
https://doi.org/10.3758/s13428-021-01653-y

A simple and cheap setup for timing tapping responses
synchronized to auditory stimuli

Martin A. Miguel1,2 · Pablo Riera2 ·Diego Fernandez Slezak1,2

Accepted: 15 June 2021
© The Psychonomic Society, Inc. 2021

Abstract
Measuring human capabilities to synchronize in time, adapt to perturbations to timing sequences, or reproduce time intervals
often requires experimental setups that allow recording response times with millisecond precision. Most setups present
auditory stimuli using either MIDI devices or specialized hardware such as Arduino and are often expensive or require
calibration and advanced programming skills. Here, we present in detail an experimental setup that only requires an external
sound card and minor electronic skills, works on a conventional PC, is cheaper than alternatives, and requires almost no
programming skills. It is intended for presenting any auditory stimuli and recording tapping response times with within 2-ms
precision (up to - 2 ms lag). This paper shows why desired accuracy in recording response times against auditory stimuli is
difficult to achieve in conventional computer setups, presents an experimental setup to overcome this, and explains in detail
how to set it up and use the provided code. Finally, the code for analyzing the recorded tapping responses was evaluated,
showing that no spurious or missing events were found in 94% of the analyzed recordings.

Keywords Timing experiment · Auditory stimuli · Sensorimotor synchronization

Humans have a very distinct ability to synchronize motor
movements to regular sound patterns. We can finger-tap or
sway along to a metronomic pulse and, moreover, we are
able to extract an underlying clock, the beat, from non-
isochronous rhythmic patterns (Repp & Su, 2013). Beat
perception is a fundamental component for experiencing
music, ranked among life’s greatest pleasures (Dubé & Le
Bel, 2003).

This ability to synchronize movement to an external
stimuli —known as sensorimotor synchronization or SMS
—has been studied in detail. Studies have revealed slowest
and fastest tapping rate limits, what is the most common

� Martin A. Miguel
mmiguel@dc.uba.ar

1 Universidad de Buenos Aires, Facultad de Ciencias
Exactas y Naturales, Departamento de Computación,
Buenos Aires, Argentina

2 CONICET-Universidad de Buenos Aires, Instituto
de Investigación en Ciencias de la Computación
(ICC), Buenos Aires, Argentina

spontaneous tapping rate, and how it evolves from faster
to slower with age, that age allows us to synchronize
to a wider rate range and that musical training improves
synchronization accuracy. Several models of how we
synchronize to rhythms and perform corrections in our
tapping to compensate for changes in the pacing signal have
been introduced and tested experimentally. When analyzing
this phenomenon from the perspective of music, studies
have found that the rhythmic structure of the musical signal
affects synchronization precision. For a full review, please
refer to Repp (2006) and Repp and Su (2013).

To understand these phenomena, behavioral studies
require an experimental setup that allows presenting an
auditory stimuli and record participants’ responses with
great time fidelity. In several cases, it is also important to
capture the asynchrony between a participant response and
the onset times present in the stimulus. Figure 1 presents the
common scheme of a trial in an SMS experiment.

This general scheme can be instantiated in experiments
performed in the literature, as presented in Fig. 2. The
study in Krause et al. (2010) explored the relationship
between sensorimotor synchronization and musical training.
One of the tasks consisted of tapping in synchrony to an
isochronous stimuli in two modalities: visual and auditory.

/ Published online: 3 August 2021

Behavior Research Methods (2022) 54:712–728

1 3

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-021-01653-y&domain=pdf
http://orcid.org/0000-0001-7091-237X
http://orcid.org/0000-0001-6348-1559
mailto: mmiguel@dc.uba.ar

Fig. 1 Schematic of trial in a sensorimotor synchronization (SMS)
experiment. A trial consists of an auditory stimulus with identifiable
onsets developing in time. A participant has to listen to the stimuli and

produce responses. The measure of interest is the time interval between
the participant’s response and the stimulus’ onset time

In the auditory modality, the trial presented an isochronous
tick to which the participants had to synchronize until it
stopped (see Fig. 2a). In McAuley et al. (2006), participants
of different ages were asked to tap in synchrony to
a metronome to study whether age changed the ability
to synchronize at different tapping rates. Trials started
with an isochronous tick to which the participant had to
synchronize, but they were also asked to continue tapping
to the metronome’s rate after it had stopped. This paradigm
is known as synchronization-continuation (see Fig. 2b). The
task presented in Repp et al. (2005) asked participants to
synchronize to non-isochronous stimulus by reproducing it.
It also uses a synchronization-continuation paradigm where
the continuation phase may contain a pacing signal instead
of the original signal (see Fig. 2c).

Other paradigms that fit into the general experimental
setup scheme proposed are auditory Go/No-Go (Barry
et al., 2014) tasks and auditory time interval reproduction
(Daikoku et al., 2018). The Go/No-Go task presents one
of two stimuli, with one designated as target. During
the experiment, each trial consists of presenting one of
the possible stimuli and participants must respond only
when the target stimulus is presented. In the auditory
mode, stimuli are sounds, and target stimulus may be
distinguished, for example, by pitch. In a time interval
reproduction task, a time interval is presented by two sounds
separated in time. Afterwards, participants must try to
reproduce the interval as accurately as possible. Both task
schemes are presented in Fig. 2d and e, respectively.

The setup also allows performing tasks with richer
auditory stimuli where participants must signal the time
location of relevant events. In general, these experiments
fit the trial description presented in Fig. 1. For example,
the data collection procedure in McKinney et al. (2007)
required participants to tap to the beat to 30-s music
excerpts. This configuration mimics Fig. 1 with the
exception that the stimulus did not have relevant onset

times. Falk and Bella (2016) presented participants with
repeated spoken sentences where the second presentation
could include a word change. Participants were required to
tap as soon as the change was detected and response time
was measured. This constitutes a Go/No-Go task (Fig. 2d).
In this case, the relevant onset time is the perceptual
center of the changed word. A different example of a time
interval reproduction task is performed in Noulhiane et al.
(2007). There, participants were asked to listen to sounds of
different lengths and emotional valences and then reproduce
its duration. In contrast to the example in Fig. 2e, the
auditory stimulus included the sound, a pause of varying
length and a pure tone. The duration was indicated by the
participant performing a single tap after the pure tone. In
this case, the relevant onset is the beginning of the tone.

Recording stimuli onset times and participants’ response
times precisely cannot be directly achieved in an experi-
mental setup using only a computer and requires specialized
equipment or software. Setups presented in the literature
either use specific input devices (mostly MIDI instruments)
(Snyder & Krumhansl, 2001; Fitch & Rosenfeld, 2007;
Repp et al., 2005; Patel et al., 2005; Babjack et al., 2015),
specialized data acquisition devices (Elliott et al., 2014) or
low-level programming of a microcontroller (e.g., Arduino)
to work as an acquisition device (Schultz & Palmer, 2019;
Bavassi et al., 2017a). Drawbacks of these setups come
either from the cost of the equipment or the technical
skills required. MIDI input devices and data acquisition
devices (DAQs) generally used cost over 200 USD. A pro-
grammable micro-controller is cheaper (about 30 USD) but
requires low-level programming skills and does not include
the input device.

