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Symmetry violation of quantum multifractality: Gaussian fluctuations versus algebraic localization
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Quantum multifractality is a fundamental property of systems such as noninteracting disordered systems at
an Anderson transition and many-body systems in Hilbert space. Here we discuss the origin of the presence or
absence of a fundamental symmetry related to this property. The anomalous multifractal dimension �q is used
to characterize the structure of quantum states in such systems. Although the multifractal symmetry relation
�q = �1−q is universally fulfilled in many known systems, recently some important examples have emerged
where it does not hold. We show that this is the result of two different mechanisms. The first one was already
known and is related to Gaussian fluctuations well described by random matrix theory. The second one, not
previously explored, is related to the presence of an algebraically localized envelope. While the effect of Gaussian
fluctuations can be removed by coarse graining, the second mechanism is robust to such a procedure. We illustrate
the violation of the symmetry due to algebraic localization on two systems of very different nature, a 1D Floquet
critical system and a model corresponding to Anderson localization on random graphs.
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The structure of eigenfunctions is a remarkable aspect of
quantum systems with critical behavior, as exemplified by
Anderson localization in disordered quantum systems [1].
In that setting, consisting of noninteracting particles in a
disordered potential, as either disorder or energy is varied,
the single-particle wave functions go from being extended to
exponentially localized in real space, whereas for a critical
value of the parameters they present scale-invariant fluctua-
tions [2], a property called multifractality [3–5]. Recently, it
was found that many-body states exhibit multifractal prop-
erties in Hilbert space. This is quite generic for ground
states [6–11], but is also characteristic of highly excited states
in the many-body localization regime [12,13], a subject of
strong interest due to its implications in quantum statistical
mechanics [14–17]. Multifractality has also interesting poten-
tial applications for quantum computing [18].

Multifractality of quantum states ψ can be defined through
the scaling of the average inverse participation ratios (IPR):

Iq(N ) ≡
N∑

r=1

〈|ψr |2q〉 ∼ N−�q+1−q, (1)
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with N the size of the system, q ∈ R and 〈·〉 indicating an av-
erage over disorder and eigenstates. The so-called anomalous
dimensions �q quantify the deviation from an ergodic behav-
ior for which �q = 0 since 〈|ψr |2〉 ∼ N−1 for all r. For an
exponentially localized state, �q = 1 − q for q > 0 and �q =
−∞ for q < 0. Aside from these two extremes, a multifractal
state possesses scale-invariant fluctuations characterized by a
set of anomalous dimensions �q with a nontrivial dependence
on q.

An important property of quantum multifractality is the
symmetry relation

�q = �1−q. (2)

It was first derived from a more general symmetry for the local
density of states for nonlinear σ models [19]. It can also be
seen as a consequence of the conformal invariance of random
critical points [20,21]. An alternative viewpoint connects it
with fluctuation relations of the Gallavotti-Cohen type [22].
These theoretical results and their numerical verification in
very distinct physical systems (like Anderson transitions in
2D and 3D [23–26], quantum Hall transition [27], random
graphs [28,29], and random matrix models [19,30,31]), with
the addition of its experimental verification for the Anderson
transition in sound waves [32], support the argument in favor
of the universality of Eq. (2).

Multifractal states are often described as extended but
not ergodic, with strong scale-invariant fluctuations. How-
ever, in certain systems an overall structure may be present.
Exponential localization in finite dimension rules out the
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scale invariance associated with multifractality. On the other
hand, algebraic localization, with an envelope characterized
by power-law tails, can be compatible with a multifractal
behavior. Exponential localization in infinite dimension can
also be compatible with scale invariance, since the number of
sites increases exponentially with distance and compensates
the exponential decrease of the wave function. We will show
that the existence of such features does occur in important
cases and has physical consequences, in particular for the
symmetry (2).

In this letter we study two important models of a very
different nature, whose multifractality violates the symme-
try relation Eq. (2) through one and the same mechanism.
On the one hand, we focus on a 1D Floquet critical sys-
tem [30,33,34] arising from the quantization of a classical
system with pseudo-integrable dynamics [35] characterized
by properties intermediate between chaotic and integrable.
The eigenstates, in particular, are multifractal; however, the
structure of the states also bears traces of the classical dynam-
ics making this multifractality inhomogeneous, with algebraic
localization, and leading to the violation of Eq. (2). On the
other hand, we consider the problem of Anderson localization
on random graphs [29,36,37], which is deeply related to the
problem of many-body localization [17]. The localized phase
of this system is multifractal (as is the case in the MBL
phase [12,13]), a consequence of the combination of typical
exponential localization and the exponential proliferation of
sites away from localization centers. The resulting multifrac-
tality, however, violates Eq. (2).

