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Abstract This paper is an attempt to study the thermody-
namics of the structure formation in the large scale universe
in the non local gravity using Boltzmann statistics and the
Tsallis statistics. The partition function is obtained in both
the approaches and the corresponding thermodynamics prop-
erties are evaluated. The important thing about the paper is
that we surprisingly get the divergence free integrals and thus
stress upon the fact that the nonlocal gravity is the singularity
free model of gravity.
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1 Introduction

The Einstein’s interpretation of the well known principle of
equivalence of inertial and gravitational masses in terms of
the proximate relation between inertia and gravitation [1]
which ensuingly led to the establishment of the extremely
local principle of equivalence and GR. Following Einstein, a
general connection between inertia and gravitation has been
employed as a guiding principle to render GR nonlocal in just
the same manner that accelerated observers in Minkowski
spacetime are nonlocal.

The general problems with action principles for nonlo-
cal theories in regard to the symmetric issues of kernel has
been elaborated and a classical nonlocal generalization of
Einstein’s theory of gravitation has been extensively devel-
oped [2–5]. The emergence of nonlocality for instance from
integrating out certain physical degrees of freedom has also
been discussed [6].

Nonlocal gravity (NLG) is originally a tetrad theory estab-
lished upon the frame field of a fundamental family of
observers in spacetime with the gravitational field charac-
terized by torsion, which is most directly related to the tetrad
frame field of the fundamental observers. The form of the
field equation of nonlocal gravity gives rise to the possibility
that nonlocal gravity may simulate dark matter [7].

The classical action of gravity being local and is usually
used to develop the cosmological models be it the Einstein–

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-08940-0&domain=pdf
mailto:hme123eda@gmail.com
mailto:b.pourhassan@du.ac.ir
mailto:\hbox {rocca@fisica.unlp.edu.ar;mariocarlosrocca@gmail.com}
mailto:aram.brzo@univsul.edu.iq


  146 Page 2 of 11 Eur. Phys. J. C           (2021) 81:146 

Hilbert action coupled to matter or some modified gravity
theory, the non locality effect comes from the quantum fluctu-
ations and gets incorporated into the corresponding quantum
effective action. Well understood in the ultraviolet regime but
much less in the infrared, these nonlocalities could in princi-
ple give rise to important cosmological effects [8]. The main
difference between the classical action which is fundamen-
tally local and the quantum effective action is that, the signs
of nonlocality starts surfacing whenever the theory contains
massless or light particles.

The essential difference between nonlocal gravity and
general relativity has been expressed in terms of spacetime
memory or the presence of effective dark matter. In terms of
the memory from the past, nonlocality has been considered
a natural feature of the universal gravitational interaction.
Some of the consequences of non local gravity for instance
the nonlocal modifications of Newtonian gravity and lin-
earized gravitational waves have been given a detailed atten-
tion [9].

The isotropy of the cosmic microwave background radi-
ation is a strong indication that a small amplitude inhomo-
geneities must have existed at the time of decoupling. The
intrinsic gravitational instability of a nearly homogeneous
distribution of matter has lead to the colossal growth of such
inhomogeneities from the recombination era to the present.

The exact manner in which structure formation like the
formation of galaxies, clusters of galaxies and thereafter the
spread of the cosmic web have come about is still a mys-
tery. But a general belief is that dark matter has played a
crucial role in this whole development. This has been known
and studied that under the assumptions of spatial homogene-
ity and isotropy, and as long as the net pressure, as being
assumed as a source of gravity, can be neglected in com-
parison with the energy density associated with the matter
content of the universe, Newtonian cosmology is an ulti-
mate approximation to the standard Friedmann–Lemaître–
Robertson–Walker (FLRW) cosmological models of gen-
eral relativity. More generally, it has been sort out that after
recombination era, Newtonian gravitation can be efficiently
applied in the study of nonrelativistic motion of matter on
subhorizon scales [10–13]. The important task remains is to
investigate whether nonlocal gravity is fulfilling the capabil-
ity of solving the problem of large-scale cosmological struc-
ture formation.

