
López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 56

Received December 2020; Accepted March 2021; Published June 2021

School of Sciences embraces programming
(Exactas Programa): reaching every corner of

Science

Mat́ıas Lopez-Rosenfeld, Esteban Mocskos, Mariano González Lebrero, José
Crespo, Mehrnoosh Arrar, Inés Caridi, and Mariela Sued

Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
exactasprograma@dc.uba.ar

Abstract. Computational tools play an increasingly central role in al-
most all scientific and technological disciplines, as well as throughout
both Government and Industry sectors. Programming skills, on the con-
trary, have not been formally incorporated as required knowledge for
graduates of educational institutions, such as the School of Sciences (or
simply Exactas as we call it in Spanish) of the Universidad de Buenos
Aires in Argentina. This sharp contradiction could lead to the poor
preparation of future scientists in terms of the necessary use of com-
putational tools in their daily activities.
To address this skill gap, it is necessary to incorporate the great poten-
tial of computing into the different curricula. Knowing how to write a
program to solve a problem is far more than learning to write a piece of
code; it is an active learning approach that helps students organize the
logical reasoning steps and fosters a solid understanding of the subject
matter, regardless of the discipline.
Our objective in creating Exactas Programs was to provide the essential
elements of programming- without introducing another stumbling block
in their already challenging degree programs- so that students of any
major can incorporate the computer as a practical problem solving tool.
With this objective in mind, we formed a working group of professors,
teaching assistants, and doctoral students of different scientific back-
grounds to ensure a multidisciplinary initiative that combines different
motivations and contexts for the use of the computer in addressing chal-
lenges that traverse all majors. The result, Exactas Programs, is not a
programming course; it is a short problem-solving workshop in which the
computer is the central tool.
In this work, we share our proposal’s structure, the details of some of
the activities that comprise it, and the lessons learned after five editions
of the workshop.

Keywords: Programming Teaching · Science· Gaming Activities.

1 Introduction

The use of the computer as a tool has permeated all fields of science and engi-
neering. Today, it has become one of the pillars that sustains development and

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 57

innovation [11]. Programming also constitutes an invaluable tool in the learning
process in almost every area of knowledge. A person capable of working with
algorithms has training that prepares her for much more than writing useful
programs. She has a general-purpose instrument that will be determinant in
her/his development.

It is often said that a subject is truly understood when it is possible to teach
it to someone else. Developing a program is a way of teaching something to a
computer. Writing a program requires a deep understanding of the problem as a
critical step. Furthermore, during the development process itself, the program-
mer is forced to arrange and clarify the necessary steps to obtain a solution,
which helps organize the thought process.

In the case of a person dedicated to scientific activity, the ability to program
turns out to be a highly valued skill. Even in various areas of knowledge, it is
essential to perform well at a professional level. Motivated by the great potential
of the computer as a problem-solving tool, we created a working group of teach-
ers, researchers, and doctoral students from different departments of the School
of Sciences of the University of Buenos Aires (FCEN-UBA) and designed a pilot
experience to ensure members of our community learn to solve problems using
a programming language.

In the middle term, our goal is that this workshop favor the incorporation
of computational practices within the content of the different degree programs
of FCEN-UBA. We seek to make evident that learning how to program is an
accessible tool to all students and that its use is transversal to all disciplines.

Learning to program is, in general, a hard task for many students. This fact
has been widely reported in literature [12] and testified by the high dropout
rates in first-year courses [3,7]. Despite the recent coding craze and boom in the
tech industry, a clear understanding of how programming is actually learned by
students is still lacking. One phenonomenographic research effort [4] is categorize
ways in which students experience the act of learning to program in a first-year
University programming unit, highlighting a large variation in how students’
perceive their introductory programming learning experience. One of the more
sophisticated of these learning experiences is centered around problem solving,
which is also the core of an integrated approach to teach programming and
problem solving called Computational Thinking [10]. Many research efforts have
honed in on how the choice of programming language itself and incorporation of
different tools can enhance introductory programming learning experiences. In
particular, Mannila et al. [9] defend the use of Python as an initiatory language
and Ambikesh Jayal et al. [8] show that starting with Python (and then mov-
ing to Java) have better results than beginning directly with Java. We can also
mention works that show IDEs or libraries also help in introductory program-
ming units [6,2]. Among the many examples of teaching programming for future
scientists, we also highlight the interesting experience of Arms et al. [1] who use
Jupyter notebooks to teach coding to atmospheric science students with great
results.

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 58

In 2015, the Federal Council of Education of the Argentine Republic declared
teaching and learning programming techniques of strategic importance for the
system. Argentine education during compulsory schooling to strengthen the eco-
nomic and social development of our country [5]. But this norm does not reach
the university environment. Only a few universities include programming-related
content in their curricula, and most of the first-year students have never had a
programming class before. We put forward a proposal that supports an approach
to resolving different types of situations using a computer so that any member
of the FCEN-UBA can carry it out.

This paper describes this project, called Exactas Programa, a problem-solving
workshop developed with the perspective of different scientific disciplines using
the computer as the central tool. Next, we explain the objectives and how we
implemented the proposed activities.

