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A B S T R A C T

Soil health status should be monitored to allow planning sustainable management, but indicators available do
not encourage frequent soil health evaluation because of the complexity, time-consumption, and expensiveness
of the methodologies. Aggregate stability (AS) is a good soil physical health indicator associated with soil (SOC)
and particulate (POC) organic carbon but is difficult to monitor. Anaerobically mineralizable nitrogen (AN) has
been proposed as soil health indicator because is cheap, simple, and safe to measure, is sensitive to soil-use
changes, is also related to soil (SOC) and particulate (POC) organic carbon, and is frequently determined by
farmers in Mollisols of the Southeastern Argentinean Pampas to support soil fertility diagnosis. We hypothesize
that AN is positively related to and can be used as indicator of AS. Soil samples were taken at 0–5 and 5–20 cm
depths from 46 sites throughout the southeastern Buenos Aires province, Argentinean Pampas. In each site, we
sampled Mollisols under continuous cropping (CC) and others that had not been disturbed for many years
(pseudo-pristine, PRIS). We determined texture, SOC, mineral-associated organic C, POC, AS and AN. We also
calculated variable values for 0–20 cm. Soil organic carbon, POC, AN and AS were reduced by continuous
cropping. Anaerobically mineralizable N was positively related to SOC (R2 = 0.74, 0.46, and 0.62 at 0–5, 5–20,
and 0–20 cm) and POC (R2 = 0.73, 0.33, and 0.60, respectively). An important proportion of the total variability
in AS was explained by SOC (R2 = 0.77, 0.65, and 0.73 at 0–5, 5–20, and 0–20 cm, respectively), POC
(R2 = 0.75, 0.63, and 0.73, respectively), and AN (R2 = 0.78, 0.69, and 0.81, respectively). The AS increased
with the increase of SOC, POC, and AN at all three depths, with slopes that did not differ between CC and PRIS,
but with intercepts that differed. Neither sand nor clay contents significantly contributed to explain the varia-
tions in AS as a function of SOC, POC, and AN. An independent validation of the regression model relating AS
and AN at 0–20 cm was done and the output was very good (RPIQ (ratio of performance to interquartile dis-
tance) = 2.20). Results support our hypothesis because AN was positively related to AS. Consequently, AN
would be a good indicator of AS, SOC, and POC. Based on our results, we consider that a simple and cheap soil
analysis as AN can not only be used to diagnose soil fertility, but to monitor soil physical and biochemical health
status.
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1. Introduction

Soil health is defined as the capacity of a soil to function in the
agroecosystem. Therefore, a healthy soil should be able to sustain
productivity, contributing to environmental quality, and improving
human, animal, and plant health. Soil-use change, together with in-
adequate management practices, have led to a generalized gradual loss
of soil health (i.e. degradation) (Doran, 2002). Therefore, it is necessary
to monitor soil health status to diagnose and quantify the magnitude of
soil degradation and to plan adequate management practices.

The evaluation of soil health is performed by monitoring parameters
known as soil health indicators (SHI). A satisfactory SHI should be
sensitive to management practices, easy to interpret, and its measure-
ment should be simple, fast and cheap. Also, a SHI should be related to
one or more soil functions and/or to other soil properties (Doran and
Parkin, 1996). Soil organic matter (SOM) and particulate organic
matter (POM) are generally used as SHI (Cambardella and Elliott, 1992;
Wander, 2004). However, none of these two soil parameters fully
comply with the requirements for a SHI. Soil organic matter is not
sensitive enough to detect short to mid-term soil health changes
(Domínguez et al., 2016). Contrarily, POM allows detecting early soil
health changes (Cambardella and Elliott, 1992; Wander, 2004). How-
ever, POM quantification is complex and time-consuming and, there-
fore, unsuitable as a routine analysis in soil testing laboratories
(Diovisalvi et al., 2014).

A recently proposed SHI, alternative to SOM and POM (Domínguez
et al., 2016; García et al., 2016), is the nitrogen (N) mineralized along
short anaerobic incubations (anaerobically mineralizable N, AN)
(Keeney, 1982). Anaerobically mineralizable N is simple, fast, safe, and
cheap to determine and its results are easily interpreted. Therefore, AN
can be used and is being effectively performed as a routine analysis in
soil testing laboratories of the Southeastern Argentinean Pampas
(Reussi Calvo et al., 2018).

The AN has been associated with many soil functions and proper-
ties, like the potentially mineralizable N (N0) (Echeverría et al., 2000;
Schomberg et al., 2009; Wyngaard et al., 2018). Anaerobically miner-
alizable N has been shown to be the best N0 estimator (Echeverría et al.,
2000; Wyngaard et al., 2018) and the most sensitive to management
practices (Soon et al., 2007). As a result of the close association be-
tween N0 and AN, the latter is being used as a satisfactory indicator of
soil N availability for crops such as wheat (Triticum aestivum L.) (Reussi
Calvo et al., 2013, 2018) and corn (Zea mays L.) (Orcellet et al., 2017).
Moreover, it has been recently demonstrated that AN can also be used
to predict potentially mineralizable sulfur (Carciochi et al., 2018).

The AN is also positively related to soil (SOC) and particulate (POC)
organic carbon (C) contents (Studdert et al., 2015; Domínguez et al.,
2016). Consequently, the SOC and POC decrease (0–20 cm layer)
caused by mid- to long-term cropping was accompanied by a decrease
of AN (García et al., 2016). It has been also shown that AN does not
show important seasonal changes (Studdert et al., 2015) nor changes in
response to short term effects (e.g. amount and quality of preceding-
crop residues (García et al., 2016)). The sensitivity of AN, and its re-
lationship with SOC, POC, and N and sulfur availability position AN as
an adequate potential SHI (García et al., 2016; Domínguez et al., 2016)
and suggest that AN could be related to other soil properties associated
with SOM dynamics.

Soil aggregate stability (AS) is a physical property key to soil
functioning because it influences the soil pore system and, thus, soil
water and air dynamics. The AS is associated with other soil properties
such as bulk density, infiltration, and SOC content (Rabot et al., 2018).
Consequently, AS influences erosion resistance, nutrient cycling, C se-
questration, C dioxide (CO2) emissions, root penetration and crop yields
(Bronick and Lal, 2005; Rabot et al., 2018). Moreover, Aparicio and
Costa (2007) postulated that AS is the soil physical parameter most
sensitive to soil-use change. That is why AS is widely recognized as a
physical SHI (Rabot et al., 2018).

Soil-use changes and the utilization of aggressive management
practices lead to a decrease of AS and, consequently, to soil physical
degradation (Bronick and Lal, 2005). Thus, it is necessary to monitor AS
in order to evaluate soil physical health. However, the AS determina-
tion is complex and time-consuming and, hence, it is not adopted by soil
testing laboratories. However, it is known that aggregate resistance to
breakdown is related to SOM and, especially, to SOM labile fractions
(Six et al., 1998, 2004). Therefore, determining and characterizing the
relationship between AS and an easily measurable SOM labile fraction
frequently checked by farmers, would facilitate monitoring and mana-
ging soil physical health. Given the close relationship between AN and
SOC and POC (Domínguez et al., 2016; Studdert et al., 2017), AN could
be a good indicator of AS. Therefore, we hypothesize that AN is posi-
tively related to AS in Mollisols of the Southeastern Argentinean
Pampas. The aim of this work was to evaluate AN as an indicator of AS
status, as compared with SOC and POC as indicators of AS.

2. Materials and methods

Forty-six sampling sites in farms throughout the southeastern
Buenos Aires province at the Argentinean Pampas (Fig. 1) were se-
lected. Soils at all sites were classified as Mollisols (Soil Survey Staff,

Fig. 1. Sampling sites throughout the southeastern
Buenos Aires province at the Argentinean Pampas. ○:
sampling sites to evaluate relationships among vari-
ables and regression model fitting (n = 46), △:
sampling sites for model validation (n = 32). Only
the location of continuous cropping (CC) plots is
shown because the location of pseudo-pristine plots
was very close to the CC plots (no more than 500 m
away).
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2014; Rubio et al., 2019). Sites were selected to represent the range of
soil surface textures characteristics of the region (Durán et al., 2011;
Rubio et al., 2019) and without signs of erosion (slope< 2%) or
flooding. In each farm, one geo-referenced plot (400 m2) under con-
tinuous cropping (CC), and one geo-referenced plot as reference situa-
tion for each CC (pseudo-pristine, PRIS, no more than 500 m away),
were sampled. The CC plots had been under continuous cropping be-
tween 4 and 20 yr. On the other hand, PRIS plots had not been dis-
turbed and were under grass vegetation for more than 20 yr, and it was
assumed that their physicochemical properties were similar to those of
pristine soils (i.e. grassland soils characteristic of the Southeastern Ar-
gentinean Pampas). In some farms more than one CC plot and only one
PRIS plot were sampled since the PRIS represented the undisturbed
situation for the CC selected.

In each CC and PRIS plots, composite soil samples were taken in the
autumn–winter of 2016 (34 sites) and of 2018 (12 sites) at 0–5 (15
subsamples per composite sample per plot) and 5–20 cm depth (5
subsamples per composite sample per plot). These samples were taken
at field capacity, using a 4.4-cm-diameter tubular soil core sampler, and
dried in an oven with forced air circulation at 50 °C until constant
weight. Then, the samples were ground to pass a 2000-μm-mesh sieve,
and all identifiable plant materials were removed. This set of samples
was used to determine texture, SOC, mineral-associated organic C
(MAOC), POC, and AN.

Mineral particle size distribution was determined by the hydrometer
method (Gee and Bauder, 1986). Sand, clay and silt contents were ex-
pressed in g kg−1 dry soil mineral fraction. Soil organic C content was
determined by colorimetry after wet combustion with potassium di-
chromate and sulfuric acid at 120 °C for 90 min (Schlichting et al.,
1995). For the determination of POC and MAOC, a granulometric
physical fractionation was performed following the procedure de-
scribed by Cambardella and Elliott (1992). Briefly, 10 g of dry soil was
dispersed with 30 mL of a 5 g L−1 sodium hexametaphosphate solution
and 16-h shaking in a rotative shaker. Then the suspension was passed
through a 53-μm sieve with deionized water. The fraction< 53 μm was
recovered to determine its C content (MAOC) as previously described
for SOC. Particulate organic C content was calculated subtracting
MAOC from SOC (Cambardella and Elliott, 1992). The results of SOC,
POC, and MAOC were expressed in g C kg−1 dry soil.

The AN was determined as described by Keeney (1982). Briefly, 5 g
of soil was placed inside test tubes (150 * 16 mm) which were filled
with deionized water, and hermetically capped ensuring that no air
bubbles remained inside the tube. Then, the tubes were incubated for 7
d at 40 °C. At the end of the incubation, ammonium-N content was
determined by steam distillation (Keeney and Nelson, 1982). Initial
ammonium-N content was also determined in each sample before in-
cubation. The AN value resulted from the difference between ammo-
nium-N after and before incubation. The AN results were expressed in
mg AN kg−1 dry soil.

At the same time of sampling, other composite soil samples (5
subsamples per sample) were taken from each plot using a shovel at 0–5
and 5–20 cm depth. The soil in contact with the shovel was discarded.
Upon extraction (i.e. in moist condition), the aggregates were carefully
manually separated through their natural breakage lines to pass an
8000-μm-mesh sieve. Then, soil samples were dried in an oven with
forced air circulation at 50 °C until constant weight. Aggregate frac-
tionation by size (Fig. 2) was performed as described by Six et al.
(1998). Briefly, dry aggregates were re-wetted through two different re-
wetting procedures and then sequentially sieved to separate aggregates
of different sizes. A 100-g aliquot of dry aggregates was capillary re-
wetted for 24 h up to field capacity (capillary wetting, CW). Another
100-g aliquot of dry aggregates was submerged in water (fast wetting,
FW). After re-wetting, soil aliquots were successively water-sieved on
different mesh sieves (2000 μm, 250 μm, and 53 μm). The aggregates on
top of each sieve were recovered by back-washing, and then dried and
weighed. Four aggregate size fractions were obtained for both CW and

FW: large macroaggregates (2000–8000 μm, MA), small macro-
aggregates (250–2000 μm), microaggregates (53–250 μm) and the fine
fraction (< 53 μm). The latter was discarded, and its mass was calcu-
lated as the difference between the initial dry mass aliquot (100 g) and
the sum of the dry masses of MA, small macroaggregates, and micro-
aggregates.

From the results of the aggregate fractionation procedure, three
indicators of AS were obtained: i) mean weight diameter (MWD) dif-
ference between CW and FW (ΔMWD) (Eq. (2)) as proposed by Six et al.
(2000), ii) MWD after FW (MWDFW) (Eq. (1)) as proposed by many
authors (Chaplot and Cooper, 2015; Scott et al., 2017; Sarker et al.,
2018; King et al., 2019), and iii) MA dry mass remnant after FW
(massMAFW) (García et al., 2020).

∑=
=

MWD X WVW
i

i i
1

4

(1)

= −MWD MWD MWDΔ CW VW (2)

In Equation (2), MWDFW was calculated according to Eq. (1) and
MWD after CW (MWDCW) was calculated as MWDFW, but using the dry
mass of the aggregate size fractions separated after CW. In Eq. (1), i
identifies each fraction separated after FW (i.e. 2000–8000 (1),
250–2000 (2), 53–250 (3), and<53 (4) μm), Xi is mean diameter of the
i-th fraction calculated as the arithmetic mean of the mesh opening of
the two successive sieves that define the i-th fraction, andWi is the mass
proportion of the i-th fraction with respect to the original aliquot dry
mass (100 g). The ΔMWD and MWDFW were expressed in mm, whereas
massMAFW was expressed in g MA (100 g)−1 dry soil. Given 95% or
more of the sand fraction presented a particle size below 250 μm (fine
and very fine sands, Soil Survey Staff, 2014), the correction of MA and
small macroaggregates dry masses by sand content indicated by Six
et al. (2000) was not performed (Yamashita et al., 2006).

The values of all variables for the 0–20 cm layer were calculated by
averaging the values corresponding to each sampled depth (0–5 and
5–20 cm) weighted by its thickness (i.e. 5 and 15 cm, respectively).
Pearson correlation coefficients were used to analyze the association
between variables. Multiple and simple linear regression models were
fitted to evaluate the performance of AN as a predictor of AS, SOC, and
POC. Likewise, the relationships between AS and SOC, and AS and POC,
and the performance of SOC and POC as predictors of AS were also
evaluated. Statistical analyses were performed with R (R Core Team,
2017). A significance level of 0.05 was used.

Validation of the regression models relating massMAFW with SOC
and AN at 0–20 cm was performed with an independent data set from a
soil survey required by a farmer association to evaluate soil health
status in July 2018. Thirty-two CC and 21 PRIS plots (Fig. 1) with si-
milar characteristics and surface texture within the range as the sam-
pling sites described above, were sampled at 0–20 cm. The sampling
protocol both with the tubular soil core sampler and with the shovel,
was the same as indicated before. Samples were processed and analyzed
for SOC, AN, and AS as described above. Plots of observed versus pre-
dicted values were made with a 1:1 line as a reference for comparison.
Some statistical indicators of regression models performance to predict
massMAFW were calculated: a) root mean square error of the prediction
(RMSEP) (g (100 g)−1) (Fox, 1981), b) the ratio between RMSEP and
the mean of the observed massMAFW (coefficient of variation of the
prediction, CVP) (%) (Bellon-Maurel et al., 2010), c) the ratio between
the standard deviation of the observed massMAFW and RMSEP (ratio of
performance to deviation, RPD) (Bellon-Maurel et al., 2010), and d) the
ratio between the difference between quartile 3 and quartile 1 of the
observed massMAFW and RMSEP (ratio of performance to interquartile
distance, RPIQ) (Bellon-Maurel et al., 2010). All statistical analyses
were done with R version 3.5.2 (R Core Team, 2018) and with a sig-
nificance level of 0.05.

G.V. García, et al. Ecological Indicators 117 (2020) 106640

3



3. Results and discussion

3.1. Texture

The sand, clay and silt contents were similar at all three depths
(Table 1) and were within the range described for southeastern Buenos
Aires province soils (Durán et al., 2011). The textural classes corre-
sponded to loam, sandy-loam, sandy-clay-loam and clay-loam soils (Soil
Survey Staff, 2014). The finest textured soils (clay-loam) were located
at the center of Buenos Aires province (Fig. 1), whereas the coarsest
textured soils (sandy-loam) were mainly located close to the Atlantic
Ocean shore (Fig. 1). This trend coincides with the particle size dis-
tribution of the parent material (“pampean” loess, coarser on the coast
and finer in the center part of the province) (Durán et al., 2011).

3.2. Soil organic C and POC and their relationships with AS

In general, PRIS soils showed larger minimum, maximum, and mean
values of SOC, POC, and MAOC (Table 1) than those observed for CC.
This difference indicates that those three soil variables were sensitive to
soil-use changes, being POC the most sensitive (Table 1). The PRIS si-
tuations showed high organic C content due to the great C inputs by
aboveground and root biomass and reduced soil disturbance (Tisdall
and Oades, 1982; Haynes et al, 1991). The continuous growth and re-
cycling of the grass dense root systems are associated with greater
microbial biomass and organic labile C fractions (Tisdall and Oades,
1982; Haynes et al., 1991; Haynes and Beare, 1997; McNally et al.,
2015). Soil-use change from a pristine condition to an agricultural
system generally produces a decrease in SOC, which is mainly expressed
in labile fractions as POC (Studdert et al., 1997, 2017). This decrease in
SOC and its fractions is due to the negative balance between C inputs

and outputs in soils under cropping (Studdert and Echeverría, 2000).
Thus, as SOC level decreases, soil loses its ability to properly perform its
functions in the agroecosystem, and, therefore, soil health is reduced
(Janzen, 2006).

The SOC, POC, and MAOC values were greater at the 0–5 cm layer
than at the 5–20 and 0–20 cm layers at both CC and PRIS (Table 1). In
the case of the PRIS, the greater accumulation of organic C near the soil
surface is given by a greater amount of aboveground litter, root and
microbial biomass (Franzluebbers and Stuedemann, 2009). Likewise, in
CC the greater surface accumulation of organic C due to no-tillage is
reflected in the stratification of soil organic fractions (Franzluebbers,
2002; Dolan et al., 2006; Blanco-Canqui et al., 2011). Approximately
80% of the CC plots had a history of more than 10 yr under no-tillage.
The absence of soil disturbance under no-tillage promotes SOC pro-
tection mechanisms (Six et al., 2002) which, together with the presence
of surface residues, lead to the stratification of organic C
(Franzluebbers, 2002; Puget and Lal, 2005; Powlson et al., 2014).

As for SOC, POC, and MAOC, differences in the minimum, max-
imum and mean values between CC and PRIS were observed for all AS
indicators (Table 1). The PRIS soils showed greater AS (i.e. lower
ΔMWD and greater MWDFW and massMAFW) than CC, indicating that
AS was sensitive to soil-use change, as described by other authors
(Roldán et al., 2014, Scott et al., 2017; King et al., 2019). When soil-use
changes from PRIS to cropping, soil loses AS mainly due to the physical
disturbance, the decrease of root activity and persistence, and the loss
of organic C, among others (Cambardella and Elliott, 1993; Six et al.,
1998; Domínguez et al., 2016). Likewise, it has been demonstrated that
AS is either negatively or positively affected by tillage (Roldán et al.,
2014; Sarker et al., 2018; Sithole et al., 2019) and cropping systems
(Novelli et al., 2013) depending on what, how, and where they are
performed.

Fig. 2. Scheme of aggregate separation methodology. FW: fast wetting, CW: capillary wetting, MWD: mean weight diameter, ΔMWD: difference of MWD between CW
and FW, massMA: 2000–8000 μm macroaggregate mass, massMa: 250–2000 μm macroaggregate mass, massMi: microaggregate mass, massFF: fine fraction mass.
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The ΔMWD was negatively correlated with SOC and POC, whereas
MWDFW and massMAFW were positively correlated with SOC and POC
(Table 2). All AS indicators (ΔMWD, MWDFW, and massMAFW) pre-
sented a higher Pearson correlation coefficient with POC as compared
to SOC. There was no significant relationship between ΔMWD and
MAOC, whereas MWDFW and massMAFW were weakly associated with
MAOC (r < 0.50, data not shown). Both MWDFW and massMAFW

showed higher Pearson coefficients with SOC and POC than ΔMWD
(Table 2). Also, the ΔMWD was not a good AS indicator for unstable
soils (e.g. with high sand content) since these situations presented both
low MWDFW and MWDCW, and therefore, the ΔMWD value resulted
similar to that of a stable soil (i.e. low ΔMWD). Thus, when using
ΔMWD as an AS indicator, soils with a coarse texture and low SOC and
POC content could show a low ΔMWD and, therefore, its AS wrongly
interpreted as similar to that of a fine-textured soil with high-SOM-
content (data not shown). Therefore, ΔMWD did not allow differ-
entiating soils with very different textures and SOC and POC content.

On the other hand, MWDFW and massMAFW reflected more clearly the
ability of the aggregates to resist stronger disruptive forces (i.e. FW).
Hence, both parameters could be considered as better AS indicators
than ΔMWD. King et al. (2019) reported increases in MWDFW and
massMAFW with increases in SOC. In this study, both MWDFW and
massMAFW were highly correlated with each other (r = 0.99) and had a
similar association with SOC and POC (Table 2). However, massMAFW

determination (only one sieving, Fig. 2) is easier than MWDFW de-
termination (three sievings, Fig. 2). The observed associations between
the AS indicators and SOC or POC (Table 2) are in accordance with
those reported earlier (Six et al., 2002; 2004; Chaplot and Cooper,
2015; Domínguez et al., 2016; King et al., 2019), suggesting that the
application of management practices that favor SOC or POC accumu-
lation, would also increase AS (Six et al., 2004; Novelli et al., 2013;
Roldán et al., 2014; Scott et al., 2017).

Fig. 3 shows the models describing the relationships between
massMAFW as a function of SOC (Fig. 3a, b, c) or POC (Fig. 3d, e, f) for
all three depths. The massMAFW increased with SOC (Fig. 3a-c) and
POC (Fig. 3d-f), with the same slope for both CC and PRIS, but with
different intercepts. Changes in massMAFW were explained as well by
changes in SOC (Fig. 3a-c) and POC (Fig. 3d-f) at all three depths, with
determination coefficients ranging between 0.63 and 0.77 (Fig. 3a-f).
Consequently, even though aggregate ability to resist breakdown is
determined by numerous other edaphic (i.e. texture, microbial activity)
and vegetation characteristics (i.e. coverage, residue quality, root
system), weather, and management practices (Six et al., 2004), AS is
strongly related to SOC and POC content. However, since texture lar-
gely influences AS (Six et al., 2004; Plante et al., 2006), sand and clay
content were introduced into the regression models developed to pre-
dict AS. Sand and clay content were strongly correlated to each other
(r = −0.72, −0.77, and −0.77 at 0–5, 5–20, and 0–20 cm, respec-
tively). Therefore, their introduction as AS predictors was evaluated
one at a time. Neither sand nor clay content significantly contributed to
better explain variations in massMAFW as a function of SOC and POC
(data not shown). This could be due to the narrow range of sand and
clay content of the studied soils (Table 1). Along the same line, King

Table 1
Maximum (Max), minimum (Min), and mean (Mean) values at three depths for: i) particle size distribution (sand, clay, and silt) at sampling sites (n = 80), ii) organic
variables (soil organic carbon (SOC), particulate organic carbon (POC), mineral associated organic carbon (MAOC), and anaerobically mineralizable nitrogen (AN))
for plots under continuous cropping (CC, n = 46) and for pseudo-pristine (PRIS, n = 34), and iii) aggregate stability (AS) indicators (mean weight diameter (MWD)
after fast wetting (FW) (MWDFW), difference of MWD (ΔMWD), and 2000–8000 μmmacroaggregate mass after FW (massMAFW)) for CC (n = 46) and PRIS (n = 34).

Variable Use Depth (cm)

0–5 5–20 0–20

Max Mean Min Max Mean Min Max Mean Min

Texture
Sand (g kg−1) – 684.2 428.5 265.2 699.5 431.5 258.9 695.7 430.7 264.7
Clay (g kg−1) – 365.9 243.0 103.6 386.4 253.8 100.3 379.3 251.1 101.1
Silt (g kg−1) – 487.9 328.6 157.7 472.7 314.8 147.9 472.7 318.2 150.4

Organic variables
SOC (g kg−1) PRIS 92.9 55.0 26.9 52.5 36.2 16.7 61.1 40.9 19.3

CC 54.2 38.2 22.0 43.4 31.1 16.2 46.1 32.9 17.7
POC (g kg−1) PRIS 53.5 20.4 5.0 19.9 7.2 0.6 25.7 10.5 2.4

CC 20.4 8.0 2.3 11.7 3.7 0.3 12.5 4.8 1.0
MAOC (g kg−1) PRIS 47.6 34.7 19.6 42.1 29.0 15.3 42.5 30.4 16.8

CC 40.9 30.2 18.4 37.4 27.4 15.6 38.1 28.1 16.3
AN (mg kg−1) PRIS 334.5 184.6 63.1 142.6 80.2 29.1 184.6 106.3 42.8

CC 138.4 93.1 51.7 84.1 52.8 25.0 95.4 62.9 38.3

Aggregate stability indicators
ΔMWD (mm) PRIS 2.2 0.8 0.0 2.5 1.2 0.1 2.3 1.1 0.1

CC 3.2 2.3 0.7 3.3 2.5 1.1 3.2 2.5 1.1
MWDFW (mm) PRIS 4.1 2.9 1.1 3.9 2.5 0.9 4.0 2.6 1.1

CC 2.5 1.4 0.7 2.2 1.3 0.6 2.1 1.3 0.7
massMAFW (g(100 g)−1) PRIS 77.7 50.5 11.9 74.0 41.1 5.4 74.9 43.4 9.4

CC 41.0 14.9 2.9 32.7 12.0 0.5 30.0 12.7 2.1

Table 2
Pearson correlation coefficients for associations between soil organic carbon
(SOC, g kg−1), particulate organic carbon (POC, g kg−1), or anaerobically
mineralizable nitrogen (AN, mg kg−1) and aggregate stability (AS) indicators
(mean weight diameter (MWD) after fast wetting (FW) (MWDFW, mm), differ-
ence of MWD (ΔMWD, mm), and 2000–8000 μmmacroaggregate mass after FW
(massMAFW, g (100 g)−1)) at three depths. n = 80.

Depth Variable AS indicators

ΔMWD MWDFW massMAFW

0–5 cm SOC −0.62 0.76 0.75
POC −0.69 0.76 0.77
AN −0.72 0.83 0.83

5–20 cm SOC −0.40 0.61 0.58
POC −0.60 0.64 0.64
AN −0.61 0.74 0.74

0–20 cm SOC −0.51 0.70 0.68
POC −0.70 0.75 0.75
AN −0.72 0.86 0.85
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et al. (2019), studying different soil orders reported that clay content
did not explain massMAWV changes.

The relationships shown in Fig. 3 under CC indicate that manage-
ment practices that lead to an increase of SOC or POC content, would
increase AS at the same rate as PRIS. However, the different intercepts
between CC and PRIS regression lines (Fig. 3) denote that at the same
SOC or POC content, AS is lower for CC than for PRIS. This difference
between soil uses can be a consequence of other factors, alternative to
texture, SOC and POC that affect AS. Biochemical properties of organic
fractions determined by vegetation, root exudates, and the related soil
microbial activity could confer attributes such as hydrophobicity, that
would increase AS for PRIS (Chenu et al., 2000). Likewise, the absence
of disturbance (Six et al., 2004) and the greater abundance of roots (Six
et al., 2004; Rashid et al., 2013; Erktan et al., 2016) in PRIS, would
increase AS due to the physical and microbiological effects of roots. The
greater colonization and persistence of roots increase the rhizosphere
(Haynes and Francis, 1993), the production of microbial binding sub-
stances (i.e glomalin, polysaccharides, among others), and soil particles
enmeshment by fungi and actinomyces (Chenu and Cosentino, 2007).
On a long-term study on a loam soil, Tourn et al. (2019) studied how AS

was modified when long-term conventional tillage management
(moldboard plow for 18 yr) was shifted to continuous no-tillage or
pasture (20 yr). Those authors observed that no-tillage (20 yr) was not
able to increase AS up to the level of continuous grass-based not-grazed
pasture (similar to PRIS). Moreover, five years of cropping under no-
tillage after a pasture led to a sharp decrease of AS, whereas two years
of pasture after no-tillage cropping increased AS, but not up to the level
of continuous grass-based not-grazed pasture.

3.3. Anaerobically mineralizable nitrogen and its relationship with AS

As observed for SOC and POC, AN showed greater maximum,
minimum, and mean values in PRIS than in CC (Table 1), indicating
that AN was also sensitive to soil-use change. This observation is in
agreement with those from García et al. (2016) and Domínguez et al.
(2016) who reported that AN was sensitive to soil-use change and to
cropping systems. Those authors reported that, as for SOC and POC, AN
decreased with cropping years. As observed for SOC and POC, AN also
showed greater values in the uppermost layer (0–5 cm) than in the
underlying layer (5–20 and 0–20 cm) (Table 1). Similar results had

Fig. 3. Relationship between 2000 and 8000 μm macroaggregate mass after fast wetting (massMAFW) and soil organic carbon (SOC) (a, b, c) and particulate organic
carbon (POC) (d, e, f) for two soil uses at three depths: 0–5 (a, d), 5–20 (b, e), and 0–20 cm (c, f). n = 80. P < 0.05. SU: soil use. CC: continuous cropping (n = 46).
PRIS: pseudo-pristine (n = 34).
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been reported by Domínguez et al. (2016) and García et al. (2016) for
soils under no-tillage cropping or under pasture.

Anaerobically mineralizable N was positively correlated with SOC
(r = 0.86, 0.68, and 0.79 at 0–5, 5–20, and 0–20 cm, respectively), POC
(r = 0.86, 0.57, and 0.78, respectively), and, to a lesser extent, with
MAOC (r = 0.62, 0.53, and 0.56, respectively). Fig. 4 shows the simple
linear regression models for predicting SOC and POC as a function of
AN at all three depths. As expected, SOC and POC increased with the
increase of AN (Fig. 4). It is worth remarking that the relationships
between SOC or POC and AN did not differ based on soil use (CC or
PRIS). These trends coincide with results from previous studies carried
out in the southeastern Buenos Aires province, evaluating a narrower
range of soil situations (Domínguez et al., 2016; Studdert et al., 2017).
However, contrary to the results of this study (Fig. 4), Domínguez et al.
(2016) and Studdert et al. (2017) obtained greater determination
coefficients for models relating POC with AN, than for models relating
SOC with AN, at all three depths.

The determination coefficients of the regression models between AN
and SOC or POC were greater in the uppermost layer (0–5 cm) than in
the other, as previously described by Domínguez et al. (2016) and
Studdert et al. (2017) (Fig. 4a, d). This difference was probably a
consequence of the greater range of values for each variable at 0–5 cm
than at 5–20 and 0–20 cm. Therefore, these results validate those from

previous studies, but on a wider range of soil textures and management
practices. The introduction of sand and clay content together with AN
as a predictor of SOC and POC was evaluated. Clay content slightly
improved the adjusted determination coefficients of all the models to
predict SOC from AN (R2 = 0.79, 0.57, and 0.71 at 0–5, 5–20, and
0–20 cm, respectively) but did not improve the R2 of the models of POC
as a function of AN.

Anaerobically mineralizable N was positively related to SOC and
POC (Fig. 4) and, these last two variables were, in turn, positively re-
lated to AS (Fig. 3). Thus, AN could be associated with AS as proposed
by Domínguez et al. (2016). For the environmental conditions con-
sidered in this study, AN was negatively correlated with ΔMWD, and
positively correlated with MWDFW and massMAFW as AS indicators
(Table 2). As for SOC and POC, AN had a similar association with
MWDFW and massMAFW (Table 2).

The relationship between massMAFW and AN was linear with a
positive but not different slope between CC and PRIS at all three depths
(Fig. 5). However,as for SOC and POC (Fig. 3), the intercept for CC was
significantly lower than for PRIS. Likewise, the addition of clay or sand
content to the models describing the relationship between massMAFW

and AN did not increase their adjusted R2 (data not shown). Even
though it would be important to take into account multiple factors to
explain AS changes (Six et al., 2004), the variation in AN explained an

Fig. 4. Relationship between soil organic carbon (SOC) (a, b, c) and particulate organic carbon (POC) (d, e, f), and anaerobically mineralizable nitrogen (AN) for two
soil uses at three depths: 0–5 (a, d), 5–20 (b, e), and 0–20 cm (c, f). n = 80. P < 0.05. CC: continuous cropping (n = 46). PRIS: pseudo-pristine (n = 34).
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important part of AS variability at 0–5, 5–20 and 0–20 cm depth (R2

ranging from 0.69 to 0.81, Fig. 5).
Minimum, maximum, and mean values of massMAFW, SOC, and AN

of the independent data set are shown in Table 3. All ranges were
within those shown in Table 1 for massMAFW, SOC, and AN at 0–20 cm
of the model-fitting data set. The independent validation of the

regression models presented in Fig. 3c and Fig. 5c showed that SOC
(Fig. 6a) and AN (Fig. 6b) adequately predicted massMAFW. For both
models, observed values were in relatively close agreement to predicted
ones, but with more dispersion around the 1:1 line in the case of SOC
(Fig. 6a) and with a relative and slight underestimation in the case of
AN (Fig. 6b). On the other hand, RMSEP were 9.10 g and 8.08 g
(100 g)−1 when SOC and AN were the predictor variables, respectively,
which were very close to the square roots of the mean square errors of
the regressions at the building process (Fig. 3c and 5c), whose values
were 10.27 and 8.69 g (100 g)−1, respectively. Coefficients of variation
of the prediction were relatively high (34.4 and 32.2%, respectively).
Although there is not agreement in the literature, some authors like
Chang et al. (2001) considered that RPD between 1.4 and 2.0 meant an
acceptable predictive model performance and that RPD above 2.00
indicated excellent predictive performance. The RPIQ is usually con-
sidered a better indicator of model predictive performance (Bellon-
Maurel et al., 2010). Values above 2 would indicate good model per-
formance. In this case, the RPD were 1.81 and 1.99 and the RPIQ were
2.00 and 2.20 for the predictions done with SOC and AN as predictor
variables, respectively. Then, all these statistical indicators show that
SOC and AN could be used to satisfactorily predict massMAFW as an
indicator of AS status through the models shown in Fig. 3c and 5c,
respectively.

Hence, AN (Figs. 5 and 6b) resulted as good indicator of AS as SOC
(Fig. 3a-c and 6a) and POC (Fig. 3d-f). Thus, a simple statistical model
with AN as the sole predictor variable would allow having a reliable
and acceptably precise indication of soil AS status (Fig. 5). Since AS is
related to some other properties that define soil physical health (like
porosity, bulk density, and infiltration, among others, Rabot et al.,
2018), AN would be a good soil physical health indicator. Further re-
search should be focused on validating the fitted models for a wider
range of soil uses and management situations, and on defining AN
threshold compromising soil functioning.

4. Conclusion

The results of this study support the hypothesis because AN was
positively related to AS in Mollisols of the southeastern Argentinean
Pampas with loam textures (loam, sandy-loam, sandy-clay-loam, and
clay-loam), and under different soil uses. Likewise, AN also related
positively to SOC and POC. Thus, AN would be a good indicator of AS,
and also of SOC and POC contents. So, AN determination could be used
as indicator of soil physical and biochemical health status.

The relationship between AS and AN, improves AN performance as
SHI, making it a very suitable and versatile SHI that facilitates mon-
itoring the soil health status. Frequent AN determination would con-
tribute to planning management practices to avoid compromising soil
functioning in the agroecosystem.
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Fig. 5. Relationship between 2000 and 8000 μmmacroaggregate mass after fast
wetting (massMAFW) and anaerobically mineralizable nitrogen (AN) for two soil
uses at three depths: 0–5 (a), 5–20 (b), and 0–20 cm (c). n = 80. P < 0.05. SU:
soil use. CC: continuous cropping (n = 46). PRIS: pseudo-pristine (n = 34).

Table 3
Minimum, mean, and maximum values of soil organic carbon (SOC) content,
anaerobically mineralizable nitrogen (AN), and 2000–8000 μmmacroaggregate
remnant dry mass after fast wetting (massMAFW) at 0–20 cm for plots under
continuous cropping (CC, n = 32) and pseudo-pristine plots (PRIS, n = 21)
sampled in July 2018.

Variable Use Minimum Mean Maximum

SOC (g kg−1) PRIS 23.2 38.3 49.5
CC 26.5 32.8 40.6

AN (mg kg−1) PRIS 37.7 86.8 156.8
CC 35.2 58.1 84.4

massMAFW (g(100 g)−1) PRIS 22.5 41.0 68.6
CC 3.3 15.9 28.6
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