The clustering of galaxies, their distribution functions and
the corresponding thermodynamics have been extensively
studied using Newtonian gravity both for point masses and
for extended masses [14–20].

The modification in the gravity action can lead to the vari-
ations in the gravitational potential in the low-energy limit
and the modified potential reduces to the Newtonian one on
the Solar system scale as well. It has been analysed in [21–
23] that the modified gravitational potential could fit galaxy

rotation curves even without considering dark matter or dark
energy. This in fact has, provided opportunities to draw a
formal analogy between the corrections due to the modified
Newtonian potential and the dark energy models.

The clustering of galaxies has been studied by consider-
ing Newtonian modified potential of a brane world model
by using standard techniques of statistical mechanics and
the thermodynamics of gravitational clustering of galaxies
have been discussed [24]. The modification to the Newto-
nian potential are due to the super-light modes in the brane
world models. It may be noted that the Newtonian potential
also gets modified from various different approaches. The
essential to refer here include non-commutative geometry
[25,26], minimal length in quantum gravity [27], f(R) grav-
ity [28,29], �CDM [30] and the entropic force [31]. Work
has been done to see the impact of modified potentials on
thermodynamics of galaxy clustering [20,24,32]. The effect
of the cosmological constant on the clustering of galaxies
has been used deriving the gravitational partition function
for galaxies in a universe with a cosmological constant and
the influence on distribution of galaxies has been studied
[33,34]. It is important to mention the phenomenological
Tohline–Kuhn modified gravity approach to the problem of
dark matter [35–37]. This paper is dedicated to study the
clustering of galaxies by using the nonlocal aspect of gravity
which is actually the nonlocal extension of general relativ-
ity. This is done in the linear weak field approximation by
using the modified gravitational potential for a point mass
[36]. The work in this paper includes the Boltzmann statis-
tical approach and Tsallis statistical approach to exclusively
get the partition function and the thermodynamic properties
of gravitating gas.

2 Partition function of an interacting system in the
non-local gravity using Boltzmann statistics

The general partition function of a system of N particles of
mass m interacting through the modified gravitational poten-
tial with potential energy is �, can be written as

Zν = 1

N !
∫

dν pdνr

× exp

{
−

[
N∑
i=1

p2
i

2m
+ �(r1, r2, r3, . . . , rN )

]
T−1

}
.

(2.1)

The nonlocal potential energy for point mass is written as
[36]

(�i, j )nl = −Gm2

ri j
+ Gm2

λ
ln

(ri j
λ

)
. (2.2)
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For large N number of galaxies one can write

(�i, j )nl = −N (N − 1)Gm2

2ri j
+ N (N − 1)Gm2

2λ
ln

(ri j
λ

)
.

(2.3)

The partition function Z in ν dimensions.

Zν = − 1

N !
∞∫

−∞
dνx

∞∫

−∞
dν p exp

[
β

(
N (N − 1)Gm2

2r

−N (N − 1)Gm2

2λ
ln

( r
λ

)
− Np2

2m

)]
. (2.4)

Or equivalently:

Zν = − 1

λ− βN (N−1)Gm2
2λ N !

[
2π

ν
2

�
(

ν
2

)
]2 ∞∫

0

rν− βN (N−1)Gm2

2λ
−1

× exp

⎡
⎣β

(
N (N − 1)Gm2

2r

) ∞∫

0

pν−1dp exp

(
−Np2

2m

)⎤
⎦ .

(2.5)

Using the integrals [38,39]:

∞∫

0

rν− βN (N−1)Gm2

2λ
−1dr exp

[
β

(
N (N − 1)Gm2

2r

)]

= cos

(
π

(
ν − βN (N − 1)Gm2

2λ

))

×
(
N (N − 1)βGm2

2

)ν− βN (N−1)Gm2

2λ

×�

(
βN (N − 1)Gm2

2λ
− ν

)
(2.6)

and

∞∫

0

pν−1dr exp

(
−β

(
Np2

2m

))
=

2−ν
(
Nβ
2m

)−ν
2 √

π�(ν)

�
(

ν+1
2

) .

(2.7)

Thus the partition function Z

Z = − 1

λ−s N !

[
2π

ν
2

�
(

ν
2

)
]2

cos

(
π

(
ν − βN (N − 1)Gm2

2λ

))

×
(
N (N − 1)βGm2

2

)ν−s

× �

(
βN (N − 1)Gm2

2λ
− ν

)

×
2−ν

(
Nβ
2m

)−ν
2 √

π�(ν)

�
(

ν+1
2

) . (2.8)

For three dimensions ν = 3 and the partition function
becomes

Z = −4λ
βN (N−1)Gm2

2λ π
3
2

N ! cos π

(
3 − βN (N − 1)Gm2

2λ

)

×
(
N (N − 1)Gm2

2

)3− βN (N−1)Gm2

2λ
(

N

2m

)− 3
2

×β
3
2 − βN (N−1)Gm2

2λ �

(
βN (N − 1)Gm2

2λ
− 3

)
. (2.9)

Here we see that there are no poles in the partition function

obtained from Boltzmann statistics provided βN (N−1)Gm2

2λ
>

3. The value of βN (N−1)Gm2

2λ
for a particular system depends

on the value of non local parameter λ, which is small enough

to make βN (N−1)Gm2

2λ
greater than 3. Thus the partition func-

tion reveals that the non local gravity provides us a diver-
gence free gravity model. Typical behavior of the partition
function illustrated by plots of Fig. 1. Note that the oscilla-
tion of the system is more pronounced near the origin of the
temperatures. The permitted physical temperatures are those
for which Z > 0.

3 Internal energy and the specific heat of the system in
nonlocal gravity using Boltzmann partition function

Internal energy U is obtained as

U = − 1

Z
∂Z
∂β

(3.1)

U =
[
− 3

2β
+ N (N − 1)Gm2

2λ

(
1 + ln

βN (N − 1)Gm2

2λ

−π tan π

(
3 − βN (N − 1)Gm2

2λ

)

− ψ

(
βN (N − 1)Gm2

2λ
− 3

))]
. (3.2)

In the plot of the Fig. 2 we can see periodic nature of the
internal energy.

Specific heat Cv is:

CV =
[
−3k

2
− k

βN (N − 1)Gm2

2λ

×
(

1 + π
βN (N − 1)Gm2

2λ
sec2 π

(
3 − βN (N − 1)Gm2

2λ

)

− βN (N − 1)Gm2

2λ
ψ ′

(
βN (N − 1)Gm2

2λ
− 3

))]
. (3.3)

Larger N yields to the negative specific heat which means
that the system is self-gravitating (see Fig. 3).
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Fig. 1 Partition function in terms of temperature with G = m = k = 1, and λ = 1/6
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Fig. 2 Internal energy in terms of temperature with G = m = k = 1, and λ = 1/6

Fig. 3 Specific heat in terms of temperature with G = m = k = 1, and λ = 1/3

4 Thermodynamic properties of a system in nonlocal
gravity using Boltzmann statistics

Helmholtz free energy F is obtained using

F = − 1

β
lnZ. (4.1)

Thus F is obtained and written as

F = − 1

β
ln

⎡
⎣4λ

βN (N−1)Gm2

2λ π
3
2

N ! cos π

(
3 − βN (N − 1)Gm2

2λ

)

×
(
N (N − 1)Gm2

2

)3− βN (N−1)Gm2

2λ

×
(

N

2m

)− 3
2

β
3
2 − βN (N−1)Gm2

2λ �

(
βN (N − 1)Gm2

2λ
− 3

)]
.

(4.2)

In Fig. 4 we can see typical behavior of Helmholtz free
energy.

