Provecho et al., 2017). 

Of the two local ethnic groups, Qom and Creole, Qom people represented 79% of the rural 

population.  

2.2. Study population 

A total of 3,216 residents of Areas II, III and IV were serodiagnosed for T. cruzi infection 

using standardized procedures (Sartor et al., 2017) between 2012 and 2017. Additional 

serodiagnosis was performed to a few inhabitants from a neighboring area and periurban 

Pampa del Indio. Seropositive individuals below 21 years old were eligible for etiological 

treatment and referred to the local hospital “Dr. Dante Tardelli”. At the time of performing 

routine tests prior to etiological treatment, a 2 ml aliquot of blood was mixed with an equal 

volume of Guanidine-EDTA Buffer (GEB) for molecular diagnosis of T. cruzi infection, and 3 ml 
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of blood were mixed with heparin for artificial xenodiagnosis. In order to include people > 21 

years of age, 5 ml of blood were additionally extracted in some adults who self-reported a 

previous seropositive result during two serosurveys conducted between 2014 and 2015; 

samples were processed as mentioned above. 

2.3. Artificial xenodiagnosis 

Xenodiagnosis tests were performed using 20 fourth–instar nymphs of laboratory-

reared T. infestans (kept unfed for at least 3 weeks) as described by Macchiaverna et al. 

(2018). For humans, artificial xenodiagnosis is preferred to classic xenodiagnosis since 

triatomines feed on freshly extracted blood, and direct contact with the person is avoided 

(Castro et al., 2004; dos Santos et al., 1995). The time elapsed between blood extraction and 

the onset of feeding was < 5 min. Bug feces were analyzed by optical microscopy (OM) at 400× 

30 and 60 days post-feeding to determine the infection with T. cruzi. Molting and mortality 

rates by 30 days after feeding were used as indices of xenodiagnosis quality (Gürtler et al., 

2007). 

A total of 161 artificial xenodiagnosis were performed between 2013 and 2016 at the 

local primary healthcare posts or rural schools, with 125 (78%) applied to T. cruzi-seropositive 

residents. During the performance of 5 XD, the latex membrane that separates the blood from 

the triatomines broke and the triatomines could not feed; these XD were discarded from 

analyses. In addition, a XD was performed on a young woman who later indicated that she had 

recently completed etiological treatment; given that all the examined triatomines resulted 

OM-negative, this patient was excluded from the analyses. In total, 119 of the 161 XD 

performed were analyzed in this study. 

2.3.1. Infectiousness 

We defined a person as infectious if at least one T. infestans was infected with T. cruzi 

among those examined by OM. Infectiousness was calculated as the percentage of T. infestans 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

infected with T. cruzi divided by the number of live insects examined for infection at 30 days 

post-feeding.  

In order to evaluate the percentage of false-negative triatomines by OM, a kDNA-PCR 

diagnosis was performed extracting DNA from the rectal ampoules of the triatomines that 

were not infected by OM (Enriquez et al., 2014). Up to 5 OM-negative T. infestans were 

randomly selected from each XD; in total, 527 triatomines were tested by kDNA-PCR. 

2.4. Molecular diagnosis from GEB 

The 4ml GEB-blood samples were stored at 4ºC until use. Samples were boiled for 10 

minutes in order to liberate the catenated minicircles and distribute the target sequences 

homogeneously in the blood sample (Britto et al., 1993). An aliquot of 300 µl was mixed with 3 

ng of an internal amplification control DNA (IAC) and used for DNA extraction using 

commercial purification columns (Qiagen). 

The presence of T. cruzi was determined qualitatively by a kDNA-PCR amplification of 

the 330pb fragment of the minicircle of the kinetoplast (Burgos et al., 2005). Bloodstream 

parasite load was quantified by real-time PCR (q-PCR) targeting the T. cruzi satellite DNA (Sat-

DNA), a conserved region of the parasite genome (Duffy et al., 2009). Seropositive individuals 

with a positive kDNA-PCR and/or positive XD were selected for parasite load quantification. 