We uncover the two main mechanisms behind this effect.
The first one, well-known in the literature, is due to ran-
dom noise described by random matrix theory (RMT) and
is commonly discarded as spurious, usually through some
form of coarse graining. The second one consists of algebraic
localization. It is robust against coarse graining and appears
as a characteristic signature of models strongly violating the
multifractal symmetry. Remarkably, algebraic localization is
able to account for the violation of the symmetry for both
the pseudo-integrable model and the localized phase of the
Anderson model on random graphs.

The first model we consider is a 1D system periodi-
cally kicked by a discontinuous sawtooth potential whose
Hamiltonian is H = P2 − γ {X } ∑

n∈Z δ(t − n), where {X } is
the fractional part of X , and γ is the kick amplitude. The
stroboscopic dynamics at each period is given by the map
Pn+1 = Pn + γ (mod 1), Xn+1 = Xn + 2Pn+1 (mod 1). For ir-
rational γ the system is ergodic [38] while for rational γ ≡
a/b (with a, b coprime integers) the classical map is pseu-
dointegrable [35]. In the latter case, the motion is periodic in
momentum, with P taking only b different values.

The corresponding quantum map is [39,40]

Upp′ = eiφp

N

1 − ei2πγ /h

1 − e2iπ (p′−p+γ /h)/N
, (3)

with p = P/h ∈ {0, ..., N − 1}, φp = −2πhp2, and h the ef-
fective Planck constant h ≡ 1/N . The semiclassical limit of
this model is N → ∞ (h → 0). In order to get ensemble
averages, we replace the phases φp by independent ran-

dom variables uniformly distributed between 0 and 2π [41].
The level spacing statistics of this map is intermediate be-
tween Poisson and Wigner-Dyson: it has thus been dubbed
the intermediate (INT) map. In correspondence with the
classical dynamics, for γ irrational the eigenstates are ex-
tended [30,34,39], while for rational γ = a/b and N/b /∈ Z
the eigenstates are multifractal [30,33,34,42–44]. If we re-
place h by a finite number independent of N , (3) corresponds
to the Ruijsenaars-Schneider (RS) ensemble of random ma-
trices [45] parametrized by g ≡ γ /h. For the latter model,
eigenstates are localized for g = 0, extended for g ∈ Z \{0},
and multifractal otherwise [30,46,47]. Varying g ∈ (0, 1)
drives the system from strong to weak multifractality. The
structure of the eigenstates of the INT map exhibits remnants
of the classical dynamics (seen as b peaks in momentum)
intertwined with multifractal fluctuations. In the RS ensemble,
however, such a structure is not observed and multifractality
is spatially homogeneous. Here we will show that the inho-
mogeneous multifractal properties present in the INT map are
deeply connected with the violation of (2). The discrepancy
in the behavior of these two closely related models will be
analysed through a third model defined more precisely later
below, the modulated RS (MRS) model, where eigenstates
of the RS model are multiplied by an algebraically localized
envelope.

Another system showing inhomogeneous multifractal
properties corresponds to Anderson localization on ran-
dom graphs [37,48]. It has generated great interest recently
due to its analogy to the many-body localization prob-
lem [17,28,31,36,48–66]. Here, we consider an Anderson
model on a small-world network (SW) [67], defined (for a
fixed parameter p) by the Hamiltonian [68–71]

Ĥ =
N∑

i=1

(εi|i〉〈i| + |i〉〈i + 1|) +

pN�∑
k=1

|ik〉〈 jk| + H.c., (4)

corresponding to a chain of N sites (with periodic boundary
conditions) with additional long-range links between 
pN�
randomly chosen pairs of sites (ik, jk ) with |ik − jk| > 1. The
random on-site energies εi are sampled from a uniform distri-
bution over [−W/2,W/2]. The graph topology of the model
is locally treelike, with an average branching number K ≈
1 + 2p, and when p → 1/2 it approaches a random regular
graph. This model has recently been used to study Anderson
localization on random graphs [37,48]. For W larger than
some Wc(p) the system is localized, and presents a delocaliza-
tion transition at W = Wc(p). The localized phase has strong
multifractality properties [72] and the symmetry (2) is known
not to hold [29,37].

Figure 1 shows �q (full circles) and �1−q (empty cir-
cles) for these systems. Without coarse graining (top row) the
symmetry is generally not valid for |q − 1/2| large enough.
This is true for other systems as well, such as the power-law
random banded matrix (PRBM) model [19]. The only excep-
tion we observe is for the RS map, for which Eq. (2) holds
perfectly well. The bottom row of Fig. 1 shows �q when
the wave functions are coarse grained over a small number
of sites 
. In this case, �q is extracted from the scaling of
moments Ĩq = ∑

k μ
q
k , where μk = ∑
−1

r=0 |ψk
+r |2 gives the
coarse-grained wave-function components. We observe that
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FIG. 1. �q (solid circles) and �1−q (empty circles) obtained from the scaling of the average moments
∑

p 〈|ψ (p)2q|〉 ∼ N1−q−�q without
coarse graining (top row) and with coarse graining (bottom row). The coarse graining parameter is 
 = 16 for all but the SW model (
 = 8).
The model parameters are γ = 1/3 (INT), g = 11/24 (RS), g = 11/24, ν = 1 (MRS), W = 16.75, p = 0.49 (SWcrit), and W = 21, p = 0.49
(SWloc). For the INT, RS, and MRS models we use all of the N eigenvectors and consider N = 210, ..., 214, and 217/N random realizations;
for the SW model N = 210, ..., 220 and the number of realizations ranges from 4000 for the largest N to 27 000 for the smallest (using 16
eigenvectors from each realization with energies around the middle of the band E = 0 obtained using a highly optimized Jacobi-Davidson
routine [73]). The red arrow (top row) marks the value of λ obtained from P(α) ∼ Nλα for α � 2 (see Fig. 2). The straight red (solid) lines (top
row) show the behavior for q � λ predicted by Eq. (5) for large α. In (i) and (j), for the SW model, the arrows point to q∗, which characterizes
algebraic localization and the red (solid) lines show the predicted behavior �q = q(1/q∗ − 1) for q < q∗ and �q = 1 − q for q > q∗. In the
critical case (i) q∗ = 1/2 and the symmetry holds.

the coarse graining only restores the symmetry for the SW
model at the critical point (SWcrit), whereas for the INT map
and the SW in the localized regime (SWloc) the violation of (2)
persists.

For the INT and SWcrit models without coarse graining,
the discontinuity in the derivative of �q at q < 0 (indi-
cated with red arrows in Fig. 1) signals that the discrepancy
comes from the smallest eigenfunction components. To ver-
ify this, we study the probability density function P(α) of
α ≡ − ln |ψ |2/ ln N , a quantity that has been used for the
study of critical wave function properties at the 3D Anderson
transition [74–76]. In Fig. 2(a) we show P(α) for two of
our models. For the RS model (which is the only one that
is symmetric with and without coarse graining) P(α) (blue
dashed line) vanishes for α > 2. By contrast, for the MRS
model (defined in detail below) P(α) shows exponential tails
P(α) ∼ Nλα for α � 2. We found such tails, with λ < 0 a
system-dependent parameter and for large enough α to the
right of the maximum of P(α), for all the other models [77];
they signify the existence of anomalously small wave function
amplitudes.

This feature is linked to the singular behavior of �q at
q < 0. Indeed, assuming P(α) ∼ Nλα+b over a range ᾱ < α <

αmax one can show [77] that �q for q � λ is given by

�q = (q − λ)αmax − q − b, q � λ. (5)

In particular, this means that the �q are affected asymmetri-
cally (i.e., only for q � λ) by the exponential tail of P(α) at
large α, and hence one can expect that (2) will in general not
hold (see Appendix). This is visible in Fig. 1, where red curves
are (5) with the parameters extracted from the corresponding
P(α).

We now turn to the two mechanisms leading to expo-
nential tails in P(α) for the SWcrit and INT models: RMT
Gaussian fluctuations pervading the smallest wave-function

components, and algebraic localization of eigenfunctions. The
former is usually discarded through coarse graining [78].
However, the latter was not known, and is robust against
coarse graining.

In the case where the smallest wave function com-
ponents follow RMT [28], their distribution is given
by the Porter-Thomas law [79], which implies P(α) ∝
Nβ(1−α)/2 exp(− 1

2βN1−α ), where β = 1, 2 is the Dyson in-
dex corresponding to systems with or without time-reversal
symmetry, respectively [80]. For α > 1 and N � 1, ln P(α)
is thus linear in α with a slope − 1

2β ln N , i.e., the type of
behavior seen in Fig. 2(a) with λ given by −β/2. This is
the situation for the SWcrit system, whose P(α) presents an
exponential tail P(α) ∼ Nλα with λ = −1/2. Time-reversal
invariance of (4) indeed implies that Gaussian fluctuations
are of GOE type, i.e., β = 1. As a consequence of Eq. (5),
�q displays a discontinuous change in steepness at q ≈ λ, as
can be seen in Fig. 1(d). The symmetry is recovered after
coarse graining [Fig. 1(i)], in agreement with the fact that
the Gaussian fluctuations are uncorrelated over sites. We note
that in [29] a similar behavior is observed for P(α) at large
α for the Cayley tree at the root (with β = 2 due to bro-
ken time-reversal invariance). Discarding that part of P(α),
as is done in [29], leads to a symmetric �q at the transi-
tion. Nevertheless, by taking into account the exponential
tails at large α, a behavior like the one shown in Fig. 1(d)
for �q without coarse graining is found for the Cayley
tree [77].

Let us now consider the second mechanism: algebraic lo-
calization. We define algebraic localization as a power-law
decay of the wave function characterized by an exponent
ν > 0. More precisely, we consider the two following types
of behavior: (PL1) |ψ (r)|2 ∼ |r − r0|ν for |r − r0| � N and
some fixed point r0; (PL2) |ψ (r)|2 ∼ r−ν with ν > 0 for r �
1. In the first case, the wave function decays to zero around a
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FIG. 2. Distribution P(α) for the rescaled eigenfunction ampli-
tudes α = − ln |ψ |2/ ln N . (a) RS (blue dashed line) for g = 11/24
and N = 214, and MRS model (gray shaded lines) for g = 11/24,
ν = 1, and N = 27, ..., 214 (darker shade corresponds to larger N).
The red solid lines show the exponential fit P(α) ∝ 2μα for large α

characterizing the presence of anomalously small values of |ψ |2, due
in this case to algebraic localization of type PL1. The inset shows the
exponent μ vs log2 N . A well-defined slope λ implies P(α) ∼ Nλα; as
can be seen, λ ≈ −1 = −1/ν as predicted. (b) SWloc with W = 21,
p = 0.49 and N = 210, ..., 220. Algebraic localization of type PL2
with exponent −ν = −1/q∗ manifests itself in the position of the
maximum of P(α) expected to be approximately at ν (red arrow
indicates ν using the value q∗ ≈ 0.34 extracted from �q; see Fig. 1)
and the behavior P(α) ∼ Nκα to the left of the maximum (green
curves); as shown in the top inset, we find κ = 0.37, which is close
to its predicted value 1/ν = q∗ = 0.34. The behavior P(α) ∼ Nλα to
the right of the maximum (red curves) is due to Gaussian fluctuations
(with β = 1) expected to give λ = −β/2 = 0.50 in accordance with
what we find (bottom inset).

fixed point of the support with the power-law exponent being
positive. In the second case, the exponent is negative, and the
decay is asymptotic. In both cases, there exists a certain range
of q for which the moments of the wave function will behave
in a scale-invariant way, which is why we can distinguish
this type of behavior from that of an exponentially localized
state (where the moments either diverge or are system-size
independent), and classify it as a special type of multifractal-
ity [77].

The PL1 type of algebraic localization allows us to bet-
ter understand the interplay between the classical and the
multifractal structure leading to the violation of Eq. (2) for
the INT model. First, we note that exponential tails P(α) ∼
Nλα can arise from algebraically localized wave functions
of type PL1. Indeed, consider a toy wave function φ with
|φ(p)|2 = A| p

N − P0|ν for | p
N − P0| � 1, with ν > 0. One can

straightforwardly relate the distribution F (u) of small u(p) ≡
|φ(p)|2 to the exponent ν: if p±(u) = N[±(u/A)1/ν + P0] > 0

is the inverse of u(p) around P0, then F (u) ≈ N−1(p′
+(u) +

p′
−(u)) ∼ u1/ν−1, and thