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Abstract – We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that
admits exact time-dependent solutions of the power-law form e

i(kx−wt)
q , involving the q-exponential

function naturally arising within the nonextensive thermostatistics (ez
q ≡ [1+(1−q)z]1/(1−q), with

ez
1 = ez). These basic solutions behave like free particles, complying, for all values of q, with the

de Broglie-Einstein relations p = �k, E = �ω and satisfying a dispersion law corresponding to
the relativistic energy-momentum relation E2 = c2p2 + m2c4. The dissipative effects explored
here are described by an evolution equation that can be regarded as a nonlinear generalization of
the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear
Klein-Gordon equation, a nonlinear Schrödinger equation, and the power-law diffusion (porous-
media) equation. The associated dynamics exhibits physically appealing traveling solutions of the
q-plane wave form with a complex frequency ω and a q-Gaussian square modulus profile.

Copyright c© EPLA, 2016

Introduction. – The spatio-temporal behavior of a
wide family of physical systems and processes is described
by nonlinear partial differential equations [1–3]. This has
stimulated an increasing research activity on the dynamics
associated with a class of evolution equations that includes
nonlinear versions of the Schrödinger [3–5] and the Fokker-
Planck [6–12] ones. Our main focus here will be on a fam-
ily of telegraph-like equations describing dissipative effects
in the context of a recently advanced nonlinear Klein-
Gordon dynamics (NLKGD) [4] related to nonextensive
statistical mechanics and the associated nonadditive en-
tropies [13–15]. The free-particle nonlinear Klein-Gordon
equation proposed in [4] has a nonlinearity in the mass
term which, in contrast to what happens in the standard
linear case, is proportional to a power of the wave func-
tion Φ(x, t). The salient feature of the NLKGD introduced
in [4] is that it exhibits localized solutions where the space-
time dependence of the wave function Φ(x, t) occurs solely
through the combination x − vt. Consequently, one has a
space translation at a constant velocity v without change
in the wave function’s shape. These solutions are known as
q-plane waves and are compatible, for all values of q, with

the Planck and de Broglie relations, satisfying E = �ω and
p = �k, with E2 = c2p2 + m2c4. It was shown in [4] that
there is also a nonlinear Schrödinger equation (often re-
ferred to as the NRT Schrödinger equation) with a nonlin-
earity in the Laplacian term, that also admits q-plane wave
solutions, which are compatible with the nonrelativistic re-
lation E = p2/2m. Under Galilean transformations, the
q-plane wave solutions of the NRT Schrödinger equation
recover the transformations rules of the linear Schrödinger
equation [16]. The NRT equation satisfied by the q-plane
waves can be obtained from a field theory based upon an
action variational principle [17]. These properties suggest
that the q-plane wave solutions of both the nonlinear NRT
Schrödinger and the Klein-Gordon equations studied in [4]
can be regarded as a new field-theoretical description of
particle dynamics that may be relevant in diverse areas
of physics, including nonlinear optics, superconductivity,
and plasma physics [17,18].

As already mentioned, the dissipative nonlinear Klein-
Gordon dynamics that we are going to explore here is
described by a family of telegraph-like equations. The
standard telegraph equation constitutes a cornerstone of
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mathematical physics, with deep theoretical significance
and many applications [19–28]. Historically the telegraph
equation was first formulated to describe leaky electrical
transmission lines. In one dimension it has the form

1
c2

∂2Ψ
∂t2

− ∂2Ψ
∂x2

+ δ
∂Ψ
∂t

= 0. (1)

This equation corresponds to phenomena intermediate be-
tween wave propagation and diffusion. It can also be
regarded as a wave equation with a damping effect de-
scribed by the term having the first time derivative. It
admits a statistical interpretation in terms of a Poisson
process (dichotomous diffusion) associated with particles
that move with constant speed and change the direc-
tion of motion at random times [20–22]. It has profound
(and surprising) connections with quantum mechanics, be-
ing intimately related to the Dirac equation [21]. The
applications of the telegraph equation are diverse. We
can mention correlated random walks [19], tunneling pro-
cesses [23], diffusion phenomena in optics [24,25], and
cosmic-ray transport [26,27].