Parasitemia was measured as parasite equivalents per ml (Pe/ml) as described in Bua et al. 

(2012). To verify that DNA extraction was correct, a fragment of the 289bp human β-actin gene 

in all GEB samples was amplified (Velázquez et al., 2014). IAC amplification by qPCR was used 

as a measure of efficiency of the DNA extraction step (Bua et al., 2012)  

2.5. DTU identification 

Parasites were isolated from feces of T. cruzi-infected T. infestans. DTUs were identified 

from the parasite isolates using two different PCR protocols as reported in Macchiaverna et al. 

(2018). 

2.6. Data analysis 
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Agresti–Coull binomial 95% confidence intervals (CI) were used for proportions. 

Fisher's exact tests and pairwise Wilcoxon tests were used to compare proportions of 

infectiousness and mean parasite load, respectively, between identified DTUs and XD results. 

The Kappa index was used to evaluate the concordance between XD and kDNA-PCR from GEB 

samples. A Spearman correlation was assessed between infectiousness and parasite load. In 

order to evaluate factors potentially associated with infectiousness, GLMs were implemented 

in the R environment (Team R, 2018, version 3.3.5), using the packages MuMIn (Barton, 2016), 

ResourceSelection (Lele et al., 2014) and car (Fox y Weisberg, 2011). Infectiousness was the 

response variable, and a binomial distribution with logit link function was considered. 

Univariate and multivariate models were performed. Due to the frequency of missing data for 

parasite load, two multivariate models were run using different datasets: 

Model 1: Infectiousness ~ Age + Gender + Ethnicity + Presence of T. infestans + Age x 

Ethnicity 

Model 2: Infectiousness ~ Age + Gender + Ethnicity + Presence of T. infestans + Age x 

Ethnicity + Parasite load 

For model selection, all models which had a ∆AIC smaller than 2 were selected, and OR 

and CI were estimated averaging over the selected models (Burnham y Anderson, 2002). 

The Body Mass Index (BMI), a simple surrogate of nutritional state, was classified as 

low if it was less than 18.5, normal between 18.5 and 25, and high if it was greater than 25 as 

recommended by WHO, 2000. For BMI calculation age and gender were considered. Since 

weight and height were only registered for approximately half of the patients, BMI was 

excluded from multivariate analysis. 

The presence of T. infestans was a categorical variable with 3 levels: absence of T. 

infestans, presence of T. infestans, or presence of T. cruzi-infected T. infestans. It combined the 

finding of T. infestans in domiciles, kitchens or storerooms of each household during any 

vector survey between 2008 until the date of the XD, and the report on whether each person 
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had ever lived in a house infested with triatomines. Although validity differs between these 

different infestation and vector-borne transmission risk assessments, our intention was to 

score previous risk, occurring before the vector control activities were launched in the study 

area. For children born after the onset of the vector control program (i.e.: ≤8 years of age), the 

date of birth and the timing when the T. infestans was captured during any survey were 

considered. Infection with T. cruzi was determined by OM examination of a subset of the T. 

infestans collected (Provecho et al., 2017).  

Age (in years) and parasite load (parasite equivalents/ml) were considered continuous 

variables; ethnic group was a categorical variable with two levels (0: creoles, 1: Qom and 

mixed ethnic background).  

Multicollinearity was assessed by calculating the Variance Inflation Factor (VIF) and the 

condition numbers for the explanatory variables. The overall quality of the fitted logistic 

regression models was assessed using the Hosmer-Lemeshow test. 

2.7. Ethical statement 

The procedures for human serodiagnosis and treatment (Protocol N° TW-01-004) and parasite 

diversity tests were approved by the “Comité de Ética en Investigación Clínica” (Ethics 

Committee in Clinical Research) of Buenos Aires, Argentina. Each person, or their parents or 

guardians (for minors), signed an informed consent prior to venipuncture. 

 

3. Results 

3.1. Artificial xenodiagnosis 

A total of 119 xenodiagnoses were performed to 117 seropositive inhabitants (2 siblings 

were examined twice on different occasions). The majority of the XDs were performed to 

women (58.8%), who represented 46.0% of the study population. The median age of XD-

examined people was 15 years (Q1-Q3 = 12-29), ranging from 5 to 73 years. Most people 

analyzed (76.5%) belonged to the Qom ethnic group (Table 1). The observed mortality rate of 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

triatomines at 30 days post-feeding was 8.4% (95% CI = 7.3-9.6%), and the bug molting rate 

was 10.8% (95% CI = 9.6-12.2%, Table 1). 

3.2. Infectiousness to the vector 

Of the 119 XD performed, 39 (32.8%, 95% CI = 25.0-41.7) were positive by OM. 

Another 35 XD resulted positive by complementing the diagnosis with kDNA-PCR of triatomine 

rectal contents. Combining both techniques, 72 XD (60.5%; 95% CI = 51.5-68.8) were positive 

and 47 were negative (Figure 1a). We identified 111 infected triatomines as determined by 

OM, while another 68 were found infected by kDNA-PCR (Figure 1a).  

The mean infectiousness by OM was 5.2% (95% CI = 4.3-6.2, n = 2167). The percentage 

of false negatives estimated by OM compared to kDNA-PCR was 13.1% (95% CI = 10.5-16.3, n = 

527). In positive XD, the mean number of infected triatomines by OM was 2.9 per person (SD = 

2.3), and the mean was 2.5 (SD = 2.2) for both diagnostic methods combined (OM and kDNA-

PCR). The mean number of infected T. infestans for all XDs was 1.0 (SD = 1.9) when only OM 

results were considered, but when OM and kDNA-PCR diagnosis were combined the mean rose 

to 1.5 (SD = 2.1) infected triatomine per person. Infectiousness to the vector was aggregated: 

18% of the people examined by XD presented 80% of the infected triatomines. 

3.3. Molecular diagnosis and determination of parasite load 

We analyzed 121 GEB from seropositive people. Forty-five samples were positive using 

kDNA-PCR (37.2%, 95% CI = 29.1-46.1), and 76 did not amplify the target DNA. All samples 

amplified for human β-actin. For 107 individuals with both xenodiagnosis and kDNA-PCR, the 

kappa index showed a slight agreement (k = 0.20) between techniques (Table 2). 

Eighty-one GEB samples were analyzed by qPCR; the mean parasite load was 0.51 

Pe/ml (SD = 0.79), ranging between 0 - 4.21 Pe/ml (Figure 1b). Some samples (n=7) exhibited 

undetectable T. cruzi DNA, and 26 were under the cutoff; these samples were assigned a value 

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

of 0 Pe/ml. Therefore, 48 samples (59.2%) had a detectable and quantifiable parasitemia level 

by qPCR. Excluding samples with nil parasitemia, the mean parasite load was 0.78 (SD=0.87) 

(Figure 1b).  

3.4. Factors associated with infectiousness 

In univariate analyses, infectiousness to the vector was negatively and significantly 

associated with age and BMI, and positively with the detection of parasitemia by kDNA-PCR 

and parasite load (Table 3). 

In the first dataset (model 1) including demographic variables, the presence of T. 

infestans and all individuals with XD (n = 117), a marginally significant interaction was found 

between ethnicity and age; infectiousness decreased with age, but with different slopes 

according to the host’s ethnic background (Table 4). In model 2, infectiousness was positively 

associated with parasite load and negatively and significantly associated with the presence of 

T. infestans (Table 4). From the multimodel analysis, 3 top models were obtained for the first 

dataset while only one model was selected for the second (Table 5). The explained variance 

was 15.1% and 28.7% for model 1 and 2, respectively. The models had a good fit to the data 

(Hosmer-Lemeshow goodness of fit test, p= 0.93 and p= 0.99 for model 1 and model 2, 

respectively). 

