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The worldwide increase in the incidence of diabetes, the increase in type 2 diabetes in women at reproductive
ages, and the cross-generation of the intrauterine programming of type 2 diabetes are the bases for the growing
interest in the use of experimental diabetic models in order to gain insight into the mechanisms of induction
of developmental alterations in maternal diabetes.

In this scenario, experimental models that present the most common features of diabetes in pregnancy are
highly required. Several important aspects of human diabetic pregnancies such as the increased rates of spon-
taneous abortions, malformations, fetoplacental impairments, and offspring diseases in later life can be ap-
proached by using the appropriate animal models. The purpose of this review is to give a practical and critical
guide into the most frequently used experimental models in diabetes and pregnancy, discuss their advantages
and limitations, and describe the aspects of diabetes and pregnancy for which these models are thought to be
adequate. This review provides a comprehensive view and an extensive analysis of the different models and
phenotypes addressed in diabeticanimals throughout pregnancy. The review includes an analysis of the surgical,
chemical-induced, and genetic experimental models of diabetes and an evaluation of their use to analyze early
pregnancy defects, induction of congenital malformations, placental and fetal alterations, and the intrauterine

programming of metabolic diseases in the offspring’s later life. (Endocrine Reviews 31: 680-701, 2010)
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l. Introduction

aternal diabetes constitutes an unfavorable environ-

ment for embryonic and fetoplacental develop-

ment. Despite current treatments, pregnant women with
either type 1 or type 2 diabetes are at increased risk of
miscarriage, stillbirth, congenital malformations, placen-
tal abnormalities, and intrauterine malprogramming (1-
7). Because gestational diabetes is induced after the organo-
genic period, there are no risks for early embryo defects or
congenital malformations unless the woman presents un-
diagnosed pregestational diabetes; however, the feto-
placental impairments and intrauterine programming

Abbreviations: BB, Bio-breeding; GK, Goto Kakizaki (rat); Glut, glucose transporter; NOD,
nonobese diabetic; PGE,, prostaglandin E,.
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TABLE 1. Experimental models in diabetes and pregnancy

Type of experimental model Animal species Phenotype Refs.
Surgical method

Partial pancreatectomy Rats, sheep Mild diabetes 14,15, 243
Chemical methods

Streptozotocin administration Rats, mice, rabbits, sheep Mild/severe diabetes 22,52,128, 131, 239, 266, 267

Alloxan administration Rats, mice, rabbits, sheep, swine Mild/severe diabetes 20, 21, 83,176, 197, 268
Genetic models

NOD Mice Mild/severe diabetes 38, 84, 162

BB Rats Severe diabetes 149, 249

GK Rats Mild diabetes 44, 184

Cohen Rats Mild diabetes 269

Akita Mice Mild diabetes 46

Db/+ Mice Mild diabetes 224

Listed references are examples of the literature findings and not a complete list.

of diseases in the offspring’s later life induced by ges-
tational diabetes are similar to those induced by type 1
and type 2 diabetes (8).

A classification of the existing diabetic experimental mod-
els is difficult because there are obvious differences between
the etiology of the human disease and that of each experi-
mental diabetic model, as detailed in the following sections.
Nevertheless, in both diabetic patients and diabetic experi-
mental models, the degree of pancreatic B-cell dysfunction
and insulin resistance determines the degree of maternal met-
abolic disbalance, and thus the severity of the complications
in diabetes and pregnancy (9, 10).

A similar picture of the complexity of the human diabetic
disease is present in the experimental models of diabetes.
Indeed, the diabetes and pregnancy experimental models can
present a broad range of hyperglycemia, can either lead or
not lead to alterations at the earliest stages of pregnancy, can
show different rates of embryo resorption and malformations,
can present microsomic or macrosomic fetuses, and can either
affect or not affect the offspring’s health later in life.

Although several review articles have analyzed the dif-
ferent animal models of diabetes available (9, 11, 12),
different aspects arise and should be taken into account
when the pregnant state is evaluated in diabetic animals.
This comprehensive review details the maternal diabetes-
induced alterations in different diabetic animal models
throughout pregnancy.

The purpose of this review is to give a practical and critical
approach to the most frequently studied animal models of
diabetes, with emphasis on the aspects of diabetes and preg-
nancy for which these models are thought to be appropriate.

Il. Methods in Experimental Diabetes
and Pregnancy

When the matter of interest requires the use of an exper-
imental model of diabetes in pregnancy, the first decision is
to choose a useful model. This section will describe the basic

characteristics of the most frequently used models in diabetes
and pregnancy, whereas the following sections will guide the
choice of adequate experimental diabetes and pregnancy
models and will detail how these models have been used to
address anomalies during early gestation, congenital malfor-
mations, placental and fetal alterations, and intrauterine pro-
gramming of diseases in the offspring’s later life.
Experimental models of diabetes and pregnancy can be
obtained by surgical procedures, chemical induction, or the use
of spontaneous or genetically derived animal strains (Table 1).

A. Surgical models in diabetes and pregnancy

Although pancreatectomy in dogs led to the discovery
of insulin (13), most experimental models are precluded to
rodents for ethical, economic, and practical reasons. Par-
tial pancreatectomy in rats and mice leads to a diabetic
model compatible with the pregnant state (14, 15). This
model has been used to study uterine dysfunction and em-
bryonic and fetoplacental alterations in mild maternal di-
abetes (Table 2). The basis of this model is the removal of
most pancreatic tissue (95% of weight), except for that
located between the bile duct and the duodenum. Because
this surgery is performed in animals after puberty, this is
a model for pregestational type 1 diabetes.

The advantages of this technique are that a mild dia-
betic model is generated (glycemias range from 150 to 200
mg/dl), no insulin administration is needed, and preg-
nancy rates are good (16). The main limitations of this meth-
odology are the expertise required to proceed with this sur-
gery, the elevated postsurgical mortality rate (about 20%),
the nonspecific reduction of the B-cell mass, and the time
required between the surgical procedure and the diabetic
symptoms (up to 2-3 months). Altogether these limitations
lead to a diabetic model that is not frequently used nowadays
because many other options are available.

B. Chemical-induced models in diabetes and pregnancy
Nonsurgical methods of inducing damage to the pan-
creatic B-cells are obtained through the administration of
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TABLE 2. Complications analyzed in animal models in diabetes and pregnancy

Diabetes and pregnancy
complications

Experimental models

Refs.

Preimplantation defects Chemical-induced

Streptozotocin and alloxan in mice and rats

Genetic models

NOD rats, BB rats, Akita mice

Congenital malformations Chemical-induced

Streptozotocin and alloxan in mice and rats

Genetic models

NOD mice, BB rats, Cohen rats

Uterine-placental defects Surgical methods
Rat partial pancreatectomy

Chemical-induced

Streptozotocin and alloxan in mice and rats

Genetic models
NOD mice and BB rats

Fetal alterations Surgical methods

Partial pancreatectomy in rats and sheep

Chemical-induced

Streptozotocin and alloxan in mice and rats

Genetic models

NOD mice, BB rats, Akita mice, Cohen rats, db/+

mice, GK rats

Offspring neonatal/later life defects ~ Chemical-induced

Streptozotocin in mice and rats

Genetic models

NOD mice, BB rats, db/+ mice, Sand rats, GK rats

76, 81, 83

79, 80, 84
52,103, 119, 130, 132, 197

106, 149, 185

14,270

150, 155, 157-159, 166, 174, 176
78, 149

14, 243

140, 163, 167, 181, 183, 197, 232

46, 149, 184, 224, 249, 254, 260, 262

27,61, 195, 209, 211, 215, 216, 233, 236, 238

37, 38,42, 44,110, 222, 224, 250

Listed references are examples of the literature findings and not a complete list.

drugs such as streptozotocin, a nitrosurea derivative iso-
lated from Streptomyces achromogenes, and alloxan, a
uric acid derivative (17, 18). At the appropriate doses,
these drugs act by selectively destroying the pancreatic
B-cells, even though streptozotocin is more selective than
alloxan (19). These treatments lead to insulin deficiency
and hyperglycemia in different animals (17, 20-22).
Much of the research on diabetes and pregnancy has relied
on the use of rodents rendered diabetic through the ad-
ministration of these chemicals. Indeed, these models of
diabetes have been widely used to address early embryo
developmental defects, the induction of malformations,
placental abnormalities, fetal maldevelopment, and intra-
uterine transmission of metabolic diseases (Table 2).
Many different approaches have been used as regards
the mode of drug administration, the doses, and the animal
age and stage (pregestational or gestational). Neverthe-
less, because the loss of pancreatic B-cell mass is a char-
acteristic of all the different chemical-induced diabetic ap-
proaches, these models have low maternal insulin
circulating levels. Despite the partial regeneration of pan-
creatic B-cells observed in the neonatal streptozotocin-
induced diabetic models (23) and the reduced damage of
the B-cells in mice injected with various low doses of strep-
tozotocin (24), these models are considered type 1 diabetic
models because their origin is due to the destruction of
B-cells rather to insulin resistance. In addition, the admin-

istration of these drugs to pregnant animals leads to the
destruction of B-cells, thus generating a maternal diabetic
state related to type 1 diabetes during pregnancy. Differ-
ently, gestational diabetes is mostly characterized by the
lack of adaptation of pancreatic B-cells to the metabolic
changes that take place after midpregnancy and/or by an
enhanced insulin-resistant state (8, 25, 26).

To simplify, the different chemical approaches can be
classified into those that in rodent strains lead to severe
hyperglycemia (glycemia levels greater than 250 mg/dl)
and those that lead to mild hyperglycemia (glycemia levels
lower than 250 mg/dl). Several different approaches that
lead to mild and severe diabetes in rats and mice through
chemical induction are shown in Table 3.

An important point is that the possibilities to obtain
pregnancies in diabetic animals and obtain specific diabe-
tes-induced alterations during early, mid, or late gestation
have great variation between rodent strains and sub-
strains, even when the same amount of streptozotocin or
alloxan is given at the same period (neonatal, pregesta-
tional, or gestational). In addition, although dose depen-
dency is achieved in rats treated with low streptozotocin
dosesleading to mild diabetic and pregnancy experimental
models, dose dependency is difficult to achieve at higher
concentrations (27). This may be due to the interaction of
polygenic and nutritional factors that lead to different re-
sponses to the damaging agent in the B-cells and to the
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TABLE 3. Various technical approaches to generate experimental models of diabetes and pregnancy by the use of

chemicals
Chemical used and type of administration Phenotype Refs.

Streptozotocin (1 dose, 40—45 mg/kg iv or 50-75 mg/kg ip) Severe diabetes 119, 135, 155
given to adult rats several days before mating

Streptozotocin (1 dose, 200-240 mg/kg ip) given to adult Severe diabetes 130, 157
mice several days before mating

Streptozotocin (1 dose, 45 mg/kg iv to rats, or 100 mg/kg to Severe diabetes 52,131, 271
mice) given several days before mating and insulin
administration until d 1 of gestation

Streptozotocin (1 dose, 90-100 mg/kg sc) given to rats in Mild diabetes 170, 239

the neonatal period

Streptozotocin (1 dose, 15-65 mg/kg iv or ip) given to rats
during pregnancy

Streptozotocin (3 consecutive doses, 75-90 mg/kg iv or ip)
given to mice prior to mating

Alloxan given to mice (300 mg/kg) prior to induced
superovulation and mating or to rats (40 mg/kg ip) during
pregnancy

Mild/severe diabetes 61,124, 236, 272, 273

Mild/severe diabetes 54,142, 144

Mild/severe diabetes 83,176

Listed references are examples of the literature findings and not a complete list.

triggering of different repairing and compensatory re-
sponses, although further research on this subject is
needed (12, 28-30).

Therefore, as a starting point to using chemical-induced
models in diabetes and pregnancy, researchers should first
carry out a pilot study addressing whether or not a specific
rodent substrain bred in a determinate animal facility and fed
with a determinate food leads to the phenotype to be eval-
uated. Indeed, depending on the election of the diabetic an-
imal model chosen, glycemia levels can be either similar to
those frequently observed in diabetic patients or very ele-
vated, such as those found in humans in severe diabetic con-
ditions (Table 3). On the other hand, although severe dia-
betic models have glycemia levels higher than those usually
found in patients, thisis due to the patient’s insulin treatment.
Thus, insulin-treated chemical-induced diabetic animals, in
which glycemia is not completely corrected, are also diabetes
and pregnancy animal models that deserve further studies.

Some of the limitations that arise depending on the dose
and rodent strains used are the difficulties in achieving rea-
sonable pregnant rates. Indeed, although pregnancy in the
mild hyperglycemic rodent models is not impeded, animal
models with severe hyperglycemia often stop cycling 2 or 3
wk after streptozotocin/alloxan administration (31, 32).

In those cases, some of the approaches to obtain preg-
nant diabetic animals are: the use of a different strain, the
mating of the animals in the two or three reproductive
cycles that follow the drug administration, the preconcep-
tional insulin administration, the induction of ovulation,
or the drug administration during pregnancy (Table 3).
The limitations of some of these approaches are described
in Sections I11 and IV.

One of the main advantages of the chemical-induced
diabetic models is the vast literature that supports their use

as models to address the impact of the metabolic alter-
ations induced by maternal diabetes and the mechanisms
of induction of the most common complications in dia-
betes and pregnancy (Table 2). Another advantage is that
obtaining the diabetic animals through this methodology
is relatively easy.

Together with the possible criticisms of the use of a
toxic agent to induce the B-cell damage and thus the dia-
betic pathology, another disadvantage of chemical-in-
duced diabetic models is that the genetic and immune
components of the diabetic disease are not present. Nev-
ertheless, although the causes of B-cell death in human
diabetes and in chemical-induced diabetic models are
clearly different, the chemical destruction of B-cells in-
duces a series of proinflammatory reactions similar to
those occurring in the autoimmune destruction of the
B-cells in human diabetes and, indeed, even pancreatic
macrophage infiltration occurs in models such as those
that involve multiple low-dose streptozotocin administra-
tion (33, 34).

C. Genetic models in diabetes and pregnancy

Both type 1 and type 2 genetic models of diabetes have
been successfully used to address the complications in-
duced by diabetes and pregnancy. Inbreeding to select for
hyperglycemia and insulin resistance leads to several dia-
betic models with different degrees of B-cell failure and/or
insulin resistance (9).