The entropy S is obtained from

T S = U − F. (4.3)
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Fig. 4 Helmholtz free energy in terms of temperature with G = m = k = 1, and λ = 1/6

Thus:

ST =
[
− 3

2β
+ s

β

(
1 + ln

βN (N − 1)Gm2

2λ

−π tan π

(
3 − βN (N − 1)Gm2

2λ

)

− ψ(
βN (N − 1)Gm2

2λ
− 3)

)]

+ 1

β
ln

⎡
⎣4λ

βN (N−1)Gm2

2λ π
3
2

N ! cos π

(
3 − βN (N − 1)Gm2

2λ

)

×
(
N (N − 1)Gm2

2

)3− βN (N−1)Gm2

2λ
(

N

2m

)− 3
2

×β
3
2 − βN (N−1)Gm2

2λ �

(
βN (N − 1)Gm2

2λ
− 3

)]
. (4.4)

Pressure P is obtained using

PV = 2N

3
U. (4.5)

Thus:

PV = 2N

3

[
− 3

2β
+

βN (N−1)Gm2

2λ

β

(
1 + ln

βN (N − 1)Gm2

2λ

−π tan π

(
3 − βN (N − 1)Gm2

2λ

)

− ψ

(
βN (N − 1)Gm2

2λ
− 3

)) ]
(4.6)

and:

βPV = 2N

3

[
−3

2
+ βN (N − 1)Gm2

2λ

×
(

1 + ln
βN (N − 1)Gm2

2λ

−π tan π

(
3 − βN (N − 1)Gm2

2λ

)

−ψ

(
βN (N − 1)Gm2

2λ
− 3

))]
. (4.7)

The chemical potential μ is obtained using (Figs. 5, 6)

μ =
(

∂F

∂N

)
T

. (4.8)

Thus:

μ = 1

β

[
3

2N
+ ln N + (2N − 1)

βN (N−1)Gm2

2λ

N (N − 1)

×
(

1 + ln
βN (N − 1)Gm2

2λ

−π tan π

(
3 − βN (N − 1)Gm2

2λ

)

− 3
βN (N−1)Gm2

2λ

− ψ

(
βN (N − 1)Gm2

2λ
− 3

))]

(4.9)

and

βNμ =
[

3

2
+ N ln N + (2N − 1)

βN (N−1)Gm2

2λ

(N − 1)

×
(

1 + ln
βN (N − 1)Gm2

2λ

−π tan π

(
3 − βN (N − 1)Gm2

2λ

)

− 3
βN (N−1)Gm2

2λ

− ψ

(
βN (N − 1)Gm2

2λ
− 3

))]
.

(4.10)

5 Distribution function from Boltzmann statistics

The grand canonical partition function ZG can be defined as

ln ZG = βPV . (5.1)
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Fig. 5 State equation in terms of temperature with G = m = k = 1, and λ = 1/6
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Fig. 6 Chemical potential in terms of temperature with G = m = k = 1, and λ = 1/6

From chemical potential μ we find the fugacity z as

zN = eNβμ. (5.2)

The distribution function follows as

F(N ) = zNZ
ZG

. (5.3)

The distribution function follows as

F(N ) = 4λ
βN (N−1)Gm2

2λ π
3
2 NN

N ! cos π

×
(

3 − βN (N − 1)Gm2

2λ

)

×
(
N (N − 1)Gm2

2

)3− βN (N−1)Gm2

2λ

×
(

N

2m

)− 3
2

β
3
2 − βN (N−1)Gm2

2λ �(s − 3)

× exp

{
3

2
+ (2N − 1)s

(N − 1)

(
1 + ln

βN (N − 1)Gm2

2λ

−π tan π

(
3 − βN (N − 1)Gm2

2λ

)

− 3
βN (N−1)Gm2

2λ

− ψ

(
βN (N − 1)Gm2

2λ
− 3

))

−2N

3

(
−3

2
+ βN (N − 1)Gm2

2λ

×
(

1 + ln
βN (N − 1)Gm2

2λ

−π tan π

(
3 − βN (N − 1)Gm2

2λ

)

− ψ

(
βN (N − 1)Gm2

2λ
− 3

)))}
. (5.4)

In Fig. 7 we can see that distribution probability happen only
at the special temperatures. In another word, the curve of the
distribution function is very sharp. Note that the permitted
physical temperatures are those for which F(N ) > 0.