q-plane waves and nonlinear evolution equations.
– The q-plane waves arise naturally within a theoreti-
cal framework where the Boltzmann-Gibbs (BG) entropy
and statistical mechanics are generalized through the in-
troduction of a power-law entropic functional Sq charac-
terized by an index q (the BG entropy being recovered
in the limit q → 1). Recent progress along these lines
of enquiry includes, for instance, nonlinear extensions of
various important equations of physics and new forms of
the Central Limit Theorem [29]. The q-Gaussian distribu-
tions, which generalize the standard Gaussian distribution
and arise from the optimization of the q-entropy [13], or
as solutions of the corresponding nonlinear Fokker-Planck
equation [10], play a central role within these develop-
ments. They have found several interesting applications
to the analysis of recent experimental findings [14]. These
applications concern diverse physical systems including,
among others, i) cold atoms in dissipative optical lat-
tices [30]; ii) quasi–two-dimensional dusty plasmas [31];
iii) ions in radio frequency traps interacting with a buffer
gas [32]; iv) RKKY spin glasses, like CuMn and AuFe [33];
v) overdamped motion of vortices in type-II superconduc-
tors [7,9,34]. More generally, q-exponential distributions
have also been applied to several physical scenarios. As re-
cent examples we can mention the description of the trans-
verse momentum spectra in high-energy proton-proton
and proton-antiproton collisions [35], heat baths with a
finite number of effective degrees of freedom [36], univer-
sal financial [37] and biological [38] laws, among others.

Of the three nonlinear dynamical equations admit-
ting q-plane wave solutions advanced in [4] (the NRT
Schrödinger, and the q-nonlinear Klein-Gordon and Dirac
equations) the NRT Schrödinger equation is the one that
has been more intensively studied so far. Recent advances
along these lines are the investigation of an associated field

theory [17], of the effects of Galilean transformations [16],
of quasi-stationary, wave packet, and uniformly acceler-
ated solutions [5,39], and of its relation with the Bohmian
formulation of quantum mechanics [40].

The nonlinear Klein-Gordon dynamics introduced in [4]
is governed by the field equation

1
c2

∂2

∂t2

[
Φ(�x, t)

Φ0

]
−∇2

[
Φ(�x, t)

Φ0

]

+ q
m2c2

�2

[
Φ(�x, t)

Φ0

]2q−1

= 0, (2)

where �x ∈ R
d, ∇ =

(
∂

∂x1
, . . . , ∂

∂xd

)
is the d-dimensional

∇-operator, q ≥ 1 and the real, positive constant Φ0 leads
to correct physical dimensionalities for all terms (this scal-
ing becomes irrelevant only in the limit case of the linear
Klein-Gordon equation, that is, for q = 1). The constant
Φ0 constitutes a parameter characterizing the evolution
equation (2) itself (that is, it should not be regarded as
part of the initial conditions). The dynamical equation (2)
can be obtained within a classical field theory derived from
an appropriate Lagrangian variational principle [41].

The q-plane wave solutions of the field equation (2) are
given by a q-exponential function evaluated on a pure
imaginary argument, which corresponds to the principal
value of

expq(iu) = [1 + (1 − q)iu]
1

1−q ; exp1(iu) ≡ exp(iu), (3)

where u ∈ R. The basic relations satisfied by the above
function are [42]

expq(±iu) = cosq(u) ± i sinq(u),

cosq(u) = rq(u) cos
{

1
q − 1

arctan[(q − 1)u]
}

,

sinq(u) = rq(u) sin
{

1
q − 1

arctan[(q − 1)u]
}

,

rq(u) =
[
1 + (1 − q)2u2

]1/[2(1−q)]
. (4)

It is clear from eqs. (4) that a q-exponential with a pure
imaginary argument, expq(iu), exhibits an oscillatory be-
havior with a u-dependent amplitude rq(u). It can imme-
diately be verified that the function expq(iu) is of square
integrable type for 1 < q < 3, the concomitant integral
being divergent both for q ≤ 1 and q ≥ 3.

The d-dimensional q-plane wave solution of eqs. (2) is
given by

Φ(�x, t) = Φ0 expq

[
i(�k · �x − ωt)

]
, (5)

If we take into account that d expq(z)/dz = [expq(z)]q and
d2 expq(z)/dz2 = q[expq(z)]2q−1 we obtain, for the (d+1)-
dimensional d’Alembertian operator,[

1
c2

∂2

∂t2
−∇2

] (
Φ
Φ0

)
=

− q

[(ω

c

)2

−
(

d∑
n=1

k2
n

)](
Φ
Φ0

)2q−1

. (6)
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Using the above relation one verifies that the q-plane wave
ansatz (5) satisfies the field equation (2) if the frequency
ω and the momentum k satisfy ω2 = c2k2 + m2c4/�

2.
Making now, through the celebrated de Broglie and Planck
relations, the identifications �k → �p/� and ω → E/�, it
is clear that the q-plane waves are solutions of eq. (2)
satisfying E2 = c2p2+m2c4. That is, they comply with the
energy spectrum of a relativistic free particle for all values
of q. Therefore, eq. (2), together with its solution eq. (5),
constitute promising candidates for describing interesting
types of physical phenomena.

Generalized telegraph equation and nonlinear
Klein-Gordon dynamics with dissipation. – The
structure of the nonlinear Klein-Gordon equation in
d-dimensional space [4] comprises two parts: a term corre-
sponding to the linear (d + 1)-dimensional wave equation
plus a nonlinear mass term proportional to a power of the
wave function. Here we are going to introduce a family of
evolution equations endowed with a more general power-
law nonlinear term (that incorporates the one appearing
in the nonlinear Klein-Gordon as a particular instance)
that preserve the q-plane wave solutions of the NLKGD.

Let us consider the equation of motion,

1
c2

∂2

∂t2

[
Φ(�x, t)

Φ0

]
−∇2

[
Φ(�x, t)

Φ0

]

+ q
L∑

i=1

δi

[
Φ(�x, t)

Φ0

]α
(1)
i

(
∂

∂t

[
Φ(�x, t)

Φ0

])α
(2)
i

= 0, (7)

characterized by the (3L + 1) parameters q, δi, α
(1)
i , and

α
(2)
i , with i = 1, . . . , L. As in the case of the nonlinear

Klein-Gordon equation, the constant Φ0 guarantees the
correct dimensionalities of the different terms appearing
in (7). The parameters q, α

(1)
i , and α

(2)
i are dimensionless,

while the dimensions of the δi’s depend on the values of
the exponents α

(1)
i , and α

(2)
i . It can be verified after some

algebra that the evolution equation (7) admits solutions of
the q-plane wave form (from now on we adopt the notation
Ψ = Φ/Φ0),

Ψ = [1 + (1 − q)i(�k · �x − ωt)]
1

1−q , (8)

with q > 1, provided that the exponents α
(1)
i , and α

(2)
i

comply with the consistency relation,

α
(1)
i + qα

(2)
i = 2q − 1, i = 1, . . . , L. (9)

and the wave number vector �k is related to the frequency
ω through the dispersion relation,

−ω2

c2
+ k2 +

L∑
i=1

δi(−iω)α
(2)
i = 0, (10)

where k2 = �k · �k. Note that the parameters α
(1)
i and

α
(2)
i have to comply with (9) in order to have exact

q-plane wave solutions. Otherwise eq. (7) does not admit

this kind of dynamics and it is outside the scope of the
present work. Note, however, that even with these con-
straints, the problem still has (2L + 1) parameters, and
comprises, consequently, a rich variety of dynamical pos-
sibilities. The q-plane wave (8) constitutes a solution
of (7) for any q. However, we shall consider only q > 1,
yielding lim|�k·�x|→∞ |Ψ|2 = 0, while for q < 1 one has
lim|�k·�x|→∞ |Ψ|2 = ∞. In the case of L = 1, δ1 = m2c2/�

2,

and α
(2)
1 = 0 eq. (7) coincides with the nonlinear Klein-

Gordon equation proposed in [4] which, in turn, reduces to
the standard Klein-Gordon equation in the limit q → 1.
On the other hand, for L = 1, δ1 > 0, α