In this paper, we present an experimental setup that
requires no programming skills, is simple to assemble, and
costs under 60 USD (including the input device). Beyond
simplicity and affordability, the setup proposed focuses on
reliably capturing the time interval between stimulus onset

713Behav Res (2022) 54:712–728

1 3

Fig. 2 Instantiations of SMS trials in various experiments

and the participant’s response. To manage this using MIDI
devices, latency times for both input and output devices
must be verified (Finney, 2015). On the other hand, using
a micro-controller can provide accurate stimulus timing but
cannot easily produce rich sounds (Schultz & van Vugt,
2016). A solution with precise input and output timing
using specialized equipment and software is presented in
Babjack et al. (2015). More recently, some software setups
allow presenting auditory onsets with precision and ease,
but still rely on expensive input equipment to gather timely
responses (Bridges et al., 2020).

The next section (“Problem description”) describes in
detail why it is not straightforward to record stimuli to
response time intervals using only a computer’s input
and output hardware and more sophisticated solutions are
required. This section also reviews previous solutions to
the problem. In section “Setup description and installation”,
the setup presented here is described in detail along with
assembly instructions. The main features and limitations of
the setup are described in detail there. The section “Tool suit
and usage workflow” presents the software tools provided
to use the hardware setup and the evaluation performed

714 Behav Res (2022) 54:712–728

1 3

on the precision of the method for collecting participants’
responses.

Problem description

The commonly expected setup to run the described experi-
ments in a personal computer would be to have the computer
present the stimuli (in this case, audio) and simultaneously
record participants’ responses via standard input devices
such as a keyboard or a mouse. In more detail, this situation
implies the following steps in time:

1. Computer program produces auditory stimuli and
records stimuli onset time (oc).

2. Sound is produced on the speakers or headphones and
heard by the participant (op).

3. Participant produces a response by operating the input
device (keyboard, mouse, etc.) (rp).

4. The response is captured by the computer and the time
is recorded (rc).

5. Response time is calculated from the times recorded by
the computer (rtc = rc − oc).

The situation described above is depicted in Fig. 3. The
issue with this simple conception of the experimental setup
is that the moment where the auditory stimuli is actually
produced may be significantly delayed from the moment
the computer program decided to produce the sound (�o =
op − oc). Additionally, the time the computer learns a
keyboard key is pressed can be much later than the time
the key was effectively pressed (�r = rp − ro). As
a consequence, the response time captured (rtc) may be
different than the real response time (rtp).

The delays in stimuli production (�o) and response cap-
ture (�r) are analyzed in two magnitudes: lag (or accuracy)
and jitter (or precision). Lag refers to a constant delay
between the two onset or response times. Jitter refers to the
unknown variability in the delay. If the delay is thought of
as a random variable, the lag or accuracy would be repre-
sented by the expected delay and the jitter or precision with

the standard deviation. Depending on the setup and exper-
imental question at task, lag can be cancelled out. In some
setups, it may be possible to measure and subtract or, if the
question is a comparison between groups, the comparison
of response times will inherently ignore such delay. On the
contrary, jitter is unknown and may differently affect each
trial, being therefore more difficult to disregard.

In common computers, onset delay (�o) may be caused
by several factors. In a standard installation with an operat-
ing system, several layers of software drivers exist between
the experiment’s program and the sound card that translates
the digital encoding of sound into electric pulses for the
speakers. These layers may cause the message to be delayed
between the user’s software and the hardware. An explo-
ration of the effects of different sound card configurations,
computer hardware, and operating system on onset delay is
presented in Babjack et al. (2015), showing that onset delay
is generally greater than 20 ms with standard deviation rang-
ing from 1 ms to over 20 ms. Finally, some sound-producing
devices, such as MIDI instruments, may also require time
to process the onset digital signal to effectively produce
sound. Regarding responses, capture delays (�r) can also
be a product of the transit from the driver receiving informa-
tion from hardware devices and the experiment’s software.
Some devices may also introduce delays between receiving
the participant’s pressure action and producing a signal. For
example, standard keyboards are known to have a lag larger
than 10 ms, with varying jitter of about 5 ms (Segalowitz &
Graves, 1990; Shimizu, 2002; Bridges et al., 2020).

Proposed approaches

There are two main approaches to overcome the latency
problems described: either reduce the delays (�o and �r)
below a required value or record the actual onset and
response times perceived and provided by the participant
in a way that is independent of the computer and does not
introduce relevant latencies.

Finney (2001) takes on the first approach and uses MIDI
devices for both input and output. The Musical Instrument

Fig. 3 Depiction of the Delays between computer and participant’s
stimuli onset and response times. In a common computer setup,
response times are calculated from the onset and response times known
to the computer (oc and rc, respectively). These times may differ from

the actual onset and response times perceived and produced by the par-
ticipant (op and rp). As a result, the obtained response time (rtc) is
different from the one that is of interest (rtp)

715Behav Res (2022) 54:712–728

1 3

Digital Interface (MIDI) is a communication protocol for
sending and receiving information on how and when to play
musical notes through MIDI devices. Examples are physical
instruments such as keyboards or drum pads that can
produce messages, synthesizers that receive MIDI messages
and produce sounds, or computers with MIDI ports that
may do both. In his work, Finney presents FTAP, a software
tool for running experiments involving auditory stimuli and
response time collection. For timing precision, FTAP takes
advantage of the MIDI protocol’s capacity to exchange
messages at approximately one message per millisecond.
The software package includes a utility to test whether
such an exchange rate is achieved in a specific computer
setup (computer, operating system, MIDI drivers, and MIDI
card) as not every configuration allows such an optimal
rate. Moreover, testing of the input and output hardware
used is recommended, as it has been seen that some MIDI
input devices can introduce delays of several milliseconds
from the moment it is actuated until the MIDI message
is sent (Schultz & van Vugt, 2016; Finney, 2015). End-
to-end testing of an experimental setup implies measuring
the complete time from the participant’s input (pressing
on the device) to the time the computer captures the
message or auditory feedback is produced, depending on the
requirements of the experiment. Commercial equipment for
this purpose has been presented in Plant et al. (2004) and
an alternative using an Arduino controller is described in
Schultz (2019).

Schultz and van Vugt (2016) focuses on presenting a
setup to provide timely auditory feedback to a participant’s
response. To do so, they capture the response and provide
feedback using a programmable micro-controller (namely
Arduino). Micro-controllers often provide input and output
pins that allow interfacing with external hardware by
measuring and producing changes in the voltage of the
electrical current that runs through the pins. The importance
of using a microcontroller lies in that it provides the
programmer with direct access to the processor and the
input and output pins. This allows more precise control over
the delays of processing the input and producing the output,
in comparison with using a computer with an operating
system where the delays of the hardware drivers and the
multitasking capabilities are harder to manage or know. In
their proposed setup, they capture the participant’s tap using
a force-sensitive resistor (FSR) (depicted in Fig. 7). An FSR
is a device shaped as a flat surface that varies the voltage
of an electrical current according to the pressure it receives.
Such changes in voltage can be measured in an input pin in
the micro-controller to recognize when the device is being
pressed. Finally, they test two methods to provide feedback
from the Arduino. One method is connecting a headphone
directly to an output pin of the controller. This allows the
program to produce feedback very quickly (delay of 0.6 ms,

SD of 0.3 ms) with the caveat of it being a simple sound.
Another method tested is the Wave Shield for Arduino, an
extension hardware that allows reproducing any sound file.
The Wave Shield feedback requires more time to emit a
sound (2.6 ms on average) but still has low jitter (0.3 ms).

The timing mega-study in Bridges et al. (2020) analyzes
onset lag and jitter for auditory and visual stimulus on
a variety of existing software packages for designing and
running behavioral experiments on PC. These packages
provide utilities to generate programs that run experiments,
present stimuli, collect answers, randomize trial conditions,
among other features commonly used. Moreover, these
software packages manage drivers and settings in order to
produce onsets, both auditory and visually, with less than
a millisecond unknown delay. The results of this work
show that common computer hardware can be used to
produce auditory stimuli quickly in spite of the stack of
drivers and multitasking mentioned. To do so, the right
software configuration is required. For example, PsychoPy
must be updated to version 3.2+, which recently included
the correct software to achieve millisecond auditory onset
presentation. The issue still remains on the precision of the
input capture, which in Bridges et al. (2020) is solved by
using a specialized response button device.

In Babjack et al. (2015), different configurations of com-
puter hardware, sound cards, sound drivers and operating
systems are tested for lag and jitter on presenting sounds.
In this study, audio onset lag is generally above 20 ms with
the exception of some configurations of sound cards and
drivers. The work also presents the Chronos response box,
which uses specialized hardware and software that inter-
faces with the E-Prime software allowing presentation of
auditory stimuli with less than a millisecond lag and jitter.
The response box is also equipped with buttons that allow
collecting response data also with millisecond precision.
This is an all-in-one solution with the caveat that it requires
its own proprietary software.

The MatTAP tool suite, presented in Elliott et al. (2009),
uses the second approach to work around the delays and
achieve precise recording of stimuli and response times.
This approach is based on using a recording device indepen-
dent of the computer running the experimental procedure
in such a way that producing the stimulus and record-
ing responses is not affected by the software stack of the
operating system. More specifically, they use a data acqui-
sition device (DAQ). DAQs are devices that can produce
and record multiple analogue and digital signals simulta-
neously with a sampling rate of hundreds of kilo-samples
per second, providing sub-millisecond precision. The Mat-
TAP tool suite is a MATLAB toolbox that communicates
with the DAQ in order provide the stimuli onset times and
sounds. The DAQ then produces the sounds and simul-
taneously records the input from the input device. Each

716 Behav Res (2022) 54:712–728

1 3

auditory onset is accompanied by a digital onset on a
separate channel that is required to be looped back into
a recording channel of the DAQ. Although it produces
the stimulus without lag relative to the stimuli sequence,
there may be a delay introduced by the initial communi-
cation between the computer and the DAQ. As a conse-
quence, the loop back is required to be able to synchronize
the stimuli onset times with the response times (see the
next section and Fig. 4 for a more detailed explanation).
Finally, if the DAQ has more than two input channels, Mat-
TAP is capable of recording two input devices. Also, the
digital output signal produced with each stimulus onset
may be used to drive another output device. The Mat-
TAP tool suit provides software utilities for creating up to
two metronomes for synchronization experiments, allows
managing settings for multiple trials, and also collects the
experiment response data for each trial. The tool suit also
provides a customizable utility to analyze the input signals,
extract responses, and calculate stimulus to response asyn-
chrony times.

The setup proposed here also follows the second
approach. In comparison with MatTAP (Elliott et al., 2009),
we use an external sound card as an acquisition device,
which works as a less expensive replacement. Moreover, the
software tool set provided here does not require proprietary
software such as MATLAB. Finally, we present instructions
to assemble an input device that can be connected to the
sound card and provide accurate response time recording.

Setup description and installation

In “Problem description” we established twomain approaches
to solve the issues that arise when recording response times
to auditory stimuli due to delays in both onset presentation

and response time collection. One approach is to reduce
such delays below an accepted value. Another approach is
to record the onset times actually perceived and produced
by the participant with an independent recording device.
Our setup takes the second approach and proposes to do
so using either the sound card already present in common
desktop computers or an inexpensive external sound card.
In this section, we present why our setup addresses the
problem, how our setup is assembled, and what the expected
workflow is for running experiments with it. To complete
the setup, this work presents instructions to assemble a
pressable input device using a force-sensitive resistor (FSR)
and an open-source software tool suit to produce the stimuli,
record the responses, and obtain response times from our
proposed input device. The instructions to assemble the
input device are introduced in the next subsection. Then
we present instructions to connect the input device, the
recording device, and test the setup connections. The tool
suite is introduced in the next section.

The key component of the approach used in this setup
is to be able to record both the participant’s responses
and the stimuli simultaneously. This allows having the
stimuli synchronized with the responses on one device’s
timeline. Because one of the delays is introduced between
the moment the experiment code produces a stimulus and
when it is played on the output device, producing each
stimulus separately would add variability to the inter-stimuli
interval. Such behavior can render certain experimental
conditions unusable. Our proposal is to package all stimuli
onsets into one audio file. This introduces only one delay on
when the whole stimuli set is reproduced (�s = sc − sp)
but no variability in inter-stimuli intervals. Finally, stimuli
and participant’s responses are recorded by the device.
Stimuli onset times can be retrieved by synchronizing
the output audio file with the recording. Response times

Fig. 4 Representation of stimuli and recording times when using an
independent recording device. This approach adds a new device that
simultaneously records the stimuli and the responses with high accu-
racy. Stimuli are presented as one audio with multiple onsets (box

containing lines). The stimulus presentation time may lag from the
computer command but is recorded at the same time it is heard by the
participant (sc ≤ sp and sp = sr). Response times (ri) are captured in
synchrony with stimulus presentation

717Behav Res (2022) 54:712–728

1 3

can be obtained from the recorded signal relative to the
beginning of the stimulus. How this procedure is performed
is explained in section “Tool suite and usage workflow”.
The setup and new definition of delays is depicted in Fig. 4.

To achieve recording the stimuli and responses simulta-
neously, the recording device used must have a stereo output
and at least two input channels (or one stereo input). With
this, one channel of the stereo output can be looped back
into one of the input channels. Moreover, to keep the setup
simple, our proposed setup requires the recording device
to have a secondary output that mirrors the primary. While
the primary output signal is looped-back into one input
channel, the secondary output is connected to the output
device (speakers or headphones). Finally, the signal of the
response device is connected to the second input channel of
the recording device. With this connection setup, the audio
input of the recording device can be collected into a stereo
file containing the stimulus in one channel and the response
signal on the other. The connections mentioned are depicted
in Fig. 5. The audio output and input signals are depicted in
Fig. 6.

In the next subsection, we present how to assemble the
input device used in the complete version of the setup. Then
we show how to connect the input device, the recording
device, and the computer, and then test that the connections
work correctly.

Input device (FSR)

Our setup uses a pressable input device. The main compo-
nent of the device is a force-sensitive resistor (FSR), a flat
sensor whose electrical resistance is reduced when pressed
(Fig. 7). The variance in resistance can be used to create a
variation in voltage that can be recorded by the audio input
of a sound card. The proposed device uses a 3.5-mm female
audio jack that allows connecting the input device with the
sound card using standard audio cables.

The circuit allowing this variation requires a voltage
source. We propose using a standard USB (type a) cable
connected to a computer for this purpose. The voltage vari-
ation provided to the sound card can saturate the recording,
depending on the device’s sensitivity. This saturation can
modify the activation profile captured from the FSR. The
proposed circuit adds a voltage divisor that allows limiting
the maximum voltage received by the sound card. In our
proposal, we use a 10k� potentiometer, another adjustable
resistor that can be set by trial and error to prevent the signal
from saturating the recording.

The proposed circuit is presented in Fig. 7. For the volt-
age source, we use a standard USB (type a) cable connected
to the computer. USB cables have four pins, two for data,
one that drives a 5-V signal (VBUS or VCC), and a ground
connection (GND). The VBUS pin (Fig. 7, red cable)

Fig. 5 Schematic of the connections of the setup. The computer exchanges information with the recording device (sound card). One of the device’s
sound outputs is sent to the participant and the other has one channel looped-back to one of the recording device’s input channels. The response
device is connected to the other input channel

718 Behav Res (2022) 54:712–728

1 3

Fig. 6 Example of stimulus audio signal (middle) and an input record-
ing (bottom). The stimulus signal is an arbitrary stereo audio file (b). In
this case, it is an audio signal constructed from designated onset times

(a). The input recording (c) contains on one channel the looped-back
signal from the stimulus (0) and on the other the electrical signal from
the input device (1)

is connected to the divisor circuit, where the centerpiece
is the potentiometer (Fig. 7, purple cable). The division
goes to the FSR (orange cable) and back to the ground
(black cable). The other end of the FSR (yellow cable)
is connected to the 3.5-mm jack (blue) and simultaneously
grounded through a 22k� resistor (black). More detailed
instructions for assembly are presented as a video tutorial,
linked in the Open Practices Statements section.

The next subsection explains how the FSR input device
is connected with the rest of the setup and how to test the
connections. It also explains how to use the potentiometer
to adjust the signal amplitude to avoid saturation. The exact
circuit used in this work is presented in Fig. 17 and replaces
the potentiometer with two resistors selected for the sound
card used (Behringer UCA-202). It has a further adjustment
to deliver a descending (instead of ascending) voltage
change when the FSR is actuated given that this sound card
inverts the signal when recording. The tool suite provided
here has a setting that allows managing this situation.

Setup assembly

The three key components of the setup are the recording
device with two input channels and output channels, the

loopback between output and input, and the mixing of
the input device with the loopback in the stereo input. A
schematic of these connections is presented in Fig. 5. In
Fig. 8 we present the same connection scheme with the
picture of the devices connected. Given that our external
sound card (Fig. 8a) uses RCA plugs, we use a male-
male RCA-RCA cable to perform the loopback (Fig. 8b).
Although we used a stereo cable, a mono cable is sufficient.
Finally, we connect the FSR setup with the recording device
using a 3.5-mm plug to RCA cable (Fig. 8c). Again, we used
a stereo cable, but a mono cable is sufficient.

The connections can easily be tested by playing an
audio from the computer and recording the audio while
tapping on the input device. In Fig. 9, we present part
of the interface of an open-source sound recording and
editing software (Audacity Team, 2021). By recording audio
from the recording device with the loopback connection, an
audio track such as the one in Fig. 6c should be produced.
The track should contain the stimulus signal on one
channel and spikes corresponding the tapping on the other
one.

This setup and software can also be used to inspect the
recording of the FSR signal to calibrate the FSR input
device. Peaks are expected to look as shown in Fig. 9b. In

719Behav Res (2022) 54:712–728

1 3

Fig. 7 Setup diagram for a tapping input device using a force-sensitive
resistor (FSR). The setup drives current with varying voltage from a
VBUS pin of a USB (type a) connector to the pin of a 3.5-mm audio
jack. Voltage is limited using a voltage divisor circuit (orange and
purple). The final output voltage into the audio jack depends on the

resistance provided by the FSR, which drops with pressure. The higher
the pressure, the higher the voltage provided in the audio jack and
recorded by the sound card. The schematic was drawn using Fritzing
(Knörig et al., 2009)

case the FSR signal saturates the audio card, the peak will
contain a flat top, as shown in Fig. 9c. This can be solved by
adjusting the potentiometer, which regulates the maximum
height of the peak. Another issue might come from the
sound card inverting the signal as in Fig. 9d. This can be

solved by inverting the audio recording on the recorded
channel. An option to manage this is provided in the tool
suite described in “Tool suite and usage workflow”.

A website where further detail and tutorials are provided
is detailed in the Open Practices Statements section.

720 Behav Res (2022) 54:712–728

1 3

Fig. 8 Reference pictures of the elements and connections of the setup

721Behav Res (2022) 54:712–728

1 3

3. Playback

1. Input device selection

2. Record

Fig. 9 Interface of Audacity (Audacity Team, 2021), used to test the
recording. To test the setup, a recording of the computer’s output and
inputs on the device must be performed. The input device (in case of
an external sound card) must be selected (device selection menu a.1),
recording should be started and stopped while the input device is oper-
ated (record button a.2), and then the recording should be played and a

mixture of the sound being played and the tapping on the input device
should be heard (playback button a.3). A peak is expected to look as
presented in (b). (c) presents the case where the peak saturated the
recording, resulting in a flat top. (d) presents an inverted peak, where
the first peak is negative

Tool suite and usage workflow

To make the use of the proposed setup as convenient as
possible, in this work we present a tool suite to produce
the stimuli, record responses, and analyze the recordings.
The tools are Python programs open-sourced under an MIT
license. The tool suit was developed using the UNIX

Philosophy (Raymond, 2003), so each program is indepen-
dent and dedicated to solving one issue. We also provide
code examples for using the setup with the experimental
design frameworks OpenSesame (Mathôt et al., 2012), Psy-
choPy (Peirce et al., 2019), and Psychtoolbox (Kleiner et al.,
2007). We provide more details of these examples at the end
of the section.

722 Behav Res (2022) 54:712–728

1 3

546
1638
1911
3003
3549
4914

Fig. 10 Example text file indicating onset times in milliseconds, one
per line

Next, we outline the workflow considered and what are
the tools we provide to address each stage. An expected exper-
iment design workflow would have the following stages:

• Define the stimuli. Stimuli can be any arbitrary set of
audios. Many sensorimotor synchronization experiments
use stimuli conformed by discrete sound onsets at des-
ignated times. We provide a utility (beats2audio) to
transform a text file with onset times into an audio that
produces a sound on each onset time.

• Expose participants to the stimuli and collect
responses. Given a stimuli set, participants should
hear each audio and produce responses by tap-
ping on the response device. The utility provided
(runAudioExperiment) receives a configuration
file declaring the audio stimuli set and presents each
one while recording the response. Responses for each
trial are saved as an audio file (Fig. 6c) on a designated
output folder.

• Extract tap times from the recordings. Using the
original stimulus and the response recording, tap times
are extracted relative to the beginning of the stimulus. A
different tool is provided for this purpose (rec2taps).

In case the stimulus to be used is an audio with
simple identical onsets on designated times, the utility
beats2audio receives a text file (Fig. 10) with a list
of onset times in milliseconds and outputs an audio file
(Fig. 6b). A click sound is produced on each onset time.

To run the tapping experiments, i.e., producing the
stimuli and recording the loopback and input, we provide
a simple utility named runAudioExperiment. The
utility requires three arguments: the path to a configuration
file, the path to a trial file, and the path to an output
directory where recordings are to be stored. The experiment
execution follows the steps depicted in Fig. 11. Trials are
run in a succession, each trial consisting of five steps.
First, a black screen is presented for a specified duration.
Secondly, screen turns to a (possibly) different color and
white noise combined with a tone is played. This option
is intended to help remove rhythmic biases between trials.
Third, the screen goes black again and the trial stimulus
is played as recording is enabled. Fourth, the screen
stays black in silence. Recording continues in this stage.
Finally, another optional colored noise screen is produced.
Following this screen, the next trial, starting with the black
screen, begins.

The configuration file provided as the first argument of
the utility specifies the parameters of the execution of the
steps mentioned above (Fig. 12). The trial file is a plain text
file containing the stimuli set, one per line as paths to audio
files. The output directory defines where the experiment
outputs are to be saved. The utility produces as an output
one recording per trial, as obtained from the sound device,
and a csv file containing a table describing the details of
the experiment execution (Table 1). The name of the output
folder can be used to identify experiment runs either by date,
run id number, or participant’s initials.

The last utility, rec2taps, extracts tap times from the
audio recordings produced during the experiment. To do
so, it requires two arguments, a trial recording audio file
and its original stimulus file. The utility uses the original
stimulus audio to find its starting point (Fig. 4) in the
recording. It does so by looking for the maximum cross-
correlation between the stimulus and the loopback channel
of the recording. Then, using the channel where the input
signal is recorded, the utility finds peaks in the signal and
extracts tap times as the location of the maximum of each
peak. Given that the beginning of the original stimulus can
be found in the trial’s recording, the playback delay can be
subtracted from tap times, obtaining tap times relative to
the beginning of the stimulus. Tap times are printed out in
milliseconds, one per line.

Fig. 11 Depiction of a trial

723Behav Res (2022) 54:712–728

1 3

black_duration: 600 # Duration of black screen (in ms)
c1_duration: 3000 # Duration of first noise screen (in ms)
c1_color: "#afd444" # Color of first noise screen
c2_duration: 000 # Duration of second noise screen (in ms)
c2_color: "#afd444" # Color of second noise screen
randomize: false # Whether trial order should be randomized
sound_device: "default" # String or int identifying the sound deviced used
silence_duration: 1500 # Duration of silence after stimuli playback
c_volume: 1.0 # Volume of cleaning sound

Fig. 12 Configuration file example

Detailed instructions on how to use the utilities described
are provided in each code’s project readme files. Links to code
projects are listed in the Open Practices Statements section.

The setup can also be integrated with other software
frameworks for running experiments such as OpenSesame
(Mathôt et al., 2012) or Psychtoolbox (Kleiner et al., 2007).
In general, all that is required to integrate the setup is
to be able to play an audio file and record the input
of the sound-card simultaneously, having the loopback
connection in place. The recording must then be analyzed
to extract the taps and synchronize them to the beginning
of the stimuli (e.g., using rec2taps). We provided code
examples that integrate the setup with other experiment
frameworks (OpenSesame, PsychoPy, and Psychtoolbox).
These examples can be found in the example folder in
the repository for the runAudioExperiment utility. In
Python-based frameworks, we used the same library for
playing and recording sounds simultaneously that was used
in our tool. In Psychtoolbox there was no such option, but
an equivalent result was achieved by starting and ending the
recording before and after the audio playback, respectively.

The next subsection informs in more detail how tap times
are extracted from the recording and analyzes its accuracy.

Signal analysis

The goal of the setup is to be able to record a participant’s
tap times with respect to the stimulus with high precision.
We achieve this by recording the tap action and the stimulus
as it is heard by the participant at the same time. This allows
synchronizing the recording with the original stimulus
signal and therefore aligning the tap times with respect to
the beginning of the stimulus. Because the setup does not

limit the delay between the moment the computer proposes
to play the stimulus and the time it is actually heard (�o in
Fig. 3), the only two timing validations required are whether
the recording can be correctly aligned back to the original
stimulus and whether tap times are captured with precision
from the recorded signal of the input device.

First, the proposed loopback connection (Fig. 5) records
the audio signal directly from its output. The audio signal
is recovered as is, allowing for correct alignment of the
signal with its recording. Second, in the presented setup, the
signal from the input device is a function over time of the
activation of the device, recorded as an audio signal. From
this signal, we intend to extract individual time points that
represent each actuation of the input device. In electronic
input devices as the one presented here (the FSR), the
activation signal is not a simple on-off function, but a curve
describing the change of pressure on the device through
time. To obtain individual tap times for each actuation,
the signal must be processed to recognize each activation
and then select a point in time within the curve that is
representative of the time of actuation.

This process raises two aspects subject to analysis. First,
whether the processing misses any individual activation or
detects spurious activations. Secondly, how representative
the selected time point is within the activation curve of the
actuation process. Considering the functionality of the FSR,
the signal peak is the moment where the highest pressure
is applied to the input device. We decided to select the
maximum of the activation curve as a representation of the
tap time. We will now focus our attention on the analysis of
the performance of the signal processing algorithm used in
rec2taps when applied to recordings performed with the
presented input device.

Table 1 Example of an output table from an experiment run

index stimulus path recording path black duration c1 duration c2 duration silence duration

0 s1.wav s1.rec.wav 600 300 0 1000

724 Behav Res (2022) 54:712–728

1 3

The proposal of a force-sensitive resistor (FSR) as input
device was due to the clarity of the signal provided. The
signal is very close to zero when it is not being actuated
and then rises rapidly, proportionally to the pressure applied.
Figure 13a shows the shape of one FSR activation when
aligned to the detected maximum and normalized to the
peak’s height. Figure 13c shows mean activation over
time for 3000 peaks from 68 recordings. The process to
detect activations starts by rectifying (setting to 0) the
signal below a threshold defined as 1.5 times the standard
deviation of the signal amplitude (Fig. 13b). Afterwards,
peaks are found as points in the signal that are local

maximums and have a prominence of at least the mentioned
threshold and are distanced between each other at least
100 ms. The prominence of a peak measures the height
relative to the smallest valleys between a possible peak
and any closest greater peak. Our utility uses the function
find peaks from the scipy.signal package (version
1.2.0) (Virtanen et al., 2020).

To inspect the recall and over-sensitivity of the algorithm
used, we inspected its performance over a set of tapping
recordings from a beat tapping experiment using the
proposed setup (Miguel et al., 2019). The experiment
required participants to listen to non-isochronous rhythmic

Fig. 13 Shape of an FSR activation peak. The main line shows mean relative activation over-time. Time zero represents the maximum of the peak.
Shading represents standard deviation of the activation

725Behav Res (2022) 54:712–728

1 3

passages performed by identical click sounds and tap to a
self-selected beat. Participants were free to choose the beat
and were allowed to change the beat mid-rhythm or even
pause tapping. The data set comprises 518 recordings from
21 participants. The evaluation of the peak picking process
consisted of visually inspecting the recording signal with
the detected tap times overlapped and annotating for each
recording the number of missing and spurious activations.
Inspection was performed by one of the authors. On 491
(94.79%) of the audios, no missing or spurious activations
were seen and only on five (0.97%) were more than two
missing or spurious activations reported. The experiment
contained rhythms of varying complexity, some of which
had a very ambiguous beat. As a consequence, some
participants produced taps of varying strength, including
some weak onsets. Whether these activations are to be
considered may depend on the nature of the experiment and
can require making the peak picking process more sensitive.
The provided utility, rec2taps, allows configuring the
mentioned detection threshold as a parameter. It also allows
producing plots of the FSR signal and detected peaks to
calibrate the parameter. In the Supplementary Material, we
present plots as the one produced by the utility as examples
of tap detections for both general cases and for cases with
taps of varying strength to illustrate the workings of the peak
picking procedure.

A final caveat of the signal processing regards the usage
of a sound card as the recording device. Sound cards
generally high-pass filter the signal at about 5 Hz. As a
consequence, the shape of the input signal may be modified,
especially if the tapping action was too soft. We examined
the effect of a high-pass filter on a FSR signal recorded
with a digital signal acquisition device at 1000 Hz. To do
so, we resampled the original 1000 Hz signal to 48,000
Hz using a linear interpolation, applied a 5-Hz high-pass
filter and recalculated the location in time of the peak of the
modified signal. We looked into 1508 tap activation profiles
from a synchronization experiment. In 67.57% of the cases,
the maximum of the filtered signal remained in the same
millisecond position. In 26.72% and 5.5% of the cases, the
maximum of the filtered signal was 1 or 2 ms ahead of the
original signal, respectively. In 0.2%, the shift was greater
than 2 ms, up to -25 ms. We hypothesized the negative lag
of the maximum of the filtered signal to be related with a
soft tapping action. We inspected this hypothesis by looking
at the maximum amplitude of the FSR signal with respect
to the peak’s lag. Effectively, lags greater than 2 ms were
seen only in taps three times softer than average. Figure 14
presents the distribution of the amplitude of the peaks for
each lag found.

Fig. 14 Distribution of tap strength for delays of filtered signal
maximum

Discussion

The current work presents an experimental setup intended
to collect timed responses with high precision (less than -3
ms of delay) synchronized to onset times in auditory stimuli.
Another main characteristic of the proposed setup is its
inexpensiveness and simplicity. The introduction presents
the general schematic of experimental trials with auditory
stimuli where the quantity of interest is elapsed time from
the moment a stimuli is heard until a response is provided.
In the “Problem description” section, we explained why this
quantity cannot be measured in a standard experimental
setup using a computer. We also review previous approaches
to the issue. In the “Setup description and installation”
section, we describe our proposed setup and provide
detailed instructions for assembly. Finally, in “Tool suite
and usage workflow”, we present an open-source software
tool suite to run experiments using the presented setup
and references to code examples for integration with
other experiment design software (e.g., OpenSesame and
Psychtoolbox).

Being able to collect response times to auditory stimuli
with precision cannot be easily done using a standard
computer with default input devices (keyboard or mouse).
This is due to latencies introduced between the input device
and the experiment software or between the experiment
software and the output device. Approaches to this issue
are either using specialized hardware for input and output,
running the experiment using a programmable micro-
controller or recording auditory output and responses in a
separate recording device. Our setup uses the last method.

726 Behav Res (2022) 54:712–728

1 3

Although this approach has been presented before in
Elliott et al. (2009), we here present a less expensive alter-
native by using an inexpensive recording device. Moreover,
we present assembly instructions for an inexpensive input
device that allows high-precision recording. This setup eas-
ily allows using any audio as stimulus. In addition, we
provide an open-source tool suite for using the setup that
does not require proprietary software. We also provide
integration examples with other open-source experiment
frameworks.

An evaluation of the performance of the software’s
capability to detect participant’s responses is described at
the end of the previous section. The evaluation showed no
spurious or missing activation detections in 94% of the
analyzed recordings and under 1% presented more than two.
Miss-detection of activations was seen to relate to situations
where the tapping action varied in strength throughout the
experiment’s trial.

A main limitation of this setup is that it cannot respond
to participants responses, either by changing the course of
the experiment or providing feedback. In that situation, the
most inexpensive approach is given in Schultz and Palmer
(2019). In case of access to precise input equipment, more
direct setups can be accomplished (Finney, 2001; Bridges
et al., 2020; Babjack et al., 2015). Another caveat of the
setup presented here is a possible shift in response time
in case of soft tapping (see Section “Signal analysis”).
Finally, assembly of the input device requires a minimum
knowledge of electronics.

The main idea of the proposed setup can be extended
to be used in combination with other equipment. For tasks
where more than one type of response is necessary, more
than one input device can be built and connected to separate
recording channels using a sound card with more than two
input channels. Some inexpensive options are available if
two input devices are required. If more are needed, a data
acquisition device (DAQ) can be used in a similar fashion
as explained in Elliott et al. (2009). The setup can also
be used in combination with EEG equipment. The multi-
channel signal of an EEG helmet is recorded in a device
with multiple input channels, one per electrode, and extra
channels that are used for synchronization with the stimulus
computer and other equipment (Bavassi et al., 2017b). In
the same fashion as our proposal, the stimulus output can be
input into the EEG recording device together with the FSR
signal. Later, the recording of the stimulus is aligned with
the original audio, aligning the FSR and EEG signal with
it. As a general rule, any equipment providing an analog
signal can be recorded in synchrony with the auditory
stimulus with a sound card with enough input channels.
If the signal is digital, a DAQ can be used. For example,
common eye-trackers communicate with a computer using
a custom protocol that allows synchronization between

the computer and the eye-tracker. To synchronize the eye-
tracker information with the auditory stimulus, a setup
similar to the previously described for the EEG can be used:
the stimulus and FSR is recorded by a DAQ, together with a
TTL signal from the eye-tracker computer that is then used
to synchronize the recording (Dimigen, 2020; Care et al.,
2020).

In summary, we provide an inexpensive setup for record-
ing responses to auditory stimuli with millisecond precision
together with a software tool suite for using the setup.
The main focus is on getting high-precision response times
relative to the auditory stimulus with minimal calibration.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.3758/s13428-021-01653-y.

Open Practices Statements The software tool suit is available with
an MIT license via GitHub repositories. Data used to evaluate the
precision of the tap extraction algorithm are available upon request.
None of the experiments were pre-registered.

Links to open-source content:

• Detailed instructions, tutorials and discussions on setup assembly:
https://github.com/m2march/tapping setup

• Code for beats2audio utility: https://github.com/m2march/
beats2audio

• Code for runAudioExperiment utility and examples for
integration with PsychoPy, Psychtoolbox and OpenSesame:
https://github.com/m2march/runAudioExperiment

• Code for rec2taps utility: https://github.com/m2march/rec2taps

Acknowledgements This work was carried out by the corresponding
author under a PhD Scholarship provided by CONICET. No conflict
of interests are declared.

Declarations

Conflict of Interests We have no known conflicts of interest to disclose.

References

Audacity Team (2021). Audacity(R): Free audio editor and recorder
[computer application]. Version 2.3.3 from https://audacityteam.
org/.

Babjack, D. L., Cernicky, B., Sobotka, A. J., Basler, L., Struthers, D.,
Kisic, R., . . . , Zuccolotto, A. P. (2015). Reducing audio stimulus
presentation latencies across studies, laboratories, and hardware
and operating system configurations. Behavior Research Methods,
47(3), 649–665. https://doi.org/10.3758/s13428-015-0608-x

Barry, R. J., De Blasio, F. M., & Borchard, J. P. (2014). Sequential
processing in the equiprobable auditory Go/NoGo task: Children
vs. adults. Clinical Neurophysiology: Official Journal of the
International Federation of Clinical Neurophysiology, 125(10),
1995–2006. https://doi.org/10.1016/j.clinph.2014.02.018

Bavassi, L., Kamienkowski, J. E., Sigman, M., & Laje, R. (2017a).
Sensorimotor synchronization: Neurophysiological markers of the
asynchrony in a finger-tapping task. Psychological Research,
81(1), 143–156.

Bavassi, L., Kamienkowski, J. E., Sigman, M., & Laje, R.
(2017b). Sensorimotor synchronization: Neurophysiological

727Behav Res (2022) 54:712–728

1 3

https://doi.org/10.3758/s13428-021-01653-y
https://github.com/m2march/tapping_setup
https://github.com/m2march/beats2audio
https://github.com/m2march/beats2audio
https://github.com/m2march/runAudioExperiment
https://github.com/m2march/rec2taps
https://audacityteam.org/
https://audacityteam.org/
https://doi.org/10.3758/s13428-015-0608-x
https://doi.org/10.1016/j.clinph.2014.02.018

markers of the asynchrony in a finger-tapping task. Psycho-
logical Research Psychologische Forschung, 81(1), 143–156.
https://doi.org/10.1007/s00426-015-0721-6

Bridges, D., Pitiot, A., MacAskill, M. R., & Peirce, J. W.
(2020). The timing mega-study: Comparing a range of exper-
iment generators, both lab-based and online. PeerJ, 8, e9414.
https://doi.org/10.7717/peerj.9414

Care, D., Bianchi, B., Kamienkowski, J. E., & Ison, M. J. (2020). Face
processing in free viewing visual search: An investigation using
concurrent EEG and eye movement recordings. Journal of Vision,
20(11), 1691–1691. https://doi.org/10.1167/jov.20.11.1691

Daikoku, T., Takahashi, Y., Tarumoto, N., & Yasuda, H. (2018).
Motor reproduction of time interval depends on internal temporal
cues in the brain: Sensorimotor imagery in rhythm. Frontiers in
Psychology, 9, 1747. https://doi.org/10.3389/fpsyg.2018.01873

Dimigen, O. (2020). Coregistration of eye movements and EEG in
natural reading: Analyses and review. OSF. osf.io/cd9am.

Dubé, L., & Le Bel, J. (2003). The content and structure of laypeople’s
concept of pleasure. Cognition and Emotion, 17(2), 263–295.
https://doi.org/10.1080/02699930302295

Elliott, M. T., Welchman, A. E., & Wing, A. M. (2009). MatTAP:
A MATLAB toolbox for the control and analysis of movement
synchronisation experiments. Journal of Neuroscience Methods,
177(1), 250–257. https://doi.org/10.1016/j.jneumeth.2008.10.002

Elliott, M. T., Wing, A. M., & Welchman, A. E. (2014).
Moving in time: Bayesian causal inference explains move-
ment coordination to auditory beats. Proceedings of the
Royal Society B: Biological Sciences, 281(1786), 20140751.
https://doi.org/10.1098/rspb.2014.0751

Falk, S., & Bella, S. D. (2016). It is better when expected:
Aligning speech and motor rhythms enhances verbal process-
ing. Language, Cognition and Neuroscience, 31(5), 699–708.
https://doi.org/10.1080/23273798.2016.1144892

Finney, S. A. (2001). FTAP: A Linux-based program for tapping and
music experiments. Behavior Research Methods Instruments &
Computers, 33, 65–72. https://doi.org/10.3758/BF03195348

Finney, S. A. (2015). In defense of Linux, USB, and MIDI systems for
sensorimotor experiments: A response to Schultz and van Vugt.
Unpublished manuscript. Retrieved from http://www.sfinney.com/
images/pdfs/sf/finney2016a.pdf.

Fitch, W. T., & Rosenfeld, A. J. (2007). Perception and production
of syncopated rhythms. Music Perception: An Interdisciplinary
Journal, 25(1), 43–58. https://doi.org/10.1525/mp.2007.25.1.43

Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in
Psychtoolbox-3?.

Knörig, A., Wettach, R., & Cohen, J. (2009). Fritzing: A
tool for advancing electronic prototyping for design-
ers. In Proceedings of the 3rd International Conference
on Tangible and Embedded Interaction, (pp. 351–358),
https://doi.org/10.1145/1517664.1517735.

Krause, V., Pollok, B., & Schnitzler, A. (2010). Perception in action:
The impact of sensory information on sensorimotor synchroniza-
tion in musicians and non-musicians. Acta Psychologica, 133(1),
28–37. https://doi.org/10.1016/j.actpsy.2009.08.003

Mathôt, S., Schreij, D., & Theeuwes, J. (2012). Opensesame: An
open-source, graphical experiment builder for the social sciences.
Behavior Research Methods, 44(2), 314–324. https://doi.org/10.
3758/s13428-011-0168-7

McAuley, J. D., Jones, M. R., Holub, S., Johnston, H. M., & Miller,
N. S. (2006). The time of our lives: Life span development of timing
and event tracking. Journal of Experimental Psychology: General,
135(3), 348–367. https://doi.org/10.1037/0096-3445.135.3.348

McKinney, M. F., Moelants, D., Davies, M. E. P., & Klapuri, A.
(2007). Evaluation of audio beat tracking and music tempo
extraction algorithms. Journal of New Music Research, 36(1),
1–16. https://doi.org/10.1080/09298210701653252

Miguel, M., Sigman, M., & Slezak, D. F. (2019). Tapping to your own
beat: Experimental setup for exploring subjective tacti distribution
and pulse clarity. OSF. osf.io/7sqaw. https://doi.org/10.17605/
OSF.IO/7SQAW

Noulhiane, M., Mella, N., Samson, S., Ragot, R., & Pouthas,
V. (2007). How emotional auditory stimuli modulate time
perception. Emotion (Washington, D.C.), 7(4), 697–704.
https://doi.org/10.1037/1528-3542.7.4.697

Patel, A. D., Iversen, J. R., Chen, Y., & Repp, B. H. (2005).
The influence of metricality and modality on synchronization
with a beat. Experimental Brain Research, 163(2), 226–238.
https://doi.org/10.1007/s00221-004-2159-8

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R.,
Sogo, H., . . . , lindeløv, J. K. (2019). PsychoPy2: Experiments in
behavior made easy. Behavior Research Methods, 51(1), 195–203.
https://doi.org/10.3758/s13428-018-01193-y

Plant, R. R., Hammond, N., & Turner, G. (2004). Self-validating
presentation and response timing in cognitive paradigms: How
and why? Behavior Research Methods Instruments & Computers,
36(2), 291–303. https://doi.org/10.3758/BF03195575

Raymond, E. S. (2003). The art of Unix programming. The art of Unix
programming. Boston: Addison-Wesley Professional.

Repp, B. H. (2006). Musical synchronization. In Altenmüller,
E., Wiesendanger, M., & Kesselring, J. (Eds.), Music, Motor
Control and the Brain, (pp. 55–76): Oxford University Press,
https://doi.org/10.1093/acprof:oso/9780199298723.003.0004.

Repp, B. H., London, J., & Keller, P. E. (2005). Produc-
tion and synchronization of uneven rhythms at fast tempi.
Music Perception: An Interdisciplinary Journal, 23(1), 61–78.
https://doi.org/10.1525/mp.2005.23.1.61

Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchro-
nization: A review of recent research (2006–2012).
Psychonomic Bulletin & Review, 20(3), 403–452.
https://doi.org/10.3758/s13423-012-0371-2

Schultz, B. G. (2019). The Schultz MIDI Benchmarking Tool-
box for MIDI interfaces, percussion pads, and sound
cards. Behavior Research Methods, 51(1), 204–234.
https://doi.org/10.3758/s13428-018-1042-7

Schultz, B. G., & Palmer, C. (2019). The roles of musi-
cal expertise and sensory feedback in beat keeping and
joint action. Psychological Research, 83(3), 419–431.
https://doi.org/10.1007/s00426-019-01156-8

Schultz, B. G., & van Vugt, F. T. (2016). Tap Arduino: An Arduino
microcontroller for low-latency auditory feedback in sensorimotor
synchronization experiments. Behavior Research Methods, 48(4),
1591–1607. https://doi.org/10.3758/s13428-015-0671-3

Segalowitz, S. J., & Graves, R. E. (1990). Suitability of the
IBM XT, AT, and PS/2 keyboard, mouse, and game port
as response devices in reaction time paradigms. Behavior
Research Methods Instruments & Computers, 22(3), 283–289.
https://doi.org/10.3758/BF03209817

Shimizu, H. (2002). Measuring keyboard response delays
by comparing keyboard and joystick inputs. Behavior
Research Methods Instruments & Computers, 34(2), 250–256.
https://doi.org/10.3758/BF03195452

Snyder, J., & Krumhansl, C. L. (2001). Tapping to ragtime: Cues
to pulse finding. Music Perception: An Interdisciplinary Journal,
18(4), 455–489. https://doi.org/10.1525/mp.2001.18.4.455

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy,
T., Cournapeau, D., . . . , SciPy 1.0 Contributors (2020). SciPy
1.0: Fundamental algorithms for scientific computing in Python.
Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-
019-0686-2

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

728 Behav Res (2022) 54:712–728

1 3

https://doi.org/10.1007/s00426-015-0721-6
https://doi.org/10.7717/peerj.9414
https://doi.org/10.1167/jov.20.11.1691
https://doi.org/10.3389/fpsyg.2018.01873
osf.io/cd9am
https://doi.org/10.1080/02699930302295
https://doi.org/10.1016/j.jneumeth.2008.10.002
https://doi.org/10.1098/rspb.2014.0751
https://doi.org/10.1080/23273798.2016.1144892
https://doi.org/10.3758/BF03195348
http://www.sfinney.com/images/pdfs/sf/finney2016a.pdf
http://www.sfinney.com/images/pdfs/sf/finney2016a.pdf
https://doi.org/10.1525/mp.2007.25.1.43
https://doi.org/10.1145/1517664.1517735
https://doi.org/10.1016/j.actpsy.2009.08.003
https://doi.org/10.3758/s13428-011-0168-7
https://doi.org/10.3758/s13428-011-0168-7
https://doi.org/10.1037/0096-3445.135.3.348
https://doi.org/10.1080/09298210701653252
osf.io/7sqaw
https://doi.org/10.17605/OSF.IO/7SQAW
https://doi.org/10.17605/OSF.IO/7SQAW
https://doi.org/10.1037/1528-3542.7.4.697
https://doi.org/10.1007/s00221-004-2159-8
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.3758/BF03195575
https://doi.org/10.1093/acprof:oso/9780199298723.003.0004
https://doi.org/10.1525/mp.2005.23.1.61
https://doi.org/10.3758/s13423-012-0371-2
https://doi.org/10.3758/s13428-018-1042-7
https://doi.org/10.1007/s00426-019-01156-8
https://doi.org/10.3758/s13428-015-0671-3
https://doi.org/10.3758/BF03209817
https://doi.org/10.3758/BF03195452
https://doi.org/10.1525/mp.2001.18.4.455
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

	A simple and cheap setup for timing tapping responses synchronized to auditory stimuli
	Abstract
	Problem description
	Proposed approaches

	Setup description and installation
	Input device (FSR)
	Setup assembly

	Tool suite and usage workflow
	Signal analysis

	Discussion
	Declarations
	References