The temperature profile for the sample of ten clusters of
galaxies observed by Chandra telescope has been tabulated
[40,41]. The range is from 2.26 to 19.34 keV for ten clusters.
The distribution function as plotted in Fig. 7 in this obser-
vational range seems to show more positive peaks, thus in
agreement with the observational data available to us from
the Chandra Data.
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Fig. 7 Distribution function in terms of temperature with G = m = k = 1, and λ = 1/6

6 Tsallis statistical analysis of the non-local
gravitational interactions

We repeat the whole analysis using Tsallis statistics.
Tsallis q-exponential is defined as the distribution:

eq(x) = [1 + (q − 1)x]
1

q−1
+ . (6.1)

Or equivalently

eq(x) =
{

1 + (q − 1)x] 1
q−1 ; 1 + (q − 1)x > 0

0; 1 + (q − 1)x < 0.
(6.2)

7 Tsallis partition function for system in non local
gravity

Let’s consider the distribution 1
r = PV 1

r . Then 1
r |r=0= 0.

First we do the calculation in ν dimensions. Let q > 1. The
nonlocal potential energy for point mass is written as

(�i, j )nl = −Gm2

ri j
+ Gm2

λ
ln

(ri j
λ

)
. (7.1)

For large N number of galaxies one can write

(�i, j )nl = −N (N − 1)Gm2

2ri j
+ N (N − 1)Gm2

2λ
ln

(ri j
λ

)
.

(7.2)

Keeping in view the complicated procedure of solving inte-
grals in Tsallis statistics we use ln(1+ z) = z approximation
ln( λ

r − 1 + 1) = λ
r − 1

(�i, j )nl = −2
N (N − 1)Gm2

2ri j
+ N (N − 1)Gm2

2λ
. (7.3)

For the partition we have

Zν =
∞∫

−∞
dνx

∞∫

−∞
dν p

[
1 + (q − 1)β

(
N (N − 1)Gm2

r

−N (N − 1)Gm2

2λ
− Np2

2m

)] 1
q−1

+
. (7.4)

And evaluating the angular integral we obtain:

Zν =
[

2π
ν
2

�
(

ν
2

)
]2 ∞∫

0

rν−1dr

∞∫

0

pν−1dp [1 + (q − 1)β

×
(
N (N − 1)Gm2

r
− N (N − 1)Gm2

2λ
− Np2

2m

)] 1
q−1

+
.

(7.5)

Taking into account that:

1 + (q − 1)β

(
N (N − 1)Gm2

r
− N (N − 1)Gm2

2λ
− Np2

2m

)

> 0 (7.6)

should be:

r <
2(q − 1)βN (N − 1)Gm3λ

βN (N − 1)(q − 1)Gm3 + βN (q − 1)p2λ − 2mλ
.

(7.7)

We have then:

Zν =
[

2π
ν
2

�
(

ν
2

)
]2 ∞∫

0

pν−1dp

r0∫

0

rν−1dr

×
[

1 + (q − 1)β

(
N (N − 1)Gm2

r

−N (N − 1)Gm2

2λ
− Np2

2m

)] 1
q−1

. (7.8)

Evaluating the integral we arrive to the result:

Zν = 1

2

[
2π

ν
2

�
(

ν
2

)
]2

(2mλ)
− 1

q−1 [2(q − 1)βN (N − 1)Gm3λ)ν

×[βN (q − 1)λ)−
ν
2 [βN (N − 1)(q − 1)Gm3 − 2mλ] 3

2
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Fig. 8 Partition function in terms of temperature with G = m = k =
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×B

(
1 + 1

q − 1
, ν − 1

q − 1

)
B

(
ν

2
,
ν

2
− 1

q − 1

)
. (7.9)