2 Our proposal

The founding objective of Exactas Programa is to incorporate programming into
the training of our students from the very beginning of their degree programs. We
seek to present computational tools that allow students to solve different prob-
lems, promote algorithmic reasoning, and implement their codes in a program-
ming language. This approach will later facilitate the inclusion of new practices
based on programming within the subjects taught nowadays at our University
(FCEN-UBA).

We designed a workshop that consists of nine meetings of four hours each,
with classes three times a week. To date, we delivered five editions during the
summer and winter breaks, based on the pilot experience launched in the summer
of 2018. It is important to note that the course does not award credit hours
or points to students, nor is it compulsory, so public attendance is motivated
exclusively by interest in the subject.

The course is not an introduction to programming but presents basic pro-
gramming notions necessary to solve different challenging situations. The modal-
ity of the classes is theoretical-practical. They take place in a computer labo-
ratory where some of the students use the computers already installed whereas
others use their personal laptops. In any case, one of the critical conditions is
that each participant uses a computer and performs the activities individually,
in such a way that the learning is active and that each attendee writes their own
code.

During the development of the activities, the students receive personalized
assistance from the teaching team to transform their solution ideas into a code
that can answer the questions. To assist and accompany the participants’ needs,
we have one teacher for every eight students; an unusual relationship in areas
such as ours but has been essential to navigate the rocky path proposed by the
workshop successfully. The teacher-student relationship is key to ensuring that
a student without prior programming knowledge can write relatively complex
programs already in the second class.

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 59

2018-summer 2018-winter 2019-summer 2019-winter 2020-summer
Edition

0

20

40

60

80

100

120

23

49

98 101

131Students

Fig. 1. Number of students who completed the activity in the different editions of the
workshop. This proposal workshop was designed to be delivered during the winter and
summer academic recesses.

Throughout the nine meetings, the workshop proposes seven activities in the
form of problems/challenges:

i) Play Black Jack.
ii) Simulate filling a stickers album.
iii) Model the forest fire dynamics.
iv) Model and visualize the orbit of the earth around the Sun.
v) Simulate the evolution of an avalanche.
vi) Model the predator-prey interaction in time and space.
vii) Simulate the dynamics of the interaction of particles in two dimensions.

An initial motivation presents each of these activities that later give rise
to a series of questions. After a brief presentation, the need for a program to
help us answer the questions of interest becomes clear. For example, what is the
probability of filling the World Cup album by buying 80 packages of stickers? 1

The seven activities mentioned are formulated in an attractive way, including,
in each case, a hands-on activity that allows students to approach the problem
tangibly, either by playing or experimenting with different unplugged materials:

1 This question is usually addressed every four years in the media: Mundial
2014 https://www.pagina12.com.ar/diario/contratapa/13-250187-2014-07-

06.html; Mundial 2018 https://www.lanacion.com.ar/2125275-rusia-2018-

cuantos-sobres-de-figuritas-hacen-falta-para-llenar-el-album-del-

mundial

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 60

https://www.pagina12.com.ar/diario/contratapa/13-250187-2014-07-06.html
https://www.pagina12.com.ar/diario/contratapa/13-250187-2014-07-06.html
https://www.lanacion.com.ar/2125275-rusia-2018-cuantos-sobres-de-figuritas-hacen-falta-para-llenar -el-album-del-mundial
https://www.lanacion.com.ar/2125275-rusia-2018-cuantos-sobres-de-figuritas-hacen-falta-para-llenar -el-album-del-mundial
https://www.lanacion.com.ar/2125275-rusia-2018-cuantos-sobres-de-figuritas-hacen-falta-para-llenar -el-album-del-mundial

papers, balls, letters, dice, candy, etc. The possibility of experimenting and per-
forming live gives strong support to develop the algorithms later and write the
programs that can carry out the proposed instructions, following and solving
a carefully elaborated practical guide for the rest of the class. The active part
of each class helps to clarify the critical question of interest and the dynamics
of the system to be studied. In addition to serving as a way to understand the
details of the problem at hand, the hands-on activity also helps create a friendly
bond in the group, improving the study climate and the exchange of ideas. Fi-
nally, it helps so that the teachers, during the consultations, can refer back to
specific moments during the doubts that arise when coding (for example, “Do

you remember that when we played ...?”).

Table 1 summarizes the general plan for most classes. The meetings have a
series of programmed activities that allow to present the activity and understand
the system’s details to study and program. Encounters that do not follow this
structure are the first class and the last. In the case of the first one, it provides
the necessary programming concepts so that a student without prior knowledge
can write their early programs. The last class is also different since it includes a
group reflection and discussion on the workshop itself.

Stages Expected product Available materials Time

Close previous activ-
ity class

Highlight typical situations
and frequent mistakes

Blackboard and slides 30 min

Presentation of the
problem

Recognize the objects in-
volved

Slides 10 min

Posing questions Blackboard and slides 20 min

Experimentation
hands-on activity

Understanding the dynam-
ics involved in the problem

Dices, pencil, paper, can-
dies, etc.

15 min

Closure of experi-
mentation

Identification of how to
model the objects involved

Blackboard 10 min

Implementation Program that allows you to
answer the questions

Exercise guide + comput-
ers + teachers

2.5 hs

Table 1. The general structure of the workshop classes. The meetings have a series
of scheduled activities that present the problem, understand the system’s details to
study, and implement the code to solve the problem at hand.

The teaching team has an interdisciplinary composition that provides a great
wealth of approaches and shows the different ways in which each discipline can
use programming. The workshop shows that programming is not an exclusive
tool for computer specialists but offers immense possibilities to all areas. This
richness in the variety of the teaching team’s training allows everyone to feel
mainly motivated by any of the proposed activities related to cross-sectional
knowledge of the School of Science’s degree programs.

The didactic proposal of Exactas Programa is based on the use of the Python
programming language, as it is an open-source language that is increasingly used

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 61

both in the scientific community and in the industry. However, since the course’s
focus is on using the computer to solve problems and not on technical details
of the language, advanced concepts typical of Python (such as comprehension
lists, iterators, etc.) are omitted. In this way, the skills acquired in the course
are pretty applicable to others (R, Matlab, Fortan, etc).

3 Activities

The first meeting of the course presents Python and briefly explains its syntax,
the concepts of assignment, loops, conditionals, functions, and some basic notions
of data types (int, float, string) and lists. From the beginning, it seeks to
complement the explained concepts with tests carried out by the students on
the computer.

To avoid problems with the installation of tools and delays, in the beginning,
we opted for the use of a web environment that offers the possibility of writing
and testing Python programs in a very intuitive way. Python Tutor2 is a web
service that allows you to write, execute and analyze the behavior of programs
in Python without the need to have any tools installed. Students only need a
browser and Internet connection, both available in the FCEN-UBA computer
labs.

During the course, students can solve the activities primarily by combining
the tools seen in the first class, except for matrices (with numpy package) and
graphics (with matplotlib) plus some modules detailed in further activities.
It is important to note that a great emphasis is placed on thinking what each
variable and list really represents throughout the course. We proposed a strong
value to the semantics with which variables or lists are interpreted (for example,
a list of zeros represents an empty stickers album, and that will be the way to
call it, see more detail of the album in the section 3.2).

This workshop was conceived for students without any programming experi-
ence. The first classes represent a significant challenge in transmitting the fun-
damental programming concepts to solve exciting problems immediately. Then,
the remaining meetings deepened concepts and proposed more complex chal-
lenges. After a few encounters, the students can visualize that they can recreate
complex scenarios and ideas with just a few elements.

Two of the activities proposed throughout the course are detailed below.
For each one of them, we describe the model proposed, the open questions to
answer with this model, the hands-on activities, and the programming concepts
necessary to complete it.

3.1 NanoJack

This activity simulates a Black-Jack card game’s simplification: the game con-
sists of each player receiving cards whose values are between 1 and 13 in a

2 www.pythontutor.com

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 62

continuing way while he/she add their values. When the player reaches exactly
the value 21, he/she wins but, if this value is surpassed, she/he loses. After recre-
ating the dynamics of the single-player game, the number of players increases.
The question to be answered is what proportion of players win this game.

Before starting to program, in the context of the gaming section, groups of
four or five students join a teacher who acts as a dealer, and they play NanoJack
live. The necessary material is one deck of French-suited playing cards per group.

Although each group first defines how they will play the game, one of the
options is that the dealer deals cards one by one to the first student of the round
until the cut-off condition is met (reaching or exceeding the value 21), following
with the other students. As the game progresses, the teacher invites the students
to relate what is happening. These ideas, expressed in words, will then guide the
implementation.

This initial sharing is of a very high level and with little detail on writing
a piece of software. Still, it allows students to visualize ideas and necessary
model elements on a concrete substrate and then be able to take them to the
abstraction of the code. Also, during this time, the teachers introduce themselves
to the students, helping to create a nice working environment.

In this activity, students should exercise lists (dynamic creation and traver-
sal), nested loops with counters (in creating a four-suit deck), and loops with
Boolean conditions (sum reaches or exceeds 21), as well as usage from the random
module to use the shuffle function. Also, they are already beginning to ex-
periment with testing to know if their program does what they expect. Thus,
students early understand that debugging a code is an essential task that any
programmer constantly faces.

3.2 Stickers

Filling a sticker album is an activity that the vast majority of students and
teachers, if not all, claim to have done at some point in their lives. Throughout
this meeting, we propose a series of questions about this problem and try to
answer them through computer simulation. Although mathematics has widely
approached this subject, we only mention a few references in this regard, without
venturing into this path to solve the challenges posed.

We can summarize the activity of collecting stickers in the following way: 1)
we acquire an album (empty book with numbered places to be completed); 2)
we buy packs of stickers one by one. Each pack contains numbered stickers that
must be pasted in the album in the site corresponding to its number; 3) we have
won when the album is completed.

The fact that the stickers (in particular, those of the World Cup Sticker
Album) are so widespread in Argentina helps since the task does not require
complex explanations. Moreover, it usually brings back some memories of the
students from their own experiences: the existence of the difficult ones, the com-
position of the packages, and many questions that arise spontaneously from the
class.

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 63

After a brief discussion, we agreed to answer the following questions: on
average, how many packages of stickers must be purchased to fill the album?
What is the probability of filling the album if I can buy 700 packages at most?

Figure 2 shows the simplified album model used during the hands-on activity.
An album with a capacity for six stickers is given out, and we emulate the chance
of buying one sticker by rolling a dice. The students must calculate how many
stickers they had to buy to fill the album and then obtain the average of the
amount needed. The didactic material consists of a paper album with six sticker
slots to be filled and a die for each group of two or three students.

Album

Average:

Experiment: Fill a figurine album

by rolling a 6-sided die. Rolling the

dice means that we buy a figurine.

Repeating the experiment 10 times,

how many figurines did we buy on

to fill the album?

bought

e
x
p
e
ri

m
e
n
t

Fig. 2. Images of the album and stickers used in the hands-on activity of the second
class. Students can perform the mechanics of filling an album and understand the main
concepts related to that process.

To reach the final model (a large album and packages of stickers) a first
implementation is made in which the stickers are bought one at a time (following
the logic of the hands-on activity), and then it is extended to stickers obtained
in packages of five.

Together, these NanoJack and Stickers activities represent the core of the
course’s logic and where students incorporate the greatest number of tools.

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 64

4 Results and Discussion

At the beginning of the pilot workshop in 2018, our ambitious long-term goal
was that all the incoming students of Exactas attend the workshop. After these
first five editions, we continue to find an interest that seems insatiable, both from
our university and from other institutions. We continue on the path of ensuring
that this workshop is of interest and made available to students of any degree
and that it is helpful to them. Below we detail some aspects of the workshop
that we worked on during its first five editions to get closer to this objective.

Multidisciplinary teaching staff The Exactas programa workshop was con-
ceived by a multidisciplinary teaching team to provide a powerful tool to students
of any degree program in our university. The workshop activities are inspired by
exciting problems from these different disciplines but always focus on computa-
tional challenges. Throughout the different editions, we have observed the need
to maintain this diversity in the teaching staff but with a core of teachers who
remain stable during the nine meetings. The students find their referents in the
first classes, they choose with whom they understand each other better by ask-
ing and resolving doubts, and these relationships are sustained and strengthened
throughout the workshop.

With this multidisciplinary vision and, by increasing the number of simul-
taneous shifts incorporated, it was necessary to maintain this spirit and, at the
same time, ensure that there was a solid technical reference (computational) in
each shift. It is usual for students to raise doubts or concerns that may exceed
the workshop’s concepts or that an error occurs that may be complex to solve.
The presence of a technical reference with solid knowledge of Python in each
shift proved to be more than enough to be able to answer or solve any technical
problem that arose.

Hands-on activities The fact that each challenge begins with a hands-on ac-
tivity and later sharing in words or on the blackboard the ideas of pseudocode
allows, on the one hand, to understand the problem and, on the other, it helps
to train computational-algorithmic thinking before any attempting any imple-
mentation. These fun hands-on activities require identifying which objects make
up the model and a division of the tasks that necessarily and/or strategically
allow to break down the dynamics of the system into its basic rules.

4.1 Balance between creativity and structure

The multi-disciplinary team teaching approach has helped not only in identifying
problems of diverse interest, but also in seeing the diversity in possible ways of
thinking through and solving the problems we propose. One of the first decisions
we were faced with in designing the course was how much to guide or bias the
way in which the problem was solved; on the one hand to not lose students who

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 65

did not know how to begin and on the other to not confuse others who would
have constructed their solutions differently.

As an example, we return to the sticker album activity. In the hands-on
activity, the students quickly understand the basic rules of the game: we buy a
sticker and we locate it in the album, over and over again until the album has
been filled. We observe, nevertheless, a great deal of diversity in the ways in
which the students model this dynamic, which branches at four key decisions:
how to randomly generate a sticker, how to represent the empty album, how to
locate the sticker in the album, and how to define the conditional that determines
whether or not to continue iterations.

In the first edition of Exactas Programa, we attempted to avoid biasing the
solutions of the students, encouraging full creativity, and only providing some po-
tentially helpful commands, such as random.random() or random.randint(a,b)
and a prompt such as ”Simulate how an album of six stickers is filled”.

Based on student feedback and intending to reduce the dropout rate after this
activity (the second activity of the workshop), we began to further structure the
problem’s resolution. For example, we added exercises like “ Define a function
that takes a list album as an input and a figu element as a parameter, and
returns the True or False output indicating whether or not figu is in the album
list.

In the same way, in the sharing after the hands-on activity and before starting
to program, we discuss different ways of facing the problem. We unify on the
blackboard a way to solve the problem (in a pseudo-code), making explicit (for
example, that the empty album will be a list of zeros and the whole album will be
a list of ones). In each edition of Exactas Programa, we usually adjust exercises
in the guides to continue looking for this balance between greater structure (less
frustration) and less structure (greater creativity).

4.2 Scalability and portability

In its first edition, Exactas programa was a workshop given by teachers and
doctoral students from our Faculty. Each teacher was in charge of developing,
and then dictating, an activity related to her discipline. Due to our community’s
broad interest in attending the workshop, and thanks to our Faculty’s support,
we have multiplied in size, doubling the number of shifts in the subsequent two
editions. During this stage, the need for general coordination of the workshop
became evident. Thus, we developed a web page and a registration form. Also,
the allocation of places in the four shifts, the teaching staff’s distribution, and
the appointment of a coordinator per shift helped develop the workshop satis-
factorily.

Today we have a repository with all the course material, to which all teachers
have access. The repository allows a unification of the course material, such as
changes to the exercises and class slides that introduce each activity. To homog-
enize the resolution of the problems and ensure that a teacher from any area can
guide each of the activities, we greatly benefited from creating a teaching guide
for each activity. We seek to adjust the course material to continue increasing

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 66

the number of workshop quotas and help its export to other institutions, such
as the National University of San Mart́ın, Argentina, in the Summer of 2020.

4.3 Feedback from various perspectives

We believe that a workshop with a broad audience and teachers from so many
different areas requires an almost continuous search for feedback. At the end
of each meeting, attendees must complete a form that allows us to know their
impressions of the proposed activity, get feedback on aspects such as how much
of the activity they were able to finish during the class time, how difficult it
seemed, etc. Also, each student must submit the code that she/he produced
during class. This material allows us to study the different routes taken in each
participant’s learning process and helps the teacher construct a closing of the
activity for the following class. In this same sense, a time is always reserved
for the last meeting to discuss with the students about suggestions and general
impressions of the workshop. We also sent a final survey to all attendees pursuing
the same objective.

For each activity we ask the students to grade their agreement to the state-
ments: Was the activity useful?, and Was the activity entertaining? The values
correspond to the following categories:

– -2: “completely disagree”
– -1: “partially disagree”
– 0: “neutral”
– 1: “partially agree”
– 2: “completely agree”

Figure 3 presents a view of the end-of-workshop survey results combining Use-
fulness and Entertainment dimensions. In all the activities most of the students
found them both useful and engaging during the complete edition. This results in
an interesting feedback and highlights that the workshop composition (students
with low or no previous experience in programming) help to keep the group
interested and challenged by our proposals.

On the other hand, we have benefited from a teaching meeting after the end
of the workshop to discuss general results and impressions of the various shifts
and ideas to improve the course. Each teacher also completes forms to propose
specific changes to the workshop activities. As a result of incorporating new
teachers, we have prepared three essential guides where we summarize the main
concepts addressed in the first two activities and propose some exercises related
to them.

5 Conclusions

Exactas Programa is a sensory, face-to-face experience. There is music, dramati-
zation, cakes that teachers and students bring. We put into practice fundamental
coexistence laws promoted, among others, by Greg Wilson (see Rules section of

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 67

-2
.0

-1
.0

0.
0

1.
0

2.
0

En
te

rta
in

in
g

Activity = 1 - NanoJack Activity = 2 - Stickers Activity = 3 - Forest Fire

-2
.0

-1
.0

0.
0

1.
0

2.
0

En
te

rta
in

in
g

Activity = 4- Orbit

-2.0 -1.0 0.0 1.0 2.0
Useful

Activity = 5 - Avalanche

-2.0 -1.0 0.0 1.0 2.0
Useful

Activity = 6 - Predator Prey

-2.0 -1.0 0.0 1.0 2.0
Useful

-2
.0

-1
.0

0.
0

1.
0

2.
0

En
te

rta
in

in
g

Activity = 7 - Molecules

50

100

150

200

250

50

100

150

200

50

100

150

200

250

20

40

60

80

100

120

20

40

60

80

50

100

150

200

20

40

60

80

100

120

140

Fig. 3. Survey Results from 2019 edition including Usefulness and Entertainment di-
mensions. Color codes the number of students who answered each combination (brighter
means more students).

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 68

his book [13]). In this way, we create an environment where empathy becomes the
fundamental tool for sharing and generating knowledge. We generate communi-
cation channels (a WhatsApp group per turn) where the attendees raise their
doubts and, generally, a peer manages to respond. Teachers are also involved in
this communication space.

This space is important both because of how dynamic it is to assist students
in minor complications and because of the collaborative network established
between the participants, including the teachers.

Finally, we want to mention that we have managed to reduce desertion
throughout the different editions, which occurred mainly after the first or second
meeting. We have taken several measures: reformulation of the classes, intensifi-
cation of the nearly insistent accompaniment, extra ad-hoc introductory guides
summarizing the main concepts. We have not studied the impact of each of these
measures, but together, they have effectively retained students.

6 Final Considerations

During the last ten years, there has been an explosion in the Computer Education
field: published works, doctorates, and, in some cases, many financial resources
accompanying different initiatives. Nevertheless, the results have not been as
expected, and specialists in the area have been critically reflecting on the matter,
promoting new practices.

Our initial proposal, conceived by a teaching staff with many years of expe-
rience working in our Faculty but little theoretical training in the field, includes
the goals:

– Integrating computing with other disciplines, presenting a wide range of
problems to solve.

– Proposing activities that require active participation by all attendees.
– Not seeking efficiency in the resolutions, teachers listen and follow students’

trajectories, trying just to clarify serious conceptual errors.
– Promoting computational thinking beyond implementation when thinking

about new challenges.

We hope that our experience can help those who want to promote this type
of initiative.

Acknowledge Special thanks to those teachers, collaborators, and authorities
who made Exactas Programa possible and all our gratitude to those students
who participated in this experience.

References

1. Arms, S., Chastang, J., Grover, M., Thielen, J., Wilson, M., Dirks, D.: In-
troducing students to scientific python for atmospheric science. Bulletin of
the American Meteorological Society 101(9), E1492 – E1496 (Sep 2020).
https://doi.org/10.1175/BAMS-D-20-0069.1

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 69

https://doi.org/10.1175/BAMS-D-20-0069.1

2. Begosso, L.C., Begosso, L.R., Gonçalves, E.M., Gonçalves, J.R.: An approach
for teaching algorithms and computer programming using greenfoot and python.
In: 2012 Frontiers in Education Conference Proceedings. pp. 1–6 (2012).
https://doi.org/10.1109/FIE.2012.6462307

3. Blesa, M.J., Duch, A., Gabarró, J., Petit, J., Serna, M.: Continuous assessment
in the evolution of a cs1 course: The pass rate/workload ratio. In: International
Conference on Computer Supported Education. vol. 583, pp. 313–332. Springer
(2015). https://doi.org/10.1007/978-3-319-29585-5 18

4. Bruce, C., Buckingham, L., Hynd, J., McMahon, C., Roggenkamp, M., Stoodley, I.:
Ways of experiencing the act of learning to program: A phenomenographic study of
introductory programming students at university. Journal of Information Technol-
ogy Education: Research 3(1), 145–160 (Jan 2004). https://doi.org/10.28945/294

5. Consejo Federal de Educación: Resolución Nro. 263/15 (2015), https://cfe.

educacion.gob.ar/resoluciones/res15/263-15_01.pdf, visitada el June 15,
2021

6. Edwards, S.H., Tilden, D.S., Allevato, A.: Pythy: Improving the introduc-
tory python programming experience. In: Proceedings of the 45th ACM
Technical Symposium on Computer Science Education. p. 641–646. SIGCSE
’14, Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2538862.2538977

7. Giannakos, M.N., Pappas, I.O., Jaccheri, L., Sampson, D.G.: Understanding stu-
dent retention in computer science education: The role of environment, gains, bar-
riers and usefulness. Education and Information Technologies 22(5), 2365–2382
(Sep 2017). https://doi.org/10.1007/s10639-016-9538-1

8. Jayal, A., Lauria, S., Tucker, A., Swift, S.: Python for teaching intro-
ductory programming: A quantitative evaluation. Innovation in Teaching
and Learning in Information and Computer Sciences 10(1), 86–90 (2011).
https://doi.org/10.11120/ital.2011.10010086

9. Mannila, L., Peltomäki, M., Back, R.J., Salakoski, T.: Why complicate things?
introducing programming in high school using python. Conferences in Research
and Practice in Information Technology Series 52 (01 2006)

10. Michaelson, G.: Teaching programming with computational and informational
thinking. Journal of pedagogic development (Apr 2015)

11. Post, D.E., Goldfarb, O.: Enhancing product innovation with computational
engineering. Computing in Science Engineering 19(6), 4–5 (Oct 2017).
https://doi.org/10.1109/MCSE.2017.3971160

12. Szabo, C., Sheard, J., Luxton-Reilly, A., Simon, Becker, B.A., Ott, L.: Fifteen
years of introductory programming in schools: A global overview of k-12 initiatives.
In: Proceedings of the 19th Koli Calling International Conference on Computing
Education Research. Koli Calling ’19, Association for Computing Machinery, New
York, NY, USA (2019). https://doi.org/10.1145/3364510.3364513

13. Wilson, G.: Teaching Tech Together: How to Make Your Lessons Work and Build a
Teaching Community around Them. CRC Press (2019), https://teachtogether.
tech/

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 70

https://doi.org/10.1109/FIE.2012.6462307
https://doi.org/10.1007/978-3-319-29585-5_18
https://doi.org/10.28945/294
https://cfe.educacion.gob.ar/resoluciones/res15/263-15_01.pdf
https://cfe.educacion.gob.ar/resoluciones/res15/263-15_01.pdf
https://doi.org/10.1145/2538862.2538977
https://doi.org/10.1007/s10639-016-9538-1
https://doi.org/10.11120/ital.2011.10010086
https://doi.org/10.1109/MCSE.2017.3971160
https://doi.org/10.1145/3364510.3364513
https://teachtogether.tech/
https://teachtogether.tech/

A Additional Activities

A.1 Forest fire

This activity proposes simulating a forest fire’s dynamics, modeling a forest
represented in different stages (tree shoots, lightning strikes, fire spread, cleaning
burned trees).

The proposed forest is linear, with N cells or places. There may or may not
be a tree in each cell, and if there is a tree, it may or may not be burned. Let’s say
that two trees are neighbors when they are next to each other, in two consecutive
cells. The border conditions of our forest are open. Both the first and last cells
will have a single neighbor, while all the cells in the middle will always have two
neighbors (one to the right and one to the left).

The state of the forest is represented by four stages:

– Season of sprouts: Each empty cell has a probability p that a tree will sprout.
– Season of lightning strike : with probability f lightning strikes in each cell,

and if there was a tree where lightning struck, this tree burns (so the resulting
forest will have empty places, live trees, and burned trees).

– Fire season: the fire spreads as much as possible. Each burned tree spreads
the fire to the immediate living neighboring trees (the one on the right and
the one on the left). Note: Propagation ends when there are no burned trees
left to spread the fire.

– Cleaning time: burned trees are thrown down, and those cells become empty
again.

At the end of the four stages, the game begins again by taking the forest’s
final state as the initial condition for the next first stage.

The questions to be answered in this activity are: What fraction of trees burn
for specific values of the parameters p (probability of shoots) and f (probability
of lightning strike)? Also, for a fixed probability f of a lightning strike, what is
the value of p that maximizes the forest production?

For the hands-on activity, each student receives three cardboard triangles: a
red one (to represent a burned tree), a green one (to represent a healthy tree),
and a white one (to represent an empty cell). To represent the forest, students
and teachers participate by forming a longitudinal forest, in which we all remain
connected. Each person will represent a cell in the forest. The forest is open (it
does not close on itself). That is, it will have two edges, like the one implemented
in the computer.

Initially, each person (representing a cell) generates a random number in
Python, to decide whether or not a tree will sprout in its place. In each cell, a
tree with probability p = 0.8 will grow. People representing cells where a tree
grew (get a number less than 0.8) hold up the green card. After this step, some
people will lift green cards and others lifting white cards (the ones that represent
empty cells).

Next, we represent the lightning strike. Those representing cells in which
there are trees (those with the green card raised) generate a new random number.

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 71

If the number is less than f = 0.2, they become burned trees and change the
green raised card to a red one (representing the burning tree situation). The trees
that did not burn remain with the green cardboard raised. After this instance,
some people are lifting green cards, some red, and white (the empty cells).

Next, we represent the spread of fire. If a healthy tree has a burned neighbor,
then it burns. On the contrary, if a burned tree has empty cells as neighbors,
the propagation in that place stops. At this point, the importance of empty cells
that act as firewalls becomes evident. The teacher coordinating the game helps
to verify if the propagation is finished or not. After this instance, some people
will raise a green card, others a red one, and others a white one (the empty
cells).

When summer arrives, the burned trees fall (those with red cardboard take
it down) and become empty cells (they lift the white cardboard). When spring
arrives, in a new budding season, empty cells can again give rise to trees with
probability p = 0.8. In those cells where trees should sprout, the student or
teacher representing this cell lifts the green cardboard that adds to the previous
cycle’s green cardboards.

Interestingly, in the hands-on activity, we start from an initial version where
each student represents a cell that makes decisions independently (following
the rules of the proposed game but without any central organization), to a
centralized version coordinated by a teacher who behaves as the orchestrator
of all movements. This passage from autonomous systems that perform actions
to a programmable centralized system shows that writing the script for this
coordinator is enough to represent a complex dynamic.

This activity seeks to strengthen the management of lists, access their ele-
ments and modify them, based on the value of other elements in the list (the
immediate neighbors), generate random numbers to simulate events (like the fall
of rays). We also work with the definition of functions, implementing conditions
and cycles. In this guide for the first time points y vs x are plotted using the
matplotlib library.

During the implementation, the students have to think about using the com-
puter to represent the following situation: an event occurs with probability p.
We discuss the concept of pseudorandom numbers and how to solve the prob-
lem of representing an event with probability p using a generated pseudorandom
number between 0 and 1 Finally, a major challenge is to develop an algorithm
that reproduces the dynamics of the proposed game (in particular, the spread
of fire in a longitudinal forest).

A.2 Planetary Orbit

This activity presents a fraction of the solar system, whose simplification consists
of two bodies: the Sun, taken as the center of reference, and the earth that
orbits around it. The objective of the activity is to be able to calculate this
trajectory. We propose the Verlet algorithm to calculate the trajectory of this

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 72

orbit 3. This algorithm uses the current position and the position at a previous
time to calculate the next one. The initial data to carry out the simulation are
obtained from the NASA website. This model includes different concepts such
as discretization of time and decomposition in two coordinates of objects in a
plane.

The objective is to calculate the Earth’s orbit in such a way as to be able
to find 3 points on the said trajectory that determine special days starting from
today:

– the next perihelion (the minimum distance between the Earth and the Sun),
– the next aphelion (the maximum distance from the Earth to the Sun),
– each student’s next birthday

In this activity, students must use lists where the values corresponding to the
two dimensions in which the earth moves (x e y) are stored. The novelty with
respect to the previous activities is that the list positions that will be consulted in
the next steps have not yet been created. It is important to note that students
must understand the change of semantics of each position; a position in one
iteration is considered future, in the next one is considered the present one, and
in the following, the past.

A.3 Avalanche

This activity consists of modeling a landscape on which snow is falling, and
when a certain amount accumulates, it spills over onto some adjacent areas. A
square grid (or matrix) represents the terrain. At each time step of the game,
one snowflake falls onto the landscape. When a grid’s cell reaches 4 snowflakes,
it overflows, transferring a snowflake to each of its neighbors (the cells that share
an edge in the grid). Therefore, the overflowed cell runs out of snowflakes.