(2)
1 = 1, and

q → 1 the standard linear telegraph equation is recovered.
Other relevant equations are obtained as particular limit
cases of (7). For instance, the limit c → ∞ corresponds
to equations respectively equivalent to the NRT nonlinear
Schrödinger equation (for L = 1, δ1 pure imaginary, and
α

(2)
1 = 1) and to the porous-media equation (for L = 1,

δ1 real, q 	= 1, and α
(2)
1 = 1). In summary, it is clear

that several of the nonlinear differential equations of cur-
rent interest associated with the q-thermostatistical for-
malism, as well as their linear counterparts, are particular
instances of (7). This equation also comprises new dynam-
ical scenarios which, as we shall presently see, exhibit dis-
sipation effects. In particular, L = 2 with δ1 = m2c2/�

2,
and α

(2)
1 = 0 corresponds to the nonlinear Klein-Gordon

equation (2) with an extra term involving the first time
derivative of the field. Generically (that is, except for a
discrete set of particular values of δ2 and α

(1)
2 ) the as-

sociated dynamics shows dissipation. In what follows we
shall discuss general features of this dissipative dynam-
ics, which characterizes the last mentioned L = 2 case, as
well as more general instances of the generalized telegraph
equation (7).

We shall assume a wave vector �k with real components
(this choice can be regarded as a choice determining the
form of the initial form of the wave function at t = 0). The
frequency of the q-plane wave solutions is then determined
by solving the dispersion relation (10) for ω. In general
we are going to have a complex frequency,

ω = ωa + iωb, (11)

the imaginary part ωb corresponding to the dissipation ef-
fects implied by the evolution equation (7). Indeed, the
presence of a complex frequency arising from a dispersion
relation is the standard signature of dissipative behaviour
in processes described by partial differential equations
(see, for instance, [43]). It is worth stressing, however,
that the analysis of dissipation relations is usually done
in terms of standard, exponential wave solutions. In con-
trast, we are here dealing with dissipation within a dy-
namics based on power-law q-plane waves, a subject that
still remains largely unexplored. An interesting example
of this kind of process has been discussed in connection
with Landau damping in plasma oscillations [44].
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The qualitative features of the dynamics associated with
the q-plane wave solutions can be clarified by considering
the behavior of its squared wave function profile. We have,

|Ψ|2 = A
[
1 − (1 − q)(�x − �x0)TB(�x − �x0)

] 1
1−q , (12)

where

A = [1 + (1 − q)ωbt]
2

1−q ≡ (eωbt
q )2, (13)

�x0 =
ωat

k2
�k, (14)

and B is an L×L matrix with elements βij = (q−1)kikj/

[1 + (1 − q)ωbt]
2. In (12), following a standard notational

convention, (�x− �x0) is to be understood as a column vec-
tor, while (�x−�x0)T stands for the concomitant row vector.
We see that the squared modulus profile |Ψ|2 has the shape
of a multi-valuated q-Gaussian with both its center �x0 and
amplitude A being time dependent. The center �x0 (where
|Ψ|2 adopts its maximum value A) moves uniformly with
a constant velocity d�x0/dt = �kωa/k2. In the dissipative
case, corresponding to ωb < 0 (remember that we are con-
sidering q > 1), the amplitude A decreases according to
a q-exponential law. That is, we have, A = exp2

q(ωbt).
Equations (8) and (12) are written with respect to an ar-
bitrary Cartesian spatial reference frame. If we choose a
reference frame oriented in such a way that the x1-axis
points in the direction of the wave vector �k, then Ψ be-
comes independent of the remaining (d − 1) spatial coor-
dinates, and |Ψ|2 can be expressed in terms of one single
coordinate x = x1,

|Ψ|2 = A
[
1 − (1 − q)β(x − x0)2

] 1
1−q ≡ Ae−β(x−x0)

2

q ,
(15)

with A given by (13) and

β =
(q − 1)k2

[1 + (1 − q)ωbt]
2 . (16)

We see that in the dissipative case we have β → 0 when
t → ∞. That is, the q-plane wave solution becomes less
localized as it evolves. From now one, we are going to work
with a reference frame oriented as explained above, so
that we are going to consider an effective one-dimensional
problem.

An interesting special case is given by L = 2, α
(1)
1 =

2q − 1, α
(2)
1 = 0, δ1 = m2c2/�

2, α
(1)
2 = −1, α

(2)
2 = 2,

and δ2 = δ > 0. This case yields a nondissipative, time-
reversible dynamics. The dispersion relation is

−
(

1
c2

+ δ

)
ω2 + k2 +

m2c2

�2
= 0. (17)

This dispersion relation is consistent with the relativis-
tic energy-momentum relation with an effective velocity
of light c∗ = c√

1+δc2 < c and an effective mass m∗ =

m
√

1 + δc2 ≥ m. For zero rest mass (m = 0) we obtain
the evolution equation,

1
c2

∂2Ψ
∂t2

− ∂2Ψ
∂x2

+ δ̄
1
Ψ

(
∂Ψ
∂t

)2

= 0, (18)

where δ̄ ≡ qδ. This notation stresses the fact that the
structure of the above equation is q-independent. This
equation has the remarkable property of admitting q-plane
wave soliton-like solutions that propagate without chang-
ing shape and with constant velocity, for all values q > 1.
In contrast to what happens with the standard linear wave
equation, these q-plane waves are the only traveling solu-
tions of the form f(kx− ωt) admitted by (18). The effec-
tive velocity of these solutions is q-dependent and given

by cq = c/
√

1 + δ̄
q c2.

Conclusions. – We have explored dissipation effects
in the nonlinear Klein-Gordon field theory recently in-
troduced in [4]. These effects are described by a pa-
rameterized evolution equation constituting a nonlinear
generalization of the celebrated telegraph equation. This
equation incorporates as particular instances various non-
linear evolution equations that have recently received
increasing attention, such as the power-law diffusion equa-
tion (porous-media equation) and the NRT nonlinear
Schrödinger and Klein-Gordon equations (the last one
corresponding to the NLKGD). The linear Klein-Gordon
and telegraph equations are also recovered as particu-
lar limit cases. The nonlinear telegraph equation admits
q-plane wave solutions which are generically characterized
by a dispersion relation leading to complex frequencies. As
these solutions evolve, their square modulus profile pre-
serves a q-Gaussian shape with its center moving at a
constant velocity. However, when the frequency has a neg-
ative imaginary part, these solutions exhibit clear signs of
dissipative behaviour: the maximum value of the profile
decays in time according to a power law, and the solu-
tion becomes less localized. The decay in time is a basic
property also shared by the standard exponential plane
wave solutions associated with linear equations in dissipa-
tive regimes. However, the behaviour of the q-plane waves
is richer because they exhibit some degree of localization.
This allows us to determine how the maximum (center)
of the solution moves, and how its shape and degree of
localization change in time.

The q-plane wave solutions of the NRT nonlinear
Schrödinger equation, and of the nonlinear Klein-Gordon
equation without dissipation behave like solitons, in the
sense that they travel rigidly, at a uniform velocity, with-
out changing shape. In the case of a complex frequency
with negative imaginary part, the solutions of our nonlin-
ear telegraph equation lose the soliton-like character due
to the dissipative effects. They still move at a constant
speed, but the shape of the solution changes with time.
For special values of the parameters, however, dissipation
disappears and the soliton-like behavior is recovered. Of
special interest is a particular case, given by eq. (18). This
equation turns out to be q-independent. However, it ad-
mits q-plane waves solutions for all values of q. It would
be interesting to explore in more detail to what extent
the q-plane wave solutions of (18) are solitons. To this
aim, it would be necessary to investigate analytically or
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numerically the stability of these solutions, and whether
two of them traveling in opposite directions can survive
after a collision, retaining their original forms. It is worth
mentioning that these questions are still open also for
the q-plane wave solutions of both the NRT nonlinear
Schrödinger equation and for the nonlinear Klein-Gordon
equation without dissipation.

The nonlinear telegraph equation advanced here may
be useful for describing a variety of physical systems or
processes such as wave guides and electrical transmission
lines with nonlinear amplitude-dependent dissipation, and
nonlinear non-Poissonian dichotomous diffusion processes.
Any further developments concerning the aforementioned
theoretical issues, or dealing with possible applications of
the nonlinear telegraph equation, will be very welcome.
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