The nonobese diabetic (NOD) mice and bio-breeding
(BB) rats are the most commonly used animals that spon-
taneously develop type 1 diabetes. In common with the
human disease, the pancreatic islets are subjected to an
immune attack with T cells, B cells, macrophages and nat-
ural killer cells being recruited to the insulitis (35). Genetic
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studies have localized multiple susceptibility genes, and,
as in human type 1 diabetes, the major histocompati-
bility complex regions play a key role (36). These mod-
els have been used to address causes of subfertility and
embryo loss, embryo malformations, fetoplacental ab-
normalities, and offspring’s macrosomia and later life
diseases (Table 2).

Advantages of these models are the similarity of their
immunological origin with that of type 1 human diabetes.
It should be taken into account that the genetic back-
ground that leads to the diabetic phenotype will depend on
the breeding strategy and can thus be present or not in the
fetuses of genetic models in diabetes and pregnancy. Due
to the polygenic origin of these models, breeding strategies
and embryo transfer techniques are useful to analyze the
maternal effects independently of the fetal genotype (37).
It should also be noted that insulin-dependent diabetes
develops spontaneously in 9% of NOD mice by 12 wk and
in 80% of them by 30 wk of age (38). Therefore, a dis-
advantage of this model is that studies are sometimes per-
formed in females older than 30 wk of age, whereas other
models are usually used at much younger female ages. On
the other hand, whereas NOD mice constitute a model of
mild diabetes, BB rats develop severe diabetes, and keto-
acidosis may be fatal unless exogenous insulin is admin-
istered (39).

The Akita mouse has a single autosomal dominant mu-
tation in the insulin IT gene (ins2) that disrupts normal
insulin processing and causes a failure in the secretion of
mature insulin and a reduction of B-cell mass, a phenotype
similar to maturity-onset diabetes of the young diabetic
patients (40). This model has been used for the analysis of
preimplantation and fetoplacental defects (Table 2).

There are many animal models of type 2 diabetes that
are as heterogeneous as the human condition (41). How-
ever, not many of them have been used to study the dia-
betic pregnancy condition. The db/db mouse diabetic
model results from a point autosomal recessive mutation
in the leptin receptor gene, and although these mice are
infertile, db/+ mice are glucose intolerant and develop
diabetes during gestation, therefore providing a gesta-
tional diabetic experimental model (42). On the other
hand, most type 2 diabetic models used to analyze diabetic
and pregnancy complications have a polygenic origin,
such as the Cohen diabetic rat, the Sand rat (Psammomrys
obesus), and the Goto Kakizaki (GK) rat (43). Their sev-
eral genetic mutations are transmitted from generation to
generation, and an excess of maternal transmission of the
diabetic disease has been reported in some studies (44, 45).
These type 2 diabetic models have been used to address
maternal diabetes-induced developmental defects, the in-
duction of congenital malformations, fetal alterations,
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and the programming of diseases in the offspring’s later
life (Table 2).

An advantage of these genetic type 2 diabetic models is
the wide range of phenotypes regarding the degree of obe-
sity, hyperglycemia, and insulin resistance. It should be
noted that the evaluation of these models requires the anal-
ysis of the influence of maternal diabetes separately from
the fetal genotype. This can be performed through breed-
ing or embryo transfer strategies (45). Genotypic typifi-
cation of the fetuses when their mothers are mated with
wild-type males is also useful mostly in those models aris-
ing from a single mutation (46).

lll. Choosing an Adequate Experimental Model
in Diabetes and Pregnancy

A. Ethical, economic, and practical issues

Animal models in diabetes and pregnancy, used after
the approval from the appropriate ethical committees, are
useful when studies addressing a particular investigative
purpose cannot be conducted in humans due to ethical
concerns and cannot be addressed by alternative methods
that do not imply live animals (47). These situations are
common when addressing embryo and fetal development
in maternal diabetes. Nevertheless, because there is no
animal model equal to the human situation, caution
should be taken to extrapolate the results obtained to the
human disease, and validation of the results obtained is
always required.

In diabetes and pregnancy animal models, water and
food consumption is usually increased, and care should be
taken to provide adequate housing considering their in-
creased urination. Although the diabetic state is not pain-
ful, ketoacidosis or severe alterations in organs such as the
kidneys and the eyes may occur in animals with severe
hyperglycemia (48).

Ethically, in any animal model selected, the number of
animals used should be as low as possible to lead to the
expected result (49, 50). Thus, regarding the selection of
the animal model, when the purpose of the investigation
allows the use of rodents, this choice is recommended. This
is because of the lower number of animals required as a
result of their multiparity, their human-like hemochorial
placentation, the short duration of their pregnancies, and
their easy maintenance. Nevertheless, it should be taken
into account that multiparity is not common in humans
and that differences arise in placental development and
structure when compared with humans (51).

When comparing rats and mice, the latter offer a
broader range of possibilities of genetic manipulation and
are thus recommended in case genetic strategies are pur-
sued. Care should be taken in the selection of the mice
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genetic background when diabetes is planned to be in-
duced by chemicals because there are important differ-
ences in the doses of the chemicals required under different
genetic backgrounds (52-54). On the other hand, the
small size of the mice may challenge the surgical models in
diabetes and pregnancy. Finally, mice constitute excellent
models to study the early embryo and organogenesis
stages, although their smaller size may challenge the stud-
ies at the fetal stage.

Rats have been mostly studied in chemical-induced type
1 diabetes and pregnancy experimental models. Although
surgical procedures have been used to obtain type 1 dia-
betes and pregnancy models in rats (14, 15), they should
not be chosen unless specifically needed because this major
surgery has a high mortality rate and requires high exper-
tise, and there are several other chemical-induced and ge-
netic options to obtain experimental models of diabetes
with less ethical concerns.

There are several worthy genetic models of both type 1
and type 2 diabetes in rodents (9, 55). However, the need
to purchase most of these animals from specialized com-
panies, the lack of commercial availability of some of these
strains, and the resulting increased costs are the main rea-
sons for the reduced number of studies in these strains
when compared with the chemical-induced models in di-
abetes and pregnancy.

The chemicals to induce diabetes and pregnancy exper-
imental models can be used in a wide range of animals such
as ewes, pigs, and monkeys (56 -58). Due to the increased
cost of maintenance of many of these animal species, their
use is recommended when the aims of the study require
them. For example, monkeys are much better models than
rodents when addressing the cognitive consequences of
maternal diabetes, and big animals like sheep are very
useful in the study of fetoplacental circulation (56).

B. A critical comparison between the expected
and available experimental models in diabetes
and pregnancy

The available experimental models in diabetes and
pregnancy have limitations when compared with an ideal
diabetes and pregnancy experimental model.

Indeed, an ideal experimental model of type 1 diabetes
should have an autoimmune destruction of the B-cells dur-
ing its early life. In surgical models in diabetes and preg-
nancy, the lack of B-cells is the product of the removal of
the pancreas (16), whereas in the chemical-induced mod-
els in diabetes and pregnancy, B-cells are destroyed due to
a specific B-cell-induced death (17, 23). Thus, although
the resulting metabolic impairments in these experimental
models can be compared with those found in type 1 dia-
betic patients, the causes that lead to the B-cell damage
differ from the human situation. In both NOD and BB rats,
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the destruction of B-cells is the product of an autoimmune
reaction, but in the NOD mice this occurs in aged animals
rather than in young ones (38).

An ideal experimental model of type 2 diabetes should
have insulin resistance and impairments in the pancreatic
response secondary to the insulin resistance. Thisis not the
case with the chemical-induced diabetic models, in which
the main insult is the destruction of the B-cells. Dietary
treatments such as those containing increased sucrose,
fructose, and fat lead to an insulin-resistant state that,
combined with the chemical destruction of the B-cells,
could constitute type 2 diabetes experimental models (59),
although not yet evaluated during pregnancy. On the
other hand, although there is a wide range of genetic type
2 diabetic models, many of them have not been addressed
during pregnancy (55).

An ideal experimental model of gestational diabetes
should have normal glycemia levels before gestation but
glucose intolerance and impaired insulin secretion and/or
function after midpregnancy, which leads to alterations in
both glucose and lipid metabolism in the mother and con-
sequently in the fetus. In the insulin-resistant db/+ mice,
diabetes develops during pregnancy, and therefore, this
model can be used as a gestational diabetic model, al-
though the deficiency in the leptin receptor that causes this
phenotype differs from the etiology of human gestational
diabetes (42). On the other hand, the chemical destruction
of the B-cells during pregnancy leads to a diabetic exper-
imental model during the pregnant state. Due to the direct
damaging effect on the B-cells, there are low circulating
maternal insulin levels, whereas failures in the adaptation
of B-cells to pregnancy and/or an exaggerated insulin
resistance are main features in gestational diabetes (25,
26). Nevertheless, the elevated glucose and other met-
abolic substrates in the maternal compartment reach the
fetuses and are involved in the induction of macroso-
mia, placentomegaly, and/or the related programming
of metabolic diseases, thus allowing the use of this ex-
perimental model to analyze these typical gestational
diabetes features (60, 61).

It should be noted that possible per se effects of the
streptozotocin administered during pregnancy cannot be
ruled out. Nevertheless, although studies performed in
monkeys show that streptozotocin can cross the placenta,
due to its short half-life (5-15 min), the streptozotocin
concentrations that reach the fetus when the mother is
rendered diabetic are very low and do not induce damage
in the fetal pancreas (62, 63).

C. Future perspectives
Future studies will be needed to provide models in di-
abetes and pregnancy that better represent gestational di-
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abetes as well as to analyze the pregnant state in the avail-
able type 2 diabetic models.

Many studies in which nutritional challenges (low pro-
tein or increased fat diets) lead to glucose intolerance and
diabetes in the offspring’s adult life are in progress. Fur-
ther studies addressing the pregestational or gestational
diabetic state in these animals will be valuable.

Transgenic or knockout diabetic animals have not yet
been used as models in diabetes and pregnancy, although
future research is likely to make such models available
(64). Indeed, transgenic approaches have already been
proved to be useful as tools to obtain animals with mal-
formations similar to those induced by maternal diabetes
and to address the mechanisms of induction of congen-
ital malformations in streptozotocin-induced diabetes
(65-67). In recent studies, the fetal outcome has been an-
alyzed in the normoglycemic and insulin-signaling defec-
tive Insr (—/—) and Insr (—/+) mice (68). Moreover, the
H194"3 disruption of the H19 gene (a gene that regulates
IGF-II imprinting and expression, and is reciprocally im-
printed with respect to IGF-II) leads, when inherited from
their mothers, to an increased fetal growth (69) as well as
to maternal hyperglycemia on d 16 of gestation, thus con-
stituting a fetal-induced gestational diabetes experimental
model in mice (70).

IV. Animal Models to Study Early Embryo
Development and Embryo Loss in
Maternal Diabetes

A. Overview

Ovulation is the first step greatly altered by the abnor-
mal ovarian microvasculature, loss of connectivity in the
developing follicle, and the proinflammatory environment
in both diabetic patients and experimental diabetic models
(71-73). Ovulation failure may be due to other relevant
factors such as failures in sexual hormone secretion/
function (31, 74), as well as to the fat loss and conse-
quent insufficient leptin signaling to the central nervous
system (75).

In the severe diabetic experimental models, insulin may
be required to bypass the ovulation defects and obtain
pregnancies. Therefore, defects in early gestation have
been studied mostly in mild diabetic experimental models
and in rodent strains in which estrous cycles are main-
tained despite hyperglycemia, and oocyte quality and fer-
tilization are not severely affected (76-79). Other ap-
proaches include the use of animals superovulated with
pregnant mare serum gonadotropin and human chorionic
gonadotropin before mating (80, 81). It should be noted
that superovulation may compromise the development of
the embryos, leading to confounding effects that should be
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addressed with the appropriate controls, and these treat-
ments will be effective when oocyte quality is sufficient
and uterine receptivity is not impeded.

Indeed, as reviewed elsewhere (73, 82), the oocytes
from chemical and genetic experimental models of diabe-
tes show important alterations in their quality, the levels/
function of signaling molecules, and mitochondrial dys-
function, alterations that can lead to the induction of
defects after fertilization.

B. The preimplantation embryo

Both chemical-induced and genetic diabetic experimen-
tal models have identified delayed early embryo develop-
ment (76,79, 83-85). Besides, streptozotocin-induced di-
abetic mice and some transgenic approaches have served
to identify hyperglycemia-induced metabolic abnormali-
ties in preimplantatory embryos (86, 87).

Progress in the field suggests that viable alterations oc-
curring during the first stages of embryo development
have impact on the periimplantatory and postimplanta-
tory developmental stages. Indeed, a recent study has
shown that the malformation rate is increased when either
one-cell embryos or blastocysts obtained from superovu-
lated streptozotocin-induced diabetic mice are transferred
to control recipients (88).

Regarding the immunological aspects of subfertility
and embryo loss, NOD mice have been used to address this
issue, and recent studies in the pregnant uterus of NOD
mice have identified an insufficiency of natural killer cells
probably due to a decreased expression of adhesion mole-
cules (89, 90). On the other hand, a proinflammatory envi-
ronment and altered remodeling processes characterize the
uterus of streptozotocin-induced diabetic rats and NOD
mice during the periimplantation period (77, 78, 91, 92).

This abnormal environment is probably involved in the
pathways that lead to increased embryo loss and in apo-
ptotic events. Indeed, as a key feature of the early embryo
developmental defects induced by maternal diabetes, ap-
optosis is increased in preimplantation embryos obtained
from NOD mice and alloxan/streptozotocin-induced di-
abetic experimental models. Indeed, these models have
served to identify several signaling pathways leading to the
embryonic cell apoptotic events (93, 94).

Therefore, different experimental models of type 1 di-
abetes have been useful to address mechanisms of induc-
tion of early embryo defects (Table 2), and can be used to
gain further insights into the possible inducers causing
early embryo damage and their later effects.

For future studies in the preimplantation stage, mild
chemical-induced models and genetic models such as
NOD mice can be recommended because no insulin ad-
ministration or superovulation strategies are required. Be-
sides, considering that most diabetic patients are insulin-
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treated, studies in diabetes and pregnancy models in which
insulin is administered to control severe hyperglycemia are
also encouraged. On the other hand, although early em-
bryo loss is increased in type 2 diabetic women, early em-
bryo defects have not yet been studied in experimental
models of type 2 diabetes and thus deserve to be evaluated.