The hands-on activity exemplifies the dynamic, building a human matrix of
4 × 4. Each student located in the grid identifies who their four neighbors are.
The teacher in charge of presenting the activity tosses “snowflakes” one by one
(represented by mint candies) at different positions. The teacher intentionally
chooses a cell with four neighbors at first. Once the student in that position
has obtained four snowflakes (candies in the game), she/he transfers one to each
neighbor and is left with none.

Before tossing a new snowflake (candy), all the necessary overflows must be
carried out until there is no position in the grid with four candies or more.
The game allows the students to note that the grid’s bounding cells have fewer
neighbors (three or two in the case of corners). During the activity, the teacher
clarifies this need for a rule to handle cells with fewer than four neighbors, and
the rule established is that each time a cell attempts to transfer a candy to
a neighbor cell that does not exist, this candy disappears from the landscape.
Thus, the overflowed cell is always emptied.

3 The Verlet algorithm is a procedure for the numerical integration of second-order
ordinary differential equations with known initial values

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 73

In this activity, students must use a matrix for the first time, learn to traverse
it, and for each position, be able to construct the coordinates that its neighbors
represent.

A.4 Predator-Prey Interactions

The predator-prey model represents an interaction in which an individual of one
animal species (the predator) hunts an individual of another species (the prey)
to survive. In our case, the predators are Lions, and the prey are Antelopes. A
square grid represents the landscape. Like the Forest Fire activity (see A.1), the
model dynamics include several stages that make up a cycle that is repeated in
simulations.

There are three stages that are described below:

– Feeding: if a Lion has a neighboring Antelope, it eats it.
– Reproduction: if two animals of the same species are neighbors, they re-

produce, giving rise to a new animal of that species.
– Movement: all animals move.

The same logic of touring the grid step by step, seen in Avalanche, is used to
carry out each stages (see A.3). This strategy splits the landscape into two areas
at each step: the already addressed area of the current stage and the unaddressed
area.

There are cases in which an animal, when displaced, is located in the un-
addressed area of the grid, thus being able to participate multiple times in the
same cycle or tour of the grid. This anti-intuitive situation serves as a challenge
to think about a more complex and more realistic models, at the end of the
activity.

The hands-on activity for this class is a small board game (a grid printed
on paper) with lion and antelope pieces. Students (in pairs) are told to begin
with a specific initial arrangement, carry out a certain number of cycles and
later confirm that they arrive at the correct final board arrangement. In this
class, students import their completed code into another script (that we pro-
vide), which lets them watch their simulated landscapes evolve in real time in a
graphical interface. This aspect of the activity invites students to think more like
programmers who belong to a community, as they have to make sure their code
is implemented exactly as described in the class guide (function names, param-
eters, output types, etc.) in order for the visualization code to work properly.

A.5 Gases

This activity proposes to model a system of particles contained in a box that
interact with each other. For reasons of simplicity and a nicer visualization, the
system is limited to two dimensions. This activity introduces the need to write
the results to a file in a particular format so that the simulations can be correctly
visualized by an external program.

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 74

As this is the last activity of the Workshop, the class guide is the least
structured, requiring more independent thinking. First, the activity proposes to
simulate the movement of a single particle bounded by a box. The trajectory is
calculated using a Verlet algorithm, almost the same as that implemented in the
planetary orbit practice. The challenge is to keep the particle inside a box by
modeling elastic collisions with the walls (students are encouraged to draw this
on paper and convince themselves of the correct behavior before implementing
their code).

Second, n particles are modeled, all contained in the same box but without
interacting with each other. Later, a short-range, repulsive interaction is incor-
porated between the particles, enabling them to collide and exchange energy.
Although the model is relatively simple, it is quite accurate and permits the
study of complex processes like phase changes. The diagram in figure 4 summa-
rize the scheme of the code:

Fig. 4. Scheme of the logic used during the implementation of the model.

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 75

The simulation requires multiple nested loops, either through for or while,
which, although students already used them in almost all previous practices,
require a higher level of abstraction. For example, each particle’s force is cal-
culated by the sum of the interactions with all the others, which requires two
nested cycles.

The most significant novelty is the necessity of writing a file with a specific
format that a molecular dynamics visualization program called VMD can read:
4.

As a final touch and to verify the generated code, the kinetic energy, and the
potential energy are calculated in each simulation step. Students could verify
that the total energy, the sum of both, is conserved.

Although the activity is considered complete at this point, there are a variety
of extensions that could inspire students to continue playing and learning.

Some extensions are:

– Adding attractive forces
– Implementing a thermostat to keep the temperature fixed.
– Calculate the velocity distribution and check that it corresponds to what

Maxwell-Boltzmann predicted (long before the existence of computers).
– Include different types of particles with other interactions depending on the

particle type (e.g. positive and negative charges).
– Go from monoatomic to diatomic particles (using a harmonic potential to

model the covalent bond).

Like others proposed in this workshop, this activity has different possible cul-
mination stages allowing restless students to develop their capacity and interest
by doing more complex optional exercises.

4 https://www.ks.uiuc.edu/Research/vmd/

López-Rosenfeld et al, Exactas Programa: bringing programming to every corner of science, EJS 20 (1) 2021 56-76 76

https://www.ks.uiuc.edu/Research/vmd/