After simplification we get the partition function in three
dimensions as

Z = 16

27
π3 (βNλ)− 3

2

(mλ)3 [βN (N − 1)Gm3λ]3

×[2βN (N − 1)Gm3 − 2mλ] 3
2 . (7.10)

Finally we have:

Z = 2
11
2 π3

27

(βNλ)− 3
2

(mλ)3 [βN (N − 1)Gm3λ]3

×[βN (N − 1)Gm3 − 3mλ] 3
2 . (7.11)

In Tsallis statistical analysis of the non local gravity we again
find no poles in the partition function and thus we again
emphasise on the fact that the non local gravity is a divergence
free model of gravity (Fig. 8).

8 Tsallis internal energy and specific heat of an
interacting system in non local gravity

We calculate the internal energy and specific heat to see the
other important properties of the system. We use:

Zν〈U〉ν =
[

2π
ν
2

�
(

ν
2

)
]2 ∞∫

0

pν−1dp

r0∫

0

rν−1dr

×
(

−N (N − 1)Gm2

r
+ N (N − 1)Gm2

2λ
+ Np2

2m

)

×
[

1 + (q − 1)β

(
N (N − 1)Gm2

r

−N (N − 1)Gm2

2λ
− Np2

2m

)] 1
q−1

. (8.1)
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Fig. 9 Mean energy in terms of temperature with G = m = k = 1,
and λ = 1/6. The blue line corresponds to N = 10 and the brown one
to N = 15

Then, proceeding in the same way as for the partition function
(Fig. 9), we obtain:

〈U〉 = N (N − 1)Gm2

2λ

+ 1

Z

{
2

13
2 π3

135

N (N − 1)Gm2

(mλ)3 (βNλ)−
3
2

×
[
βN (N − 1)Gm3λ

]2 [
βN (N − 1)Gm3 − 3mλ

] 5
2

−2
9
2 π3

135

N

m
× (βNλ)− 5

2

(mλ)3

[
βN (N − 1)Gm3λ

]3

×
[
βN (N − 1)Gm3 − 3mλ

] 5
2
}

. (8.2)

〈U〉 = 3

10

(
N (N − 1)Gm2

λ
− 3kT

)
. (8.3)

See black dash dotted line of Fig. 2.

Cv = −9k

10
. (8.4)

Figure 10 shows the specific heat. Again the specific heat
corresponds to a self-gravitating system. However, unlike
our Boltzmann statistic, an oscillating system, in this case
the system does not oscillate. Note that we have found a
new phenomenon that we have not yet been able to explain
convincingly. The specific heat of the system is independent
of N . The only explanation we have found so far is that for
this system, if we add more objects to it, the specific heat
corresponding to each of the objects increases in such a way
that the specific heat of the system remains constant. We leave
the treatment of this interesting problem to the consideration
of the scientific community.
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Fig. 10 Entropy of Tsallis statistics in terms of temperature with G =
m = k = 1, and λ = 1/6. The blue line corresponds to N = 10 and
the brown one to N = 15 The allowed physical temperatures are those
for which S > 0

9 Equations of state

Other thermodynamic properties are calculated using Tsallis
statistics are as under. Then, we can evaluate the entropy S
with the formula

S = ln 4
3
Z + Z− 1

3 β〈U〉. (9.1)

It can be rewritten in the form:

S = −3(Z −1
3 − 1) + Z− 1

3 β〈U〉 (9.2)

or equivalently:

S = 3 + (β〈U〉 − 3)Z− 1
3 . (9.3)

Thus:

S = 3 −
[

3β

10

(
3kT − N (N − 1)Gm2

λ

)
+ 3

]

×
⎡
⎢⎣16

27
[2βN (N − 1)2G2m5] 3

2

×
(

2
βN (N − 1)Gm2

2λ
− 1

) 3
2

⎤
⎦

− 1
3

. (9.4)

Behavior of the entropy illustrated by Fig. 7, which shows
that entropy is negative for higher temperature (Fig. 11).