Infectiousness increased with parasite load (Table 4), and maximum infectiousness 

(44%) was at 1.5 Pe/ml (Figure 2). A highly significant positive correlation between 

infectiousness and parasite load was observed (Spearman correlation ρ=0.45, p<0.001). 

People with a positive XD by OM had a higher mean parasite load (mean = 0.78, SD = 

0.91) than those with a negative XD by OM and a positive XD by kDNA-PCR (mean = 0.30, SD = 

0.66) (Wilcoxon test, p = 0.008) and also than those with a negative XD as determined by both 

methods (mean = 0.29, SD = 0.65) (Wilcoxon test, p = 0.02, Figure 3). No difference in mean 
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parasite load was observed between individuals with a positive XD only by kDNA-PCR and with 

negative XD by both OM and kDNA-PCR (Wilcoxon test, p = 0.6). 

No significant differences in infectiousness (17.0%, 7.6%, 16.6%; Fisher's test, p = 0.2) or 

mean parasite load (0.81, 0.10, 0.92; Wilcoxon test,, p = 0.3) were observed between the DTUs 

identified, TcV, TcVI or TcV and/or TcVI, respectively (Figure 4). We were not able to identify 

the infecting DTUs from xenodiagnosis bugs PCR-positive only due to the low concentration of 

parasite DNA. 

4. Discussion 

By means of artificial xenodiagnosis and qPCR, this study shows that the inhabitants of 

these rural endemic communities in the Argentine Chaco presented low infectiousness to the 

vector (mean= 5.2%) and a very low parasite load (mean = 0.5 Pe/ml). Artificial xenodiagnosis 

allowed us to estimate the transmission capacity of human hosts; we found that 32.8% of the 

examined seropositive people were infectious to T. infestans by OM, and this percentage 

almost doubled when molecular diagnosis was added. This value exceeds previous findings by 

OM which ranged between 7.4-35.6% (Braz et al., 2001; Gürtler et al., 1996; Junqueira et al., 

1996; Sartori et al., 2002; Teixeira de Freitas et al., 2011) but is similar to the infectious 

percentage (57.9%) reported from a similar study in Chile (Coronado et al., 2006). Integrating 

these results with vector-host contact rates will evaluate the contribution of chronic infected 

humans as sources of T. cruzi in domestic transmission cycles. 

In artificial XD, bloodstream parasites used in the artificial feeder could die during the 

process and therefore infectiousness be underestimated (Profeta de Luz, 1999). Nonetheless, 

if performed adequately similar results can be obtained between classic and artificial human 

XD (Panameño Pineda et al., 1998). The same artificial feeding device was used previously and 

similar results in natural and artificial human XD were obtained (Cardinal et al., 2008). Also, the 

infectiousness found in this study was slightly higher than those obtained in natural 
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xenodiagnoses applied to humans (Cardinal et al., 2008; Castro et al., 2004; dos Santos et al., 

1995; Gürtler et al., 1996; Teixeira de Freitas et al., 2011). These might indicate that if there 

was any mortality of parasites due to handling procedures this might have been negligible. 

Moreover, the quality of the XD performed was evidenced by similar bug mortality and molting 

rates in the artificial XD versus those used in classic XD of dogs, cats and wild animals (3-6% 

and 8-15%, respectively) (Enriquez et al., 2014; Alvarado-Otegui et al., 2012; Orozco et al., 

2016).  

The mean parasite load was 0.51 parasite equivalents per ml and its range was between 0-

4.21. These values are similar to those reported in a neighboring rural area of Pampa del Indio 

(Sartor et al., 2017) and in chronic humans seropositive for T. cruzi (Alvarez et al., 2016; Bua 

et al., 2012; Duffy et al., 2013; Lucero et al., 2016; Melo et al., 2015; Ortiz et al., 2012). 

Similarly, 37% out of 100 chronic patients exhibited parasitemia ≤ 1 parasite equivalent per ml 

in Chile (Saavedra et al., 2016). None of the study individuals had the high parasite loads 

observed in newborns with congenital infection (Bua et al., 2013), or people co-infected with 

HIV (Teixeira de Freitas et al., 2011). Parasite load was positively associated with infectiousness 

to the vector, and patients with a positive XD by OM exhibited a higher mean parasite load 

than those with a negative XD by OM, regardless of the kDNA-PCR results, as observed 

elsewhere (Saavedra et al., 2016). 

Age was negatively associated with infectiousness to the vector, and a marginally 

significant interaction with ethnicity and age was observed. The occurrence of a positive 

xenodiagnosis decreased with age (Gürtler et al., 1996; Hoff et al., 1979; Schenone et al., 

1995). Age was also negatively associated with parasite load, but the study population only 

included children under 18 years old, and no other factors were considered (Duffy et al., 2009). 

How the immune response varies with age and may modulate parasitemia was not considered 

in this study.  
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In multivariate analyses, the report of the household presence of T. infestans during the 

lifetime of the person (a proxy for reinfection probability) was a significant protective factor. 

This variable combined self-reported triatomine exposure, which is subject to recall bias, and 

our own findings of triatomines during the surveillance phase (Gaspe et al., 2018; Provecho 

et al., 2017). Similarly, pregnant women living in areas under vector surveillance in Bolivia 

exhibited higher parasitemia than those living in areas with active transmission (Rendell et al., 

2015). These results are consistent with the hypothesis that reinfections would boost host 

immune response, and limit T. cruzi parasitemia. On the contrary, reinfections were associated 

with dogs’ infectiousness (Gürtler et al., 1992) and with a slight increase of T. cruzi parasitemia 

in experimentally inoculated dogs and mice (Bustamante et al., 2007; Machado et al., 2001). 

However, the absence of association was also observed (Enriquez et al., 2014; Gürtler et al., 

2007). These discrepancies may be explained by the different metrics used to assess 

reinfection probabilities, their different validity and the difficulty to define when the exposure 

occurred.  

A low BMI might indicate a poor nutritional state that can affect the immune system and 

its capacity to control T. cruzi infection or other pathogens (WHO, 2000). The BMI was 

negatively associated with infectiousness to the vector in univariate analysis. Unfortunately, 

this variable presented a high number of missing data and could not be incorporated into the 

multivariate analysis. In dogs, an increase in infectiousness to the vector and T. cruzi 

parasitemia was observed in animals with the worst body conditions (Enriquez et al., 2014).  

Ethnicity was not significantly associated with infectiousness in this study, though a 

marginally significant interaction with age was observed. Ethnic background may represent 

poverty-related or other social-economic factors rather than a biological background. 

Domestic infestation risk, vector abundance and triatomine infection with T. cruzi were 

associated with high vulnerability conditions in a neighboring study area (Fernández et al., 
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2019), and T. cruzi infection risk and social vulnerability were unequally distributed among 

ethnic groups. If reinfection chances affect T. cruzi parasitemia (Rendell et al., 2015), the Qom 

population may have experienced this effect.  

The XD protocol is highly laborious and requires an experienced operator. However, its 

main advantage is that it allows obtaining parasite isolates from rural residents without 

mobilizing them to a hospital or other establishment with the necessary infrastructure to 

perform hemoculture (Profeta de Luz, 1999). Human T. cruzi isolates were used to determine 

the infecting DTU (Macchiaverna et al., 2018), and to eventually correct parasite loads for the 

infecting DTU since TcI presents 10 times less copies of the satellite DNA than TcVI (Duffy et al., 

2009). Parasite DTUs identified in the inhabitants of Pampa del Indio were the hybrid TcV 

and/or TcVI. We did not find differences in their infectiousness to the vector or parasite load, 

similar to previous findings (Ramírez et al. 2015). In contrast, TcI-infected dogs and cats from 

the study area had nil infectiousness despite having moderate parasite loads (Enriquez et al., 

2014). Since human DTU identification was achieved from T. cruzi-.infected triatomines used in 

XD, TcI-infected humans may have been lost if the same pattern occurred. Also, TcI displayed 

differential tropism in humans further masking the chances of detecting them in venous blood 

(Burgos et al., 2008). Unfortunately, DTU identification from human GEB samples was 

unsuccessful, probably due to the very low parasite loads registered. 

Our study has strengths and limitations. A wide range of ages was encompassed, and a 

well-defined population was studied. The procedure for performing artificial xenodiagnoses 

was standardized, which allowed making comparisons between surveys. However, a limitation 

was the low volume of blood employed, which was not enough to feed triatomines until 

repletion in most cases. It was not feasible to draw more blood for operational reasons, 

introducing a difference in the engorgement level of triatomines attained in classic or artificial 

XD.  
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The "80/20" rule (Woolhouse et al., 1997) accounts for the typical aggregated distribution 

of parasites, where 20% of hosts usually harbor 80% of the net transmission potential. A 

concept related to this empirical rule is the presence of "super-spreader" hosts (Stein, 2011). 

The study population had an aggregated distribution of infectiousness since 18% of the 117 

people analyzed by xenodiagnosis generated 80% of the infected triatomines and could be 

considered super-infectious. These super-infectious individuals with infectiousness higher than 

40% were four Qom boys aged ≤12 years who cohabited with at least two other infected 

people.  

Social vulnerability was linked to human seroprevalence of T. cruzi and transmission risk 

(Fernández et al., 2019). How BMI is distributed among the social groups and whether a better 

nutritional state would modify infectiousness to the vector is unknown. Detecting and treating 

the super-infectious fraction of human hosts would improve their prognosis and also 

disproportionally impact on domestic transmission risks if domestic reinfestation occurs.  
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Table 1: Summary values of artificial xenodiagnosis performed to T. cruzi-seropositive 
inhabitants, Pampa del Indio, 2013-2016. 

Live triatomine at 30 days post feeding 2167 

Live triatomine at 60 days post feeding 1194 

Molted triatomines at 60 days post feeding (%) 235 (10.8%) 

Dead triatomines at 30 days post feeding (%) 200 (8.4%) 

Dead triatomines at 60 days post feeding (%) 612 (25.9%) 

Women with XD 70 (58.8%) 

Qom patients with XD 91 (76.5%) 
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Table 2: Diagnosis of T. cruzi infection by kDNA-PCR from Guanidine-EDTA blood samples from 
chronic seropositive people and comparison with the result obtained by optical microscopy 

examination of artificial xenodiagnosis bugs, Pampa del Indio, 2013-2016 

kDNA-PCR 

XD by OM 
Without XD Total 

Positive Negative 
Positive 17 24 4 45 
Negative 15 51 10 76 

Without GEB sample 7 3 - 10 

Total 39 78 14 131 
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Table 3: Univariate risk factor analysis of infectiousness to the vector. N is the number of 
observations for each variable. 

Variable N OR (95% CI) P value 

Age 117 0.94 (0.91 - 0.96) <0.001 
Ethnicity 117   

Creole  1  
Qom  0.81 (0.53 - 1.26) 0.33 

Gender 117   
Female  1  

Male  1.09 (0.74 - 1.60) 0.66 
BMI 59 0.93 (0.86 - 0.99) 0.04 
Parasitemia detected by kDNA-PCR 107   

Negative  1  
Positive  2.91 (1.84 - 4.69) <0.001 

Parasite load 70 1.06 (1.04 - 1.08) <0.001 
Presence of T. infestans  117   

No  1  
Yes and not infected, or ND*  0.69 (0.45 - 1.10) 0.11 

Yes and infected  1.7 (0.90 - 3.13) 0.10 

*This category combines infested houses with uninfected bugs or infested houses with no data 

on infection status of the collected bugs. 
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Table 4: Multiple logistic regression for human infectiousness. Model 1 (N=117) and model 2 
(N=70). Odd Ratio (OR), Confidence intervals (CI), P value and Relative importance (RI) are 

informed for each variable using the averaged model. 