V. Animal Models to Study the Induction of
Congenital Anomalies in Maternal Diabetes

A. Overview

A higher incidence of congenital malformations as a result
of an impaired maternal metabolic controlis a feature in both
human type 1 and type 2 diabetes and in most experimental
models of diabetes evaluated (6, 95, 96). Although clearly
dependent on the degree of maternal metabolic control, it is
very difficult to reduce the malformation rate to control val-
ues even in well-controlled diabetic patients (97-100). Ac-
cordingly, the malformation rate may be elevated even in
mild diabetic experimental models (73).

B. The postimplantation embryo

As in human diabetic pregnancies, malformations in
streptozotocin/alloxan-induced experimental models of
diabetes occur mainly in the neural system, heart, and
skeleton (1, 101-103).

Morphological, functional, and developmental mito-
chondrial defects are also found in organogenetic embryos
from streptozotocin-induced experimental diabetic mod-
els (104, 105).

Diabetic NOD mice also show an increased malforma-
tion rate (mostly neural tube defects and skeleton alter-
ations) when compared with controls (106). The cause for
the induction of congenital malformations in NOD mice
is highly related to the maternal environment because mal-
formations are increased in control embryos transferred
into NOD mice. Besides, malformations are also increased
in NOD embryos transferred into control recipients, thus
highlighting the relevance of the embryo genetic back-
ground and/or the programming during oocyte develop-
ment and preimplantation stages in the induction of mal-
formations (88, 106). A higher incidence of chromosomal
anomalies, associations in nucleolar organizing regions,
and an increased genomic DNA mutation frequency have
been found in embryos from NOD mice and streptozoto-
cin-induced diabetic rodents (107, 108).

The Cohen diabetic ratis the type 2 diabetic model most
studied during early organogenesis (109), although fetal
alterations have also been found in the GK and Sand rat
(110, 111).

Therefore, both chemical-induced and genetic diabetic
models can lead to the induction of congenital malforma-
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tions (Table 2). Indeed, both experimental diabetic models
and in vitro culture of embryos during early organogenesis
have been very helpful in the understanding of the multi-
factorial aspects that can lead to malformations due to
maternal diabetes in this very susceptible developmental
period (1, 112, 113).

Whole rat embryo cultures during the organogenetic
period have clearly served to establish the increased con-
centrations of glucose, triglycerides, and B-hydroxybu-
tyrate as teratogens; indeed, these metabolites are elevated
in streptozotocin-induced diabetic rats during early orga-
nogenesis (114, 1135).

Several signaling pathways are impaired within the em-
bryo due to the abnormal maternal metabolic environ-
ment and are related to the induction of malformations.
The first one studied, described in streptozotocin-induced
diabetic rodents and further corroborated in in vitro stud-
ies, consists of a disturbed arachidonic-prostaglandin
pathway that leads to decreased prostaglandin E, (PGE,)
concentrations, an alteration involved in the induction
of neural tube defects (73, 116, 117). Moreover, PGE,
concentrations are also reduced in yolk sacs of pregnant
diabetic women (118). In addition, the concentrations of two
other prostaglandins, PGI, and 15-deoxydelta'*'*PG]J,,
are also decreased in embryos from streptozotocin-in-
duced diabetic rats during early organogenesis and are
regulators of PGE, and nitric oxide concentrations,
respectively (119, 120). Dietary supplementation with
safflower and olive oils is capable of both increasing
PGE, and reducing nitric oxide embryonic concen-
trations and is also able to reduce both malformation
and resorption rates in streptozotocin-induced diabetic
rats (121).

On the other hand, chemical-induced diabetic experi-
mental models and in vitro studies have also been useful to
discover embryonic disturbances in inositol uptake that
lead to low intracellular inositol concentrations that im-
pair proper embryo morphogenesis (122-124).

Both increased oxidative stress and nitrosative stress
are crucial features in diabetes-induced embryopathy and
have been characterized in chemical-induced and genetic
models of diabetes and even in mild diabetic experimental
models (95, 125-127). Impairment of the oxidative and
nitrosative stress balance can dysregulate multiple signal-
ing pathways and cause massive cell damage, apoptotic
events, and defective embryonic development (52, 128 -
132). Indeed, apoptosis is increased in embryos and their
yolk sacs in streptozotocin-induced diabetic rats and mice
(54, 133-135).

Itisinteresting to state the relevance of the genetic back-
ground in determining the malformation rate. The strep-
tozotocin-induced diabetic rats of the U substrain, derived
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from Sprague-Dawley rats, and the Cohen diabetes-sen-
sitive rat substrain, derived from Wistar rats, have in-
creased risks for congenital malformations (109, 136). As
stated by comparing different genetic backgrounds in
these chemical-induced and genetic diabetic experimental
models, the capacity to deal with oxidative stress is an
important feature in determining the degree of induction
of congenital malformations, and changes in catalase and
superoxide dismutase expression are clearly relevant in
this context (127, 137).

Folic acid has antioxidant properties, and its deficiency
isinvolved in the induction of congenital malformations in
the general population and also in streptozotocin-induced
diabetic rats and mice (138-140).

Congenital anomalies in maternal diabetes can also be
the result of an impaired expression of the genes that con-
trol essential developmental processes. In particular, a de-
creased expression of the transcription factor Pax-3 has
been clearly involved in the induction of neural tube and
cardiac defects in streptozotocin-induced diabetic mice
(52, 141, 142). In addition, recent works have identified
an altered expression of several other neural tube and car-
diac defect-related genes in embryos from streptozotocin-
induced diabetic mice (53, 142). Moreover, microarray
analysis in embryos from streptozotocin-induced diabetic
mice has shown that hundreds of genes exhibit changes in
their expression levels in whole embryos (143) and in the
developing neural tube (144), thus suggesting that much
experimental research is still needed to fully understand
the etiology of congenital malformations in maternal
diabetes.

For future studies in the postimplantation embryo,
both chemical-induced and type 1 and type 2 genetic mod-
els of diabetes can be recommended. Addressing the in-
duction of congenital malformations may require the use
of severe diabetic animals (glycemia higher than 250 mg/
dl) or the use of rodent strains prone to malformations to
allow sufficient malformed embryos for the analysis. Be-
sides, because the malformation rate in women is clearly
correlated with the increased glucose concentrations, but
responses to insulin are very variable in patients, address-
ing congenital malformations induced in experimental
models in diabetes and pregnancy that present variable
responses to insulin would be valuable.

VI. Animal Models to Study the Placenta in
Maternal Diabetes

A. Overview

Despite the existence of several developmental and
morphological differences in the placenta from rodents
and women, there are many similarities in the alterations
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induced by maternal diabetes in the placenta from diabetic
patients and diabetic experimental models (51, 125,
145-148).

B. The placenta

Placentomegalia is observed in various mild and se-
vere chemical-induced diabetic experimental models
and in some genetic models of diabetes such as the BB rat
(149-153). Structural, functional, and developmental ab-
normalities are found in the placenta of streptozotocin-
induced diabetic rodents (152, 154-156). Moreover, ar-
ray studies have shown an aberrant gene expression
pattern in placentas from streptozotocin-induced dia-
betic mice (157).

Increased amounts of lipids, glycogen, and DNA char-
acterize the placentas from streptozotocin-induced dia-
betic rodents (150, 158). Glucose transfer through the
placenta increases linearly with the maternal glucose in
streptozotocin-induced diabetic rats (159). The placentas
from these animals, as well as from NOD mice, also have
alterations in glucose transfer, transporters, and metabo-
lism (159-162).

On the other hand, lipid transfer is also enhanced in
streptozotocin-induced diabetic rats. Several impair-
ments, including increased maternal lipid concentrations,
altered expression of lipid transporters, and impaired lipid
metabolic pathways, contribute to the increased placental
accumulation and transfer of lipids (163-166).

The nuclear peroxisome proliferator-activated re-
ceptors and their endogenous ligands, involved in both
lipid metabolism and antiinflammatory processes, are
also differently expressed in placentas from streptozo-
tocin-induced diabetic rodents throughout gestation
(151, 153, 167-169).

Aberrant concentrations of several prostaglandins that
regulate the balance between proinflammatory/antiin-
flammatory pathways and between vascular relaxation/
dilation are found in placentas from streptozotocin-in-
duced diabetic rats and ewes (56, 151, 170). On the other
hand, enhanced vascularization and increased angiogenic
factors like vascular endothelial growth factor and pla-
cental growth factor are found in placentas from strepto-
zotocin-induced diabetic rodents (153, 171, 172).

Oxidative and nitrosative stress in the placenta is en-
hanced even in mild chemical-induced diabetic models (170,
173). These alterations have been related to an overactivity
of matrix metalloproteinases (168, 174, 175), proteases ca-
pable of degrading all components of the extracellular ma-
trix. Indeed, several alterations in the components of the ex-
tracellular matrix have been found in streptozotocin- and
alloxan-induced diabetic rodents (176, 177).

Altogether, the many changes present in both chemical-
induced and genetic diabetic models (Table 2), which have
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served to study and gain insights into the development of
the many features common to the placentas from both
human and rodent diabetic experimental models, suggest
that the placenta is a compromised target that largely suf-
fers the impact of maternal diabetes.

For future studies, the use of chemical-induced and ge-
netic diabetes and pregnancy experimental models can be
recommended because many alterations similar to those
found in the human diabetic placenta have been observed
in these experimental models.

VIl. Animal Models to Study the Fetuses and
the Intrauterine Programming of Diseases in
Maternal Diabetes

A. Overview

Maternal diabetes-induced impairments in fetal and
neonatal development have both short- and long-term ad-
verse effects. Short-term outcomes are characterized by
increased neonatal morbidity and mortality, in part due to
the increased rate of congenital malformations, premature
delivery, macrosomia, shoulder dystocia, growth retarda-
tion, fetal hypoxia, neonatal hypoglycemia, and respira-
tory distress syndrome (2, 5, 8,98, 178). Long-term effects
in the newborns are increased risks for development of
overweight, obesity, impaired glucose tolerance, type 2
diabetes mellitus, metabolic syndrome, and minor neuro-
logical deficits (4, 10, 179, 180).

Many of these short- and long-term effects have been
addressed in diabetes and pregnancy experimental models
(Table 2). The results of these studies clearly show that the
abnormal intrauterine environment causes many of these
derangements during fetal development, and that the fe-
tuses present several impairments in different experimental
diabetic models, as described in Sections VII. B, C, and D.
Thus, the experimental models in diabetes and pregnancy
provide the possibility to study the fetus, to gain insights into
the mechanisms of induction of fetal and neonatal impair-
ments, and to test different approaches to prevent fetal al-
terations and their long-term effects.

When evaluating the fetus and the fetal outcome, the
chemical-induced diabetic models are those that have been
most used (Table 2). Besides, the use of inbred genetic
models of diabetes to address the consequences of fetal
exposure to maternal diabetes in the offspring should take
into account that the genetic background that leads to the
diabetic phenotype can be present or not depending on the
breeding strategy. Therefore, breeding and embryo trans-
fer strategies are very useful approaches to address the
relevance of environmental vs. genetic factors in inducing
diabetes in the offspring.
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B. The fetus

Although the origin of congenital malformations has
already been discussed because it occurs at earlier de-
velopmental stages, skeletal, facial, heart, and visceral
malformations are clearly evident in the fetuses at late
gestation in streptozotocin-induced diabetic rats (103,
181-183). Congenital malformations are also found in
fetuses from genetic models of diabetes such as the GK and
Cohen rats (184, 185).

Congenital heart malformations are mostly evident on
d 17-18 of rat gestation because some of them are lethal
and lead to fetal death and resorption at late gestation
(186). Nonspecific immune stimulation with both inter-
feron yand Freund’s complete adjuvant has been recently
shown to reduce the heart malformation rate in strepto-
zotocin-induced diabetic mice, although the mechanisms
of these beneficial effects remain unclear (187).

Several diabetes and pregnancy experimental models
have served to address the role of hyperglycemia in fetal
development and outcome, and to state that besides hy-
perglycemia, the multifactorial metabolic derangement
resulting from the impaired maternal insulin action
seems to play an important role in these fetal disorders
and in its consequences (115, 125, 164, 188-191). In-
deed, diabetes induced by streptozotocin previous to or
during rat gestations clearly impairs fetal lipid metab-
olism, alterations closely related to fetal impairments
(163, 164, 167, 192, 193).

As a consequence of the maternal metabolic derange-
ments, increased oxidative stress and impaired antioxi-
dant enzymes have been found in fetuses and neonates
from mild and severe streptozotocin-induced diabetic ro-
dents and alloxan-induced diabetic experimental models
(173, 194-197). Nitric oxide production is increased in
the fetuses from mild diabetic rats induced by streptozo-
tocin administration, an alteration related to the overex-
pression of matrix metalloproteinase-2 during fetal devel-
opment (174, 175). In streptozotocin-induced diabetic
rats, changes in uterine perfusion have been found related
to changes in the expression of genes that regulate anti-
oxidant defenses and angiogenesis and to the fetal out-
come (198). Dietary supplementation with n-3 polyunsat-
urated fatty acids can suppress abnormal antioxidant
status in macrosomic fetuses from streptozotocin-induced
diabetic rats (199). Reduction of congenital malforma-
tions by folic acid and antioxidants has been reported in
term fetuses from streptozotocin-induced mice and rats
(103, 135, 140). Thus, several approaches are in progress
aiming to prevent maternal diabetes-induced fetal defects.

C. Fetal organs
Alterations in the development of several fetal organs
can be detected in most diabetes and pregnancy experi-



690 Jawerbaum and White

mental models (Table 2). These alterations, induced by the
abnormal intrauterine environment, can be detected dur-
ing the fetal stage and the neonatal period and can also be
involved in the programming of diseases in the newborn’s
later life. Indeed, the disruption of multiple organ systems
in ways that permanently impair their function and pre-
dispose the offspring to chronic diseases that emerge in
later life has been considered the basis of intrauterine pro-
gramming (200, 201).

Besides the already described induction of congenital
heart defects, the impact of maternal diabetes-induced de-
rangements during heart development can be detected in
fetuses that do not present heart malformations (202).
Maternal diabetes-induced increases in heart apoptosis
have been related to malformations and heart lesions in
fetuses from streptozotocin-induced diabetic rodents
(203, 204) and have also been found in the offspring of
diabetic animals rendered diabetic with streptozotocin
during pregnancy (205). In Akita hypoinsulinemic mice,
fetal myocardial hypertrophy and triglyceride accumula-
tion do not occur, but reduction in the expression of sev-
eral lipid metabolizing genes such as fatty acid transporter
protein and fatty acid translocase is observed, suggesting
that the changes that control fatty acid uptake prevent
cardiac lipid overaccumulation (46).