The free Helmholtz energy is given by:

F = 〈U〉 − TS. (9.5)

Thus:

F = 3

10

(
N (N − 1)Gm2

λ
− 3kT

)

+T

[
3β

10

(
3kT − N (N − 1)Gm2

λ

)
+ 3

]
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2000

2000

4000

Fig. 11 Free energy in terms of temperature with G = m = k = 1,
and λ = 1/6. The blue line corresponds to N = 10 and the brown one
to N = 15
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Fig. 12 Equation of state in terms of temperature with G = m = k =
1, and λ = 3. The blue line corresponds to N = 10 and the brown
one to N = 15 The allowed physical temperatures are those for which
PV ≥ 0

×
⎡
⎢⎣16

27

[
2βN (N − 1)2G2m5

] 3
2

×
(

2
βN (N − 1)Gm2

2λ
− 1

) 3
2

⎤
⎦

− 1
3

− 3T . (9.6)

And the pressure P as:

P = N

V

2〈U〉
3N − 2

. (9.7)

Then:

P = N

V

6

10(3N − 2)

(
N (N − 1)Gm2

λ
− 3kT

)
. (9.8)

In Fig. 12 we can see equation of state in Tsallis statistics.
The parameter λ which is the basic nonlocality length

scale whose value has been discussed to be 3 ± 2kpc [45].
For the λ → ∞ the nonlocality as well as the effective dark
matter disappear. It has been shown that for galaxies the ratio
of baryonic diameter to dark matter must be above the fixed
nonlocal scale length [2].

123



  146 Page 10 of 11 Eur. Phys. J. C           (2021) 81:146 

10 Conclusion

It was well known that the Boltzmann partition function
of gravity could not be calculated because the integral that
defines it is exponentially divergent. In 2018 this problem
was solved by Plastino and Rocca [38,42,43] by using the
generalization of the dimensional regularization of Bollini
and Giambiagi [44,46,47]. This generalization was based on
the general quantification method of QFT’s [48–51] using
Ultradistributions of Sebastiao e Silva, also known as Ultra-
hyperfunctions [52–54]. In this paper we have shown that
the use of such a methodology is not necessary in the case
of a specific non-local theory of gravity. To calculate the
partition function, in this case, it is enough with a simple
analytical extension of an integral obtained by Gradshtein
and Rizhick and published in their famous “Table of Inte-
grals, Serias and Products” [39]. With this simple extension
we have shown that the result of the calculation of the par-
tition function is finite. This is a remarkable result expected
by the scientific community specialized in the treatment of
non-local theories of gravity. Even more remarkable is the
result of the calculation of the partition function, using the
Tsallis statistics. In this case the partition function is directly
finite using the Lebesgue–Stiejel integrals commonly used
in statistical mechanics. We have also calculated using both
statistics, the internal energy and the specific heat for this
model of gravity, obtaining a finite result. Finally we have
evaluated the thermodynamic functions and obtained the cor-
responding state functions. The oscillatory nature of parti-
tion function and the corresponding thermodynamics can be
interpreted on the same footing as oscillations of energy den-
sity explained as screening mechanism in condensed matter
physics called as Friedel oscillations [55] produced when
a positively charged impurity is inserted into a cold metal
and the same has been dubbed for the nonlocal effect pro-
duced by a gravitational impurity in the Minkowski vacuum,
which causes spatial oscillations what has been beautifully
named as gravitational Friedel oscillations [56]. These oscil-
lations make their presence in the thermodynamic proper-
ties of the system interacting in the nonlocal gravity. These
fluctuations might become observable in future as has been
stressed in other works [57,58]. The physical significance of
these oscillations is believed to be relevant, not only because
they are considered as spurious effects of higher derivative
theories of gravity at the Pauli–Villars regularization scale
which arise due to the presence of complex poles [57,59], but
also because they have been also shown to survive ghost-free
limit [60,61]. An aspect to be highlighted is the difference in
the predictions of the Boltzmann and Tsallis statistics. With
the first the system is oscillating and with the second it is
not.
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