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ABSTRACT . The interest in non-linear impulsive systems (NIS) has been growing due to its impact
in application problems such as disease treatments (diabetes, HIV, influenza, among many others),
where the control action (drug administration) is given by short-duration pulses followed by time
periods of null values. Within this framework the concept of equilibrium needs to be extended
(redefined) to allows the system to keep orbiting (between two consecutive pulses) in some state
space regions out of the origin, according to usual objectives of most real applications. Although
such regions can be characterized by means of a discrete-time system obtained by sampling the
NIS at the impulsive times, no agreements have reached about their asymptotic stability (AS). This
paper studies the asymptotic stability of control equilibrium orbits for NSI, based on the underlying
discrete time system, in order to establish the conditions under which the AS for the latter leads to
the AS for the former. Furthermore, based on the latter AS characterization, an impulsive Model
Predictive Control (i-MPC) that feasibly stabilizes the non-linear impulsive system is presented.
Finally, the proposed stable MPC is applied to two control problems of interest: the intravenous
bolus administration of Lithium and the administration of antiretrovirals for HIV treatments.

1. INTRODUCTION

Hybrid systems (e.g., continuous-time dynamics, discrete-time dynamics, jump phenomena,
logic commands, and the like [20]) characterized by abrupt changes in at least one state variable
at certain time instants are called Impulsive Systems (IS) [28, 2]. It is well established that an IS
provides a natural and reliable framework for mathematical modeling and control of several human
diseases [24]. Such results have linked the impulsive behavior with the pills intake (or injection)
while the continuous-time counterpart with the pharmacokinetic i.e., absorption and distribution
in the organism of such drugs [3]. The dynamics of the Human Immunodeficiency Virus (HIV)
has become one of the most studied cases interpreted as an IS since the preliminary result [23].
Other meaningful biomedical problems are Influenza, Ebola [14], Malaria [4], Tumor-bearing [5]
and Type I Diabetes [1].

The presence of an impulse effect breaks down fundamental properties of classical dynamical
systems necessary to assess the stability [13]. Much of the literature in this regard has focused on
the stability of the origin because is the only formal equilibrium state [2, 28, 33], consequently
most of the existing control theory assumes the origin as a set-point [15, 6]. However, the control
goal in the treatments of the referred biomedical problems is to drive and maintain the system
inside a safe zone out of the origin, usually called therapeutic window [31]. Few studies attempted
to develop a general theoretical framework for the stability of such a regions. For instance, [30]
has linked the stability corresponding to the impulsive time instants with the stability of the IS,
however they impose quite restrictive conditions on the control law. Conversely, in [27] a general-
ized equilibrium set with nonzero set-points was proposed but the result is applicable to the linear
case only. To the best of authors knowledge, there is a faltering comprehension on how assessing
the stability of regions out of the origin for nonlinear impulsive systems.
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One of the contribution of this work is to provide a new perspective on stability of nonzero set-
points for constrained IS. The proposed framework allows to prove, by straightforward-methods,
that any stabilizer control law of the impulsive time instants can stabilize the free response of the
closed-loop impulsive system, and by a set-theoretic analysis it guarantees the feasability of every
continuous state between impulses. Besides an useful concept of strong-attractivity, that stands
for complementary analysis of several applied problems, is presented. Additionally, we design a
nonlinear control predictive strategy - based on the so called zone-MPC (see [10] and references
therein) - that feasible stabilize any desired region for the constrained impulsive system. Finally,
we illustrate the performance of the strategy by two biomedical applications: the regulation of
Lithium ions concentration in a body and the management of HIV treatment in order to maintain
an undetectable viral load.

The remaining of the paper is organized as follows: Section 2 introduces some preliminaries
concepts about autonomous systems. In Section 3 we present the impulsive control system and
the equilibria characterization, Section 4 establishes conditions for the feasibility of the impulsive
control system. In Section 5 we present the concepts and results about stability of IS. The control
strategy that stabilize the IS is formulated in Section 6. Finally, Section 7 shows some illustrative
examples while the concluding remarks are presented in Section 8.

2. PRELIMINARIES

2.1. Notation. First we introduce some basic notation. We considerN0 as the set of non negative
integers and Rd as d-dimensional Euclidean space equipped with the euclidean distance between
two points defined by d(x, y) := kx − yk = [(x − y)t(x − y)]1/2. The euclidean and Hausdorff
distance between two sets X and Y of Rd are given by d(X, Y ) := inf{d(x, y) :x ∈ X, y ∈
Y }and dH(X, Y ) = max supx∈X infy∈Y d(x, y), supy∈Y infx∈X d(x, y) , respectively. The
closed ball with center inx ∈ Rd and radiusε > 0is given byB(x, ε) := {y ∈ Rd : d(x, y) ≤ ε}.
Let Ω ⊂ Rn and x ∈ Ω, we say that x is an interior point of Ω if the there exist ε > 0such that
B(x, ε) ⊆ Ω. The interior of Ω is the set of all interior points of Ω and it is denoted by int Ω.
Finally, given a matrix A of size m × n we denote (as usual) with kAk2 the induced matrix
2-norm, i.e. the square root of the largest eigenvalue of the matrix A0A where A0 denotes the
conjugate transpose of A.

2.2. Autonomous systems. This paper will be based on an autonomous system described by the
following set of autonomous nonlinear first-order differential equations

(
ẋ(t) = f (x(t)), 0 < t < T,
x(0) = x0

(2.1)

where the state x takes values in Rn, t represents the continuous-time, x0 ∈ Rn is the initial
condition and T > 0 is a fixed period of time. As usual to ensure existence and uniqueness
of solution of system (2.1), we assume f is Lipschitz continue on a domain Ω. We denote with
φ(x0, t)the solution map (sometimes called the flow) of system (2.1) at timet with initial condition
x0.

Remark 2.1 (Lipschitz continuity of the solution). If f is a Lipschitz continuous function on Ω
it can be proved (using the equivalent integral equations and Gronwall’s inequality, cf. [7, 32])
that the solution map is locally Lipschitz continuous with respect to the initial condition, i.e. there
exists a constant C such that

kφ(x, t) − φ(y, t)k ≤ Ckx − yk,for all x, y ∈ Ωand t ∈ [0, T ]. (2.2)
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The smallest constant satisfying (2.2) is referred as the Lipschitz constant ofφ and is given by

Cφ := sup
t∈[0,T ]

sup
x,y∈Ω

kφ(x, t) − φ(y, t)k
kx − yk

. (2.3)

This regularity property of the solution will be useful in the proof of the main results of this work.

3. IMPULSIVE CONTROL SYSTEMS

The class of dynamic systems of interest in this paper consists in a set of nonlinear impulsive
control system (ICS) of the form



ẋ(t) = f (x(t)), t 6= tk, k ∈ N

x(tk) = x◦(tk) + Bu(tk−1), k ∈ N

x(0) = x0.

(3.1)

where the independent variable t ∈ R+ denotes time, tk := kT, for k ∈ N0 and T > 0 fixed,
denotes the impulse time instants, T > 0 the step size in time, x◦(tk) := limt→t −

k
x(t) denotes

the state at a time instant tk right before the impulse, x(t) ∈ X ⊂ Rn denotes the (constrained)
state vector, for all t ≥ 0, and u(tk) ∈ U ⊂ Rm denotes the (constrained) impulsive controls, for
all k ∈ N0. Both constraint sets, X and U, are assume to be compact convex sets, containing the
origin in their interior, while f (0) = 0. Matrix B ∈ Rn×m, which is the impulsive input matrix,
is assumed to be full rank.

Remark 3.1. System (3.1) is similar to the one reported in [27] but with a subtle difference.
According to the definition of x◦(tk), the discontinuity of the first kind that represents the state
jump occurs just before time tk, in such a way that x(tk) represents the state after the jump and
not before, as it is done in [27]. It is a technicality point but it is important since improves the
further definitions and simplifies the main results of the paper.

In case we have a fixed control law κ we obtain the following impulsive closed-loop system
(ICLS) 



ẋ(t) = f (x(t)), t 6= tk, k ∈ N

x(tk) = x◦(tk) + Bκ(x(tk−1)), k ∈ N

x(0) = x0,

(3.2)

where again more the restrictions are satisfied, i.e. x(t) ∈ X, for all t ≥ 0, and κ(x(tk)) ∈ U,
for all k ∈ N0. Note that x◦(tk) = φ(x(tk−1), T ), hence the above system can be associated to a
discrete-time closed-loop system (DCLS)

(
x(k) = φ(x(k − 1), T ) + Bκ(x(k − 1)),k ∈ N

x(0) = x0,
(3.3)

where x(k) ∈ Xd ⊂ X , for all k ∈ N0, κ(x(k)) ∈ U, for all k ∈ N0, and Xd is a compact
convex set that contains the origin in its interior. Note that system (3.3) is enough to characterize
the impulsive control system (3.2), at sampling times tk. System (3.3) is a sampled-data version
of the ICLS (3.2), when the sampling time is given by the impulsive time T , i.e. x(k) := x(tk).
This way, the DCLS is the natural way to discretize ICLS, in order to control it by means of
conventional discrete-time controllers, such as typical MPCs. In order to satisfy the state constraint
of system (3.2) between the jumps, the discrete-time constraint set Xd of system (3.3) must fulfill
some properties. Before addressing this point in Section 4, the following fundamental definitions
are given.
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Definition 3.2 (Orbit). Consider the Autonomous System (2.1). For any x ∈ X, the orbit of x is
given by the set

Ox := {φ(x, τ ) : τ ∈ [0, T ]}. (3.4)

Definition 3.3 (Feasibility set). Consider the ICS (3.1). The feasibility set, F X , is given by all the
points in X whose orbits are also contained in X , i.e.

F X := {x ∈ X : Ox ⊂ X }. (3.5)

Definition 3.4 (Control equilibria). Consider the ICS (3.1). A state xs ∈ FX is a control equilib-
rium point of the ICS (3.1) if there exists an input us = us(xs) ∈ Usuch that

xs = φ(xs, T ) + Bus.

The control equilibrium set Xs is the set of every feasible control equilibrium point, i.e.

Xs := {x ∈ FX : ∃u ∈ Us.t. x = φ(x, T ) + Bu}.

If xs is a control equilibrium point for the ICS (3.1) we say thatOs := Oxs is a control equilibrium
orbit for the ICS (3.1).

The concepts introduced in Definitions 3.2 and 3.3 are generalizations of the concepts presented
in [27], in the sense that they refer to any state in the feasible set X and not only to equilibrium
states. These generalizations shows to be critical for the developments that follows.

4. FEASIBILITY FOR IMPULSIVE CONTROL SYSTEMS

A well known problem of discrete-time systems coming from the sampling of continuous-time
ones is how to ensure the feasibility of the solutions of the latter by only imposing constraints
on the former [8, 29, 25]. In the case of ICS, this problem is even more difficult to overcome
because of the discontinuities in the state trajectories, and it remains still open, although some
control strategies were developed to formally tackle the problem [30]. In this work, the feasibility
problem (also denoted as the constraints satisfaction problem) is addressed by means of a set-
theoretic analysis.

A closed-loop system, DCLS (3.3) (or ICLS (3.2)), is called feasible if for any initial feasible
state x(0) ∈ X, all the successive states for DCLS (or all the state trajectories for ICLS), together
with the control actions, are also feasible, i.e., x(tk) ∈ X for k ∈ N0 (or x(t) ∈ X, for t > 0),
while κ(u(k)) = κ(u(tk)) ∈ Ufor k ∈ N0. So, the following proposition can be stated.
Proposition 4.1 (Inheritable feasibility). If F X is not empty and the constraint set Xd of the
DCLS (3.3) is such that Xd ⊆ F X then the feasibility of the DCLS (3.3) implies the feasibility
of the ICLS (3.2).

Proof. Let x(t) be the solution of the ICLS (3.2). For any t > 0there exist k ∈ Nand τ ∈ [0, T ]
such that t = kT + τ. Since DCLS (3.3) is feasible then x(k) ∈ Xd and u(k) ∈ U. By hypothesis
Xd ⊆ FX , so x(k) ∈ FX . From definition (3.5) of F X we have that Ox(k) ∈ X, i.e. φ(x(k), τ ) ∈
X , for all τ ∈ [0, T ]. Since x(t) = φ(x(k), τ )for t = kT + τ, the assertion follows.

Note that the non emptiness of F X depends overall on the size of the impulsive time T . If
the system is linear and the set polytopic, then there exists an effective method to compute F X
(cf. [18]). However, to the best of our knowledge, for the nonlinear case similar solutions do not
exist. Even more in the nonlinear context F X may not be a convex set. Nevertheless in the fol-
lowing proposition we provide a sufficient condition to guarantee the existence of a constructible
compact and convex set Xd ⊆ FX , in the general case.

Proposition 4.2. If there exists x∗ ∈ X such that its orbit O∗ (according to Definition (3.2))
satisfies that O∗⊂ int X, then there exists a constructible compact convex set Xd such that Xd ⊆
F X .
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Proof. For every t ∈ [0, T ]consider rt as the maximum radius such that a ball centered inφ(x∗, t)
is contained in X , i.e.

rt := max{r > 0 : B(φ(x∗, t), r) ⊆ X },

and consider r∗as the minimum for all t ∈ [0, T ], i.e.

r∗ := min
t∈[0,T ]

rt.

Since O∗⊂ int Xit is clear that r∗> 0. Let us define

Xd := B x∗,
r∗

Cφ
∩ X ,

where Cφ is the Lipschitz constant of φ given by 2.1. Note that we need to intersect the ball with
X because Cφ could be smaller than 1. Since Xd is the intersection of a closed ball with X , it is
immediate that it is compact and convex. On the other hand, by (2.2) for any xd ∈ Xd we have
that

kφ(xd, t) − φ(x∗, t)k ≤ Cφkxd − x∗k ≤ Cφ
r∗

Cφ
= r∗≤ rt,

for all t ∈ [0, T ].Then φ(xd, t) ∈ B(φ(x∗, t), rt) ⊆ X , for every t ∈ [0, T ]. So Oxd ⊂ X and by
definition (3.5) we get that xd ∈ FX . Therefore Xd ⊆ FX , and the assertion follows.

It is worth mentioning that in the examples of Section 7 we will use another strategy for the
construction of such a set since, although this approach fully guarantees the inclusion of Xd in
F X , it may be somewhat conservative depending on the magnitude of the Lipschitz constant Cφ.
We delve into this in the following remark.

Remark 4.3. In the nonlinear case we can estimate the Lipschitz constant Cφ by the following
upper bound

Cφ ≤ eT Cf , (4.1)
where Cf is the Lipschitz constant of f (cf. [32]). If f is differentiable we can bound Cf with the
Jacobian of f on X , specifically Cf ≤ max{kJf(x)k2 : x ∈ X }. In the linear case (i.e. f(x)=Ax)
this implies that Cφ ≤ eT kAk2. However, in this case, an upper bound considerably smaller than
eT kAk2 can be computed, by

Cφ ≤ keT Ak2 (4.2)
For instance, in the first example presented in Section 7.1 the bound given by (4.1) is134.37while
the second one given by (4.2) is 1.13(for T = 3).