Fetuses from streptozotocin-induced diabetic rats can
present cardiac hypertrophy, which has been related to
increases in atrial natriuretic peptide (206). The fetal myo-
cardium in streptozotocin-induced diabetic rats shows a
reduced expression of glucose transporter isoforms 1 and
4 (Glut 1 and Glut 4) changes probably related to com-
pensatory effects to fetal hyperglycemia, which may be
involved in the programming of insulin resistance (207).
Indeed, in the offspring from streptozotocin-induced di-
abetic rats, the programming of insulin resistance is re-
lated to changes in translocation of Glut 4 in adipose and
skeletal muscle and to alterations in the concentrations of
neuropeptide Y in the hypothalamus (61, 208). Interest-
ingly, in offspring from streptozotocin-induced diabetic
rats, the availability of nutrients during weaning can in-
duce gender-dependent changes in Glut 4 translocation
and neuropeptide Y concentrations, as well as in the pro-
gramming of obesity and glucose intolerance in the off-
spring’s adult life (61). In addition, impaired cardiovas-
cular function has been reported in 2-month-old offspring
from streptozotocin-induced diabetic rats (209).

Regarding fetal kidney development, nephrogenesis
has been found impaired in fetuses obtained from strep-
tozotocin-induced diabetic rats (210). In streptozotocin-
induced diabetic rodents in which fetal microsomia is ob-
served, both a reduced kidney weight and a reduced
nephron number are observed, alterations probably re-
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lated to an increase in proinflammatory and apoptotic
pathways and to alterations in the remodeling of the ex-
tracellular matrix during development (211, 212). Devel-
opmental changes in IGF-I expression during nephrogen-
esis and alterations in tubular reabsorption of calcium and
magnesium in the neonates have also been reported in
streptozotocin-induced diabetic rats (213, 214). In addi-
tion, streptozotocin-induced diabetes both before and
during gestation leads to impaired vascular and renal func-
tion in the adult rat offspring, thus showing that hyper-
tension and renal dysfunction can be determined in utero
in chemical-induced diabetic models (215-217).

The lung is also a fetal organ affected by maternal di-
abetes, and reduced surfactant phospholipids, surfactant
proteins, and the number of type Il pneumocytes are found
in term fetuses from streptozotocin-induced diabetic rats
(218-221). Delayed lung maturation has been found both
in fetuses from streptozotocin-induced diabetic rats and in
offspring from diabetic db/+ mice (222, 223). Defects in
fetal lung production of PGE, have been found in alloxan-
induced diabetic rabbits, an alteration probably related to
lung immaturity (20).

Liver lipid accumulation occurs in fetuses and neonates
from streptozotocin-induced diabetic rats and in db/+
mice (27, 224). Alterations in arachidonic acid and doco-
sahexaenoic acid ratio have been found in fetal and neo-
natal livers from streptozotocin-induced diabetic mothers
either fed or not fed with high-fat diets (225). Supplemen-
tation with arachidonic acid during pregnancy and lacta-
tion ameliorates neurodevelopmental parameters in off-
spring from streptozotocin-induced diabetic rats (226). In
rats rendered diabetic through alloxane administration
at early gestation, the offspring’s intestine is affected,
showing decreased weight and length, elevated brush
boarder enzymes, and increased absorption of glucose
and glycine (227).

The fetal pancreas is extremely sensitive to maternal
diabetes. Different changes in the fetal B-cell mass and
function, related to the macrosomic and the microsomic
phenotypes, can be observed in diabetes and pregnancy
experimental models (10). In streptozotocin-induced di-
abetic rats, a positive correlation between maternal gly-
cemia and fetal weight has been found in mild diabetic
rats, whereas a negative correlation between these vari-
ables has been found in severe diabetic rats. These alter-
ations are related to the impact of maternal diabetes on the
fetal B-cell mass (228). Indeed, in mild hyperglycemic
mothers, fetuses present islet hyperplasia and increased
pancreatic and plasma insulin concentrations (229, 230).
Possibly dependent on the rat substrain, the nutritional/
metabolic factors, and the animal facility environment,
which will lead to different rates of both B-cell death and
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adaptive responses (12, 28, 29), the fetal pancreatic B-cell
mass can be found either reduced or increased in strepto-
zotocin-induced severely hyperglycemic rats. The reduced
pancreatic B-cell mass leads to a reduced capacity of in-
sulin secretion (231). On the other hand, the increased
pancreatic B-cell mass leads to an increased insulin secre-
tion, an alteration related to hyperplasia and degranula-
tion of fetal pancreatic B-cells, which in turn leads to neo-
natal exhaustion of the insulin secretory capacity at term
(232, 233). This alteration is restored in the neonatal pe-
riod, but the B-cell mass is increased and insulin action is
decreased in the adultstate (233). Through this way, strep-
tozotocin-induced females can transmit the glucose intol-
erant state to the next generation (234). Moreover, in the
second generation, the offspring of both severe and mild
hyperglycemic females develop gestational diabetes, and
their offspring (third generation) also present the same
disorders as the offspring of mildly hyperglycemic rats
(232, 235, 236). These results show that streptozotocin-
induced diabetic rodents can be useful animal models to
analyze the involvement of the development of the fetal
pancreatic B-cell mass in the induction of glucose intoler-
ance and diabetes in the offspring’s later life.

D. Fetal growth

Depending on the maternal metabolic and proinflam-
matory derangements, macrosomia can arise in fetuses
from experimental diabetic models due to the excessive
availability of nutrients and an increase in fetal insulin
release, a phenotype related to the programming of glu-
cose intolerance (27, 193).

Neonatal macrosomia and increased circulating lipids
and liver triglycerides are found in the offspring from
streptozotocin-induced diabetic rats (27, 237). Neonatal
macrosomia and an aberrant lipid metabolism are also
observed when streptozotocin is administered during ges-
tation, alterations that have been found to be suppressed
by the supplementation of n-3 polyunsaturated fatty acids
(60, 238).

Dietary supplementation with safflower and olive oils,
enriched in linoleic and oleic acids, respectively, and
both capable of activating the ligand-activated perox-
isome proliferator-activated receptors, is also able to
prevent the aberrant lipid metabolism induced during
fetal development in streptozotocin-induced mildly di-
abetic rats (239).

The degree of fetal damage and placental dysfunction
and the availability and utilization of fetal substrates,
among others, can lead to the induction of macrosomia or
microsomia in some or all fetuses within a litter. Indeed,
similar to that found in clinical studies, a U-shaped rela-
tionship between offspring weight and metabolic impair-
ments is observed in streptozotocin-induced experimental
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models of diabetes (10, 240, 241). Nevertheless, further
research is needed to fully understand the mechanisms that
govern fetal overgrowth in maternal diabetes.