 Model 1 Model 2 

Variables OR (95% CI) P value RI OR (95% CI) 
P 

value 
RI 

Age 0.96 (0.92 - 1.00) 0.05 1.00 
1.00 (0.97 - 

1.03) 
0.83 0.30 

Ethnicity   0.97   0.93 
Creole 1  

 
1   

Qom 0.94 (0.26 - 3.37) 0.93 
 

0.46 (0.25-

0.87) 
0.02  

Age x Ethnicity   0.67   0.07 
Age x Creole 1  

 
1   

Age x Qom 0.95 (0.90 – 1.00) 0.06 
 

0.99 (0.94 - 
1.04) 

0.74  

Gender   0.29   0.25 
Female 1  

 
1   

Male 1.27 (0.84 - 1.92) 0.53 
 

0.89 (0.52 - 
1.54) 

0.68  

Presence of T. infestans    0.85   0.87 
No 1   1   

Yes and not infected, or ND* 0.72 (0.45-1.17) 0.19  
0.47 (0.26-

0.84) 
0.01  

Yes and infected 1.77 (0.93-3.35) 0.08  
0.19 (0.02-

1.48) 
0.11  

Parasite load    
1.80 (1.48 – 

2.20) 
<0.001 1 

*This category combines infested houses with uninfected bugs or infested houses with no data 
on infection status of the collected bugs. 
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Table 5: Top models selected by multimodel analysis for the infectiousness to the vector 

 Model 1 Model 2 
  1245 12345 125 256 

logLik -187.96 -187.30 -189.87 -103.55 
AICc 388.68 389.63 390.28 218.04 
ΔAIC 0 0.95 1.60 0 
Model weight 0.34 0.21 0.15 0.45 

1) Age X x x  

2) Ethnicity X x x X 

3) Gender  x   
4) Age x Ethnic X x   
5) Presence of T. infestans X x x x 
6) Parasite load 

 
 

 
x 
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Figure 1: A) Distribution of T. cruzi infection in T. infestans employed in artificial xenodiagnosis 
using optical microscopy or kDNA-PCR diagnosis. B) Distribution of parasite load of infected 

inhabitants of Pampa del Indio. 

  

Parasite equivalents per mL

0 0-1 1-2 2-3 >3

N
u
m

b
e

r 
o

f 
s
a

m
p
le

s

0

10

20

30

40

Number of infected T. infestans 

0 1 2 3 4 > 4

N
u
m

b
e

r 
o

f 
X

e
n
o

d
ia

g
n
o

s
e

s

0

20

40

60

80

OM

OM + PCR 

A) B)
79

45

13

33

11

19

3
7

3 3

108

26

35

9

2 2

Journal Pre-proof



Jo
ur

na
l P

re
-p

ro
of

 

 

Figure 2: Distribution of infectiousness to T. infestans of T. cruzi-infected humans according to 
parasite load quantified by qPCR. 
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Figure 3: Parasite load distribution for XD results. Boxes include 1st and 3rd quartiles, lines 

show the mean, whiskers are the 95% confidence interval, dots represent outliers and the 

numbers above are the sample size for each XD result. P values are the significant values 

obtained from pairwise Wilcoxon tests. 
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Figure 4: A) Distribution of human infectiousness and B) parasite load for the identified 

DTUs. Boxes include 1st and 3rd quartiles, lines show the mean, whiskers are the 95% 

confidence interval, dots represent outliers and the numbers above are the sample size for 

each DTU.  
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Highlights 

 Seropositive residents of Pampa del Indio exhibited low infectiousness to the vector 

 Infectiousness decreased with age and BMI.  

 Exposure to T. infestans was negatively associated with infectiousness  

 T. cruzi parasite load measured by qPCR was very low (<5 PE/ ml) 
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