In any case, it is clear that Cφ → 1 when T → 0 . Furthermore r∗grows to r0 when T → 0 ,
being r0 := max{r > 0 :B(x∗, r) ⊆ X }. So in the best case Xd is given by the largest ball
center in x∗contained in X .

5. STABILITY FOR IMPULSIVE SYSTEMS

The notion of stability for ICLS of nonzero set-points involves some challenges from the the-
oretical point of view, mostly due to the dual character of this type of systems. Although some
preliminary works (cf. [30]) dealt with this issue, they end up being unintuitive or considering
quite restrictive assumptions (see for example [30, Proposition 12 and 18]). This is so, mainly,
because the stability is defined for arbitrary invariant sets which, in turns, involves intricate defini-
tions in the case of ICS. Our proposal in some sense take a step back it considers first stability of
nonzero equilibrium orbits. This is why one of the major contributions of this work is to present a
simpler (but nontrivial) approach, meanwhile maintaining its effectiveness both in the theoretical
and the practical aspects.

The following definitions are the building blocks to prove the main theorem of the present paper.
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5.1. New perspective on stability. From now on let X ∗
s be a subset of the control equilibrium

set Xs and let us denote by O∗
s the beam of orbits associated with X ∗

s (see Figure 2), i.e.

O∗
s :=

[
{Oxs : xs ∈ X∗

s }.

Definition 5.1 (Stability for ICLS). A beam of orbits O∗
s associated with X ∗

s is stable for the
impulsive closed-loop system (3.2), if for all ε > 0there exist δ > 0such that if d(x(0), X∗

s ) < δ
then d(x(t), O∗

s) < ε, for all t ≥ 0,

Definition 5.2 (Attractivity for ICLS). A beam of orbits O∗
s associated with X ∗

s is attractive for
the impulsive closed-loop system 3.2 if there exists Ω ⊂ X such that for every x0 ∈ Ωand every
ε > 0there exists T = T (x0, ε) > 0such that d(x(t), O∗

s) < ε, for all t ≥ T.

Roughly speaking, what Definition 5.1 states is that: if a initial state x0 is close enough to a
subset X ∗

s of the control equilibrium set, then the closed-loop state remains arbitrarily close to
the beam of orbits O∗

s . On the other hand, Definition 5.2 states that: there exists a domain (of
attraction) such that if a initial state x0 belongs to such domain then the closed-loop state will
eventually be arbitrarily close to the beam of orbits O∗

s .

Remark 5.3. Definitions 5.1 and 5.2 (stability and attractivity for ICLS) are, in some sense, simi-
lar to Definition 4 of [30] or Definition 5 of [27] if we consider the setsY and Z or the sets X1 and
X2 as X ∗

s and O∗
s , respectively. However, our sets are particularized and explicitly linked. This

specificity of our definitions translates into better tools to achieve stability proofs. Furthermore
we do not require any explicit convexity assumptions on X ∗

s and O∗
s . Note that even when X ∗

s is
convex, in general, O∗

s is not.

Definition 5.4 (Asymptotic stability for ICLS). A set of equilibrium orbitsO∗
s associated with X ∗

s
is asymptotically stable for the impulsive closed-loop system (3.2), if it is stable and attractive.

5.2. Stability sufficient conditions. The following theorem states sufficient conditions for the
asymptotic stability of a beam of orbit (even when they do not include the origin), based on the
asymptotic stability of a subset of the control equilibrium set associated to the sampled discrete-
time system. Definitions of stability and attractivity for discrete-time system can be found in [26].

Theorem 5.5. If a subset of the control equilibrium setX ∗
s is asymptotically stable for the discrete-

time closed-loop system (3.3), then the beam of orbits O∗
s associated with X ∗

s is asymptotically
stable for the impulsive closed-loop system (3.2).

Proof. First we will prove stability. Let ε > 0, since X ∗
s is stable for the discrete system (3.3),

given ε1 = ε/Cφ there exists δ1 > 0such that

if d(x0, X∗
s ) < δ1 then d(x(k), X∗

s ) < ε/Cφ,

for all k ∈ N. Thus for each k ∈ N there exists xk
s ∈ X∗

s such that d(x(k), xks) < ε/Cφ. Then,
considering that φ satisfies (2.2), we obtain

kφ(x(k), t) − φ(xks , t)k ≤ Cφkx(k) − xksk < ε,for all t ∈ [0, T ]. (5.1)

Hence d(Ox(k), O∗
s) ≤ d(Ox(k), Oxk

s
) < ε, for all k ∈ N. Therefore O∗

s is stable for the impulsive
closed-loop system (3.2).

Secondly we will prove attractivity. Let ε > 0 , since X ∗
s is attractive for the discrete sys-

tem (3.3), then there exists Ω ⊂ X such that for every x0 ∈ Ω there exists K = K(x 0, ε) ∈ N
such that d(x(k), X∗

s ) < ε/C φ, for all k ≥ K . Following the same argument as before we get
that d(Ox(k), O∗

s) < ε, for all k ≥ K . Therefore O∗
s is attractive for the impulsive closed-loop

system (3.2).
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x(k)

x◦(k)

Ox(k)

Xs

X ∗
s

x∗
0

Ox∗
0

FIGURE 1. Atractivity vs. strong attractivity. On the left we see that the discrete-
time closed-loop state x(k) converges to X ∗

s but not to any specific point, as a
consequence the associated orbits Ox(k) do not converge to any specific orbit of
the beam of orbits. On the right we observe the opposite, obtaining that Ox∗

0
is

the limit in the sense of the Hausdorff distance of the orbits Ox(k) .

According to the foregoing result every control strategy capable to steer the DCLS (3.3) to a
subset X ∗

s of the control equilibrium set, will be able to stabilize the beam of orbitsO∗
s associated

for the ICLS (3.2). But note that Definition 5.2 (attractivity) requires that the closed-loop state
must be close to O∗

s , but no qualitative behavior of the trajectory is mentioned, i.e. it could be
close but in an erratic way (see Figure 1, left). This situation is sufficient in many cases, such as
the biomedical applications mentioned in Section 1 where the goal is just to maintain the system
inside a safe zone called therapeutic window (see also the examples treated in Section 7). However
a more predictable behavior could be mandatory in some other applications, such as [19], where
a limit orbit is expected (see Figure 1, right). The following subsection is intended to cover those
potentially interesting application cases where a more simple and periodic performance is desired.

5.3. Further stability definitions for ICLS. The following definition presents a stronger attrac-
tivity concept, that can be shown, as will be stated in Corollary 5.9, when the discrete-time closed-
loop system 3.3 converge to an equilibrium point.

Definition 5.6 (Strong attractivity for ICLS). A beam of orbits O∗
s associated with X ∗

s is strongly
attractive for the impulsive closed-loop system (3.2), if there exists Ω ⊂ X such that for every
x0 ∈ Ωthere exists an equilibrium pointx∗

0 ∈ X∗
s and every ε > 0there exists K = K(x 0, ε) ∈ N

such that d (φ(x(tk), τ ), φ(x∗0, τ )) < ε, for all τ ∈ [0, T ]and for all k ≥ K .

Note that, as expected, the strong attractivity implies the attractivity of Definition 5.2. Even
more, the strong attractivity entails that the orbits Ox(tk ) converge uniformly to the (limit) orbit
Ox∗

0
in the sense of the Hausdorff distance (see Figure 1).

Definition 5.7 (Strong asymptotic stability). A beam of orbits O∗
s associated with X ∗

s is strongly
asymptotically stable for the closed-loop system (3.2), if it is stable and strongly attractive.

As stated in the next result, strong asymptotic stability can be easily derived for impulsive
closed-loop systems with just the following extra assumption.

Assumption 5.8. For eachx0 in the domain of attraction of the discrete-time closed-loop system
there exists an equilibrium point x∗

0 ∈ X∗
s to which the closed-loop state converges.

Corollary 5.9 (Strong asymptotic stability for ICLS). If a subset of the control equilibrium setX ∗
s

is asymptotically stable for the discrete-time closed-loop system (3.3) and satisfies Assumption 5.8,
then the beam of orbits O∗

s associated with X ∗
s is strongly asymptotically stable for the impulsive

closed-loop system (3.2).
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Proof. The proof follows the same arguments of the proof of Theorem 5.5 replacing xk
s by x∗

0
in (5.1).

Remark 5.10. It is worth mentioning that the definitions and results presented in this section can
be easily extended to the case where the subset X ∗

s is remaintaind by a general control invariant
set and O∗

s by the beam of orbits associated to that invariant. However, since the construction of
control invariant sets for impulsive systems is hard and still open problem (see [30, Section IV-B
and C]) we prefer to focus our work on control equilibrium subsets.

The next section is focused on the design of a Model Predictive Control that explicitly consid-
ers input and state constraints such that the feasibility and stability of the states during the free
response is achieved.

6. CONTROL STRATEGY

In the context of stability of nonzero set-points for nonlinear impulsive control systems there
are several control strategies that have proven to be useful. Particularly, the predictive control
formulation knowing as zone MPC was widely used to stabilize equilibrium regions instead a
single set-point (see [12, 11] and the references within it). Moreover, such strategy was previously
adjusted for the linear impulsive system framework [27].

In this section a zone MPC formulation is presented to stabilize the nonlinear impulsive sys-
tem (3.2). Firstly, let us consider a target region not containing the origin, X ∗ ⊆ X , and the
following target equilibrium set.

Definition 6.1 (Target equilibrium set). Consider the ICLS (3.2). The target equilibrium set X ∗
s is

given by all control equilibrium points inside the target setX ∗such that associated bean of orbits
belongs to X ∗, i.e.

X ∗
s = {xs ∈ Xs : Os ⊂ X∗} (6.1)

Let us consider the following assumption.

Assumption 6.2. The target equilibrium set X ∗
s is assumed to be nonempty.