It is interesting to note that both macrosomia and micro-
somia are related to the induction of diabetes in the off-
spring’s later life. Indeed, in diabetic pregnant animals in
which the fetuses have normal weight, compensatory effects
are usually functional enough, and thus, fewer alterations are
induced. Because insulin is a hormone related to fetal growth,
both macrosomia and microsomia are phenotypes that re-
flect the abnormal concentrations of insulin and other fetal
growth factors in the fetus. Indeed, together with insulin,
other growth-related factors such as fetal leptin and IGFs can
be found reduced, enhanced, or unchanged in diabetes and
pregnancy experimental models (21, 242-244).

In fetuses from streptozotocin-induced diabetic mice,
impaired methylation and expression of the imprinted
genes H19 and IGF-II have been found related to the mi-
crosomic phenotype (245). Levels of angiogenic factors
like vascular endothelial growth factor-A and placental
growth factor-2 are reduced in fetuses smaller in weight
from streptozotocin-induced diabetic rats (171).

In macrosomic offspring from streptozotocin-induced
diabetic animals, fetal hyperinsulinism has been shown to
be a critical feature involved in the /7 utero programming
of obesity and glucose intolerance. Indeed, hyperinsulin-
emia and an increase in the insulin concentrations within
the hypothalamus have been observed in the perinatal pe-
riod in offspring from streptozotocin-induced diabetic
rats (246). The hyperinsulinemia persists throughout life,
leads to spontaneous gestational diabetes in the F1 fe-
males, and is nongenetically transmitted to the next gen-
erations (F2 and F3) (247, 248). Studies performed in off-
spring of diabetic mothers and in offspring treated with
insulin administration in the hypothalamus have led to the
conclusion that these alterations are the result of a neu-
roendocrine malprogramming, which contributes to the
occurrence of hyperphagia, overweight, and hyperinsu-
linemia throughout life, which may be passed on to the
succeeding generations (3).

On the other hand, the genetic models of diabetes can
lead to fetal microsomia or macrosomia, phenotypes that
also depend on the degree of damage to the fetal organs.
In the BB type 1 diabetic rats, the fetuses are small and
present skeleton malformations, large hearts, reduced
pancreatic and plasma insulin content, and small kidneys
and lungs, fetal alterations probably associated with the
classical genetic heredity (149, 249). Induction of diabetes
in the BB rat offspring has been shown to be delayed and
reduced through the administration of diabetes-promot-
ing food antigens and immune modulators administered in
the neonatal period (250).
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FIG. 1. Schematic representation of possible outcomes in experimental models of diabetes
and pregnancy. The diagram indicates the different kinds and degrees of damage that can be
induced during embryo and fetoplacental development and in the offspring of diabetic
animals, which will vary according to the degree of maternal metabolic impairment and to
several genetic and environmental factors. The gray arrows indicate the effects that can have
consequences at later developmental stages and in the next generation, and the black arrows

indicate the effects that do not lead to later developmental defects.

Macrosomia develops in the offspring of heterozygous
CSTBLKS/J-Lepr (db/+) mice, and studies indicate that
both genetic transmission and the abnormal environment
are involved in the programming of aberrant adipose tis-
sue development (42, 251).

In NOD mice, it has been found that glycosylated he-
moglobin levels lower than 2.5% are not related to neo-
natal weight, those ranging from 2.6 to 4% are positively
correlated with fetal growth, and those higher that 4%
were negatively related to fetal growth (252). In NOD
mice mated between 26 and 52 wk of age, the macrosomic
offspring present organomegaly, elevated pancreatic in-
sulin content, and smaller litter size (38). Indeed, NOD
mice show several impairments in the pancreas in the neo-
natal period (253). Also, the glucose metabolic enzyme
hexokinase is overexpressed in the fetal brain from NOD
mice (254).

Both the administration of insulin in the neonatal pe-
riod and the administration of diets, either reduced in pro-
teins or in energy or enriched in zinc, during gestation have
been shown to suppress the induction of diabetes in NOD
mice (255-258). Taurine supplementation throughout
pregnancy and weaning prevents pancreatic insulitis and
delays the onset of diabetes in NOD mice (259). More-
over, the elimination of maternally transmitted autoanti-
bodies by the use of B cell-deficient NOD mothers and by
transferring NOD embryos to nonautoimmune strains

Fetal and placental development
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=Fetal loss and resorption

week of gestation in GK rats improves
pancreatic IGF-II and increases B-cell
mass in their fetuses (261). Other
studies performed in this genetic
model of type 2 diabetes have shown
that diabetes during pregnancy pre-
disposes offspring to develop obesity
and abnormal glucose tolerance later
in life, atleastin part independently of
classic genetic transmission (44). In
addition, offspring developed from
Wistar rat 1-d embryos transferred to
GK mothers show increased risks of
hyperglycemia at adult ages, high-
lighting the intrauterine transmission
of diabetes in this diabetic experimental model (45).

In the Cohen diabetic rat, fetal growth restriction is
evident at term, and impaired oxidative stress is ob-
served in different fetal organs (262). In the Sand rat fed
with a high-energy diet, which is another type 2 diabetic
model, maternal diabetes leads to low-weight offspring
with impaired neurodevelopmental parameters that be-
come overweight and diabetic in the third and fourth
weeks of life (110).

Although all these data indicate that intrauterine ex-
posure in diabetes and pregnancy experimental models is
associated with the programming of glucose intolerance
and type 2 diabetes, further research on this subject and on
the molecular mechanisms responsible for these alter-
ations would be valuable.

For future research, both chemical-induced and genetic
experimental models in diabetes and pregnancy can be useful
to address both the mechanisms of induction of fetal anom-
alies and the possible long-term effects of these alterations.
Importantly, it should be noted that the alterations detected
at the fetal stage may have been induced at the earliest stages
of development, an issue that deserves further study.

Finally, it should be stated that beyond the scope of this
review, but thoroughly reviewed elsewhere, there is vast
information regarding the nutritional aspects that lead to
the programming of type 2 diabetes, obesity, and cardio-
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vascular disease in the offspring of nondiabetic pregnant
animals (190, 263-2635).

VIIl. Concluding Remarks

Several important aspects of human diabetic pregnancies
such as the increases in the rates of early embryo loss,
spontaneous abortions, malformations, fetoplacental im-
pairments and offspring’s diseases in later life can be stud-
ied using the appropriate animal models. The scheme in
Fig. 1 illustrates the broad putative uses of experimental
models of diabetes and pregnancy, indicating that there
are multiple experimental possibilities to approach the
evaluation of the numerous possible phenotypes that com-
prise the human development in maternal diabetes.

In maternal diabetes, both the maternal environment
and the genetic background are important in the complex
and multifactorial processes that induce damage to the
embryo, the placenta, the fetus, and the offspring. Thus,
the use of experimental models of diabetes is crucial in the
determination of these damaging pathways. Although
there is no doubt that several diabetic models present sim-
ilar patterns of the most characteristic features of human
diabetic pregnancies, the mechanisms involved in these
alterations and those mechanisms developed to prevent
these anomalies require corroboration because the same
mechanisms do not always explain the diabetic phenotype
in diabetic patients and animals. However, there are ob-
vious limitations in the study of diabetic pregnant women
together with an important need of new strategies to im-
prove and help in the difficult issue of managing these
patients to prevent developmental impairments. There-
fore, animal studies are critical for understanding the
pathophysiology of diabetes-induced defects throughout
pregnancy, and the use of experimental models of diabetes
is justified and highly encouraged as a first stage for the
evaluation of possible approaches to prevent diabetes-in-
duced developmental defects.
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