If Assumption 6.2 is not met, the control problem is not well-posed, meaning that it is not
possible - by means of any control strategy- to maintain the impulsive system within the target
region X ∗. To overcome this issue, in [27, Remark 2] a discussion about the relationship between
the existence of X ∗

s and the length of the selected time period T was made. The study considers a
maximal value ofT := Tmax, such that Assumption 6.2 holds, and a minimum value ofT := Tmin
to represent practical requirements (limitations on the frequency of impulses). In practice we
suggest to check if the condition Tmin ≤ Tmax is fulfilled, otherwise the control problem would
not be well-posed.

Consider a control horizon N ∈ N, a current state x ∈ Xd and the following cost function

J N (x; u, xs, us) =
N−1X

j=0

kxj − xsk2
Q + kuj − usk2

R + γ(dX ∗
s
(xs) + dU∗

s
(us)), (6.2)

with u ∈ UN , xs ∈ X and us ∈ U representing the optimization variables. Functions dX ∗
s
(xs)

and dU∗
s
(us) stand for the euclidean distance between points and sets, where U∗

s ⊂ U is the set of
admissible inputs necessary to maintain every xs ∈ X∗

s in its stationary position. The predicted
inputs and states are given by u = {u0, · · · , uN−1} and xj+1 = φ(xj , T ) + Buj respectively,
with x0 = x and j = 0, · · · , N − 1. The matrices Q and R are positive definite, γ is a positive
constant, while xs and us are auxiliary reference variables forced to be an equilibrium pair.
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Given a time instant k and the current state x = x(k) ∈ Xd, the optimization problem to be
solved is given by

min
u,xs ,us

J N (x; u, xs, us) (6.3)

s.t. x0 = x,

xj+1 = φ(xj , T ) + Bu(j),j = 0, 1, · · · , N − 1,

xj ∈ Xd, uj ∈ U, j = 0, 1, · · · , N − 1,

xs ∈ X ,us ∈ U, (6.4)
xs = φ(xs, T ) + Bus.

xN = xs,

The control law derived from the application of the receding horizon control policy is given
by κMPC(x) = u 0(0; x), where u0(0; x)is the first element of the optimal sequence u0(x) =
{u0(0; x(k), . . . , u0(N − 1; x(k)}.

In the following lemma, feasibility and stability of the discrete-time closed-loop system are
proven.

Lemma 6.3. Consider the discrete-time closed-loop system (3.3), with κ = κ MPC. Then, the
optimization problem (6.3) is recursively feasible for all real instantk and the control equilibrium
set X ∗

s is asymptotically stable.

Proof. The proof follows the usual steps of asymptotic stability of constrained nonlinear MPC
with artificial variables and equality terminal constraint (the details can be seen in the review
[17]).

The next result states the asymptotic stability of the impulsive closed-loop nonlinear system
(3.2).

Theorem 6.4. Consider the impulsive closed-loop system (3.2), with κ = κMPC. The constraint
x(t) ∈ Xis fulfilled for all t ≥ 0and the beam of orbitsO∗

s associated with the target equilibrium
set X ∗

s is asymptotically stable.

Proof. From the constraint x(k) ∈ Xd for all k ∈ N presented on the optimization problem
(6.3) along with the result stated on Proposition 4.1, the feasibility of the continuous-time states
x(t) ∈ X follows. On the other hand, Theorem 5.5 and the result on Lemma 6.3 establish the
asymptotic stability of the beam of orbits O∗

s associated with X ∗
s .

Remark 6.5. According to the reports on stability in the zone MPC framework, the closed-loop
discrete-time system (3.3) converges to the target set X ∗

s (as was established on Lemma 6.3), but
there is no guarantee that it converges to a single point within the target set X ∗

s . So, nothing can
be stated about strong asymptotic stability (Definition 5.7) for the impulsive system. However, if
we assume that the target set X ∗

s is a single equilibrium point, the strong stability can be ensured.

7. ILLUSTRATIVE EXAMPLE

In this section, two examples will be presented to test the proposed controller. The first one is
a linear system that corresponds to the distribution of lithium in the human body and the second
one is a nonlinear system that represents the HIV dynamics.

7.1. Lithium Ions Distribution. In [9] a physiological pharmacokinetic model based on experi-
mental data, which describes the distribution of Lithium ions in the human body upon oral admin-
istration, is provided. The system state vector is given by x(t) = CP (t) CRBC (t) CM (t) ,
where CP (t) is the concentration of plasma (P), CRBC (t) is the concentration of the red blood
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cells, and CM (t) is the concentration of muscle cells (M). All these concentrations are given in
nmol/L. The input u is given by the amount of the dose, in nmol. The administration period is
fixed to T = 3hr. The dynamics of the drug distribution is described by

dx(t)
dt

=



−0.61370.1835 0.2406
1.2644 −0.8 0
0.2054 0 −0.19


 x(t) (7.1)

∆x(t) = 10.9 0 0 0u. (7.2)

The state and input constraints are given by X = {x: 0 0 0 ≤ x ≤ 2 1.2 1.2} and
U = {u : 0 ≤ u ≤ 5.95}, respectively. The state therapeutic window is defined by X ∗ =
{x : 0.4 0.6 0.5 ≤ x ≤ 0.6 0.9 0.8}, as it is described in [9] and [30]. The drugs
concentration within the boundaries of X guarantees the effectiveness of the therapy. Figure 2
shows the therapeutic window set X ∗ (green), the control equilibrium target set X ∗

s with some
target orbits Ox∗, and discrete feasible set X ∗

d (blue). This one is a convex set such that for all
x0 ∈ X∗it is satisfied that φ(x0, t) ∈ X∗s for all t ∈ [0, T ].

The MPC controller used is presented in Section 6 and tacking into account [27] is tuned as:
N = 5, Q = diag(1 1 1 ), R = 2, and γ = 100. In order to observe the dynamic performance
of the system, it is considered two starting point x1

0 = 0.2 0 0 and x2
0 = 1.579 0 0 .

The results of the simulation are presented in Figures 3 and 5. In particular, Figure 3 shows
the state space evolution, the constraint set X (red), the therapeutic window set X ∗ (green), the
control equilibrium target set X ∗

s , and discrete feasible set Xd (blue).
Concerning the latter, in Proposition 4.1 we present a strategy to construct a compact convex

set Xd contained in F X valid for the general case. As mentioned in Remark 4.3 that approach it
may be somewhat conservative depending on the magnitude of the Lipschitz constant Cφ. Then
here we are going to present a simpler construction that remains valid for the linear case due to the
convexity of the solution functionφ. Idea of the construction:

1. Mesh the domain X and discretize the time interval [0, T ].
2. Select all the points x in the domain mesh that etAx remain in X for all t in the partition.
3. Make the convex hull of those select points.

The last step it is correct because the solution function φ(x, t) = etAx is convex and X is convex.
It is important to note that the state trajectory converge to X ∗as the discrete system tends to a

control equilibrium point x∗∈ X∗
s determined by the i-NMPC controller. In Figure 4 it is can see

a zoom of the graph in the neighborhood of the control equilibrium for the initial state x1
0. Note

how by controlling the discrete system, it is directed to a control equilibrium point x∗ while the
free response converges to the target orbit Ox∗, represented in red.

Figure 5 shows the state and input time evolution for both initial states. As it is desired, each
state is steered to its corresponding therapeutic window. Besides, for the initial state x1

0 the input
makes the main effort first and, after its settling time, it remains constant at the desired control
equilibrium value. Notice that both, states and inputs, are feasible at any time.

7.2. HIV Infection Dynamics With Treatment. The Human Immunodeficiency Virus (HIV)
acts by attacking the immune system, causing its progressive failure over time and its collapse
after years (when no treatment is administered).

Several nonlinear models have been developed to describe the dynamics of HIV-1 virus which
take into account the kinetics of HIV infection with different cells populations. The virus works
by infecting CD4-T cells and its spread can be divided into three stages. The first is called the
acute stage of HIV infection. In the first days of infection, the virus multiplies rapidly. The spread
of the virus activates the immune system to fight the infection. This leads, after a period of 12 to
15 weeks, to the suppression of the spread of the virus and the stabilization of the immune system.
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FIGURE 2. Therapeutic window set X ∗ (green), equilibrium set X ∗
s and targets

orbit set Ox∗ (red), and set X ∗
d (blue).

FIGURE 3. Closed-loop system evolution starting from x1
0 and x2

0.

The second is the clinical latency stage, also called chronic HIV infection. During this stage there
is a balance between healthy CD4 + cells and viral load, so the virus is still active but is suppressed
by the immune system and reproduces at very low levels. This stage can last up to 10 years for
patients not taking medications and up to many decades for patients receiving antiretroviral therapy
correctly. Finally, over time, through chronic deterioration, the immune system weakens and
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FIGURE 4. Zoom window. It shows the therapeutic window, X ∗(green) and the
equilibrium set with the target orbit, Ox∗ (red).
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FIGURE 5. Evolution of the states CP , CRBC and CM , and the control input u.
In black line the time evolution for the initial state x1

0 and in blue line for the
initial state x2

0. In red dashed line the limits of the therapeutic window.

becomes vulnerable, which makes the individual vulnerable to opportunistic infections, producing
the final stage of HIV infections, the Acquired Immuno Deficiency Syndrome (AIDS).

Different models can be constructed that describes the effect of HIV on the immune system by
considering the interactions between healthy CD4 + T cells, infected CD4 + cells, and viral load.
However, for control and parameter estimation based on clinical data purposes, the dynamics of the
infection can be modeled by relatively simple ordinary differential equations for the interactions
of healthy CD4 + cells ( Tc), infected CD4 + cells ( y), free viruses ( z) [21]. In this paper, the
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‘3-D HIV model’ (defined by Tc; y; z) presented in [22] is considered. This model describes
the virus infection dynamics and incorporates the interaction of the intake of drugs (w, u)and
its concentration in blood according to the notions of pharmacokinetics and pharmacodynamics
described in [16]. The complete impulsive model is given by




Ṫc(t) = s − δTc(t) − βTc(t)z(t)
ẏ(t) = βT c(t)z(t) − µy(t)

ż(t) = 1 −
w(t)

w(t) + w50
ky(t) − cz(t)

ẇ(t) = −K ww(t)
w(τ+

k ) = w(τ k) + u(τk), k ∈ N

where Tc represents the concentration of healthy CD4 cells [cell/mm3] which are produced from
the thymus at a constant rate s [cell/mm3 · day]and die with a half life time equal to 1/δ [day].
The healthy cells are infected by the virus at a rate proportional to the product of their population
and the amount of free virus particles. Constant β [ml/copies · day]indicates the effectiveness
of the infection process. The infected CD4 cells (y) result from the infection of healthy CD4 cells
and die at a rate µ [1/day]. Free virus particles (z) are produced from infected CD4 cells at a rate
k [copies/cells · mm3· ml · day]and die within a half life time equal to1/c [day]. The parameters
of the model (taken from [22]) are: s = 10, δ = 0.02, β = 2.4 · 10−5 , µ = 0.24, k = 100,
c = 2.4, K w = 5.3[day].

The so-called basic reproduction number (i.e., the coefficient describing the secondary infec-
tions produced by an infected cell) is given byR 0 := βks

µcδ, and it is assumed to beR > 1, to prop-
erly describe the spread of the virus in an infected host. Under conditionR > 1, the control system
(7.2) without any treatment (i.e., with u(t) ≡ 0) has two equilibrium points, one unstable, given
by xh := (sδ, 0, 0)(healthy equilibrium) and one stable, given by xe(k) := (µc

βk , s
µ − cδ

βk , sk
cµ − δ

β )
(endemic equilibrium).

The pharmacokinetics and pharmacodynamics phases of the drug administration are related to

w (the amount of drug in the body at time t) and η =
w(t)

w(t) + w50
(the efficacy of an anti-HIV

treatment), where w50 is the concentration of drug that lowers the viral load by 50% and in this
case we considersw50 = 50[mg]. Although a cocktail of drugs is generally used, in this simulation
only Zidovudine therapies will be considered.

The selected intake period is T = 0.5 [day]. The state and input constraints are imposed
as X = {x: 0 0 0 0 ≤ x ≤ 1200 100 3000 1000} and U = {u : 0 ≤ u ≤
610}, respectively. The state window target is defined by X ∗ = {x : 900 0 0 0 ≤ x ≤
1000 5 250 650}. The control goal is to steer the system from the endemic equilibrium to

a healthy zone defined by X ∗. The anti-HIV treatment is considered successful if both, z is below
the threshold of 50 [copies/ml]and TC is no lower than 900 [cell/mm3].

The MPC controller is tuned as: N = 10, Q = 5, R = 1, and γ = 5 · 105. In order to test
the controller, starting from the initial state x0 = [240, 63.33, 2639, 0]. At this point, the patient
is in stage two of the disease, i.e in the clinical latency stage. Treatment begins 20 days after the
patient is in this second stage. The results of the simulation are presented in Figures 6 and 7. In
particular, Figure 6 shows the state space evolution, the constraint set X (in red), the therapeutic
window X ∗ (green) and the discrete feasible set Xd (blue). As it is desired, the system is steered
to therapeutic window. In the right zoom figure, it can be seen in red line part of the equilibrium
set and in black solid line how the system tends to the orbit. Figure 7 shows the time evolution
of the states Tc(t), y(t), z(t) evolution. On the right, it can be seen a zoom of the graphs which
shows how each state is remains into the corresponding therapeutic window.
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FIGURE 6. Closed-loop system evolution starting fromx0. The therapeutic target
set is represented by the green box.
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FIGURE 7. Time evolution of the states Tc(t), y(t)and z(t).

8. CONCLUSION

In this work we have presented a simpler (but nontrivial) approach to the notion of stability
and attractivity of nonzero set-points for impulsive closed-loop system. Furthermore, we also
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introduced a new concept of strong attractivity that embrace potentially interesting application
cases where a smoother performance of the controller is expected near the target. Thanks to all
these new definitions we were able to establish sufficient conditions under which the asymptotic
stability of a subset of the control equilibrium set associated to the sampled discrete-time system
leads to the asymptotic stability for the beam of orbits associated to that subset (even when they
do no include the origin).

Based on the latter asymptotic stability characterization, we presented a zone Model Predictive
Control (zMPC) that feasibly stabilizes the non-linear impulsive system. The feasibility problem
was addressed theoretically providing a minimal condition to guarantee the existence of a con-
structible set that ensures the feasibility of the solutions of the continuous-time system by only
imposing such set as a constraint on the discrete-time system.

Finally, the proposed stable zMPC was applied to two control problems of interest: the intra-
venous bolus administration of Lithium (linear case) and the administration of antiretrovirals for
HIV treatments (nonlinear case). As it was anticipate by the theoretical results, each state was
steered to its corresponding therapeutic window.

Future works include an exhaustive study of the construction of control invariant sets for im-
pulsive systems to extend our result to the case where the target set is replaced by this type of sets.
They will also include improvements in the algorithms to maintain the feasibility during the free
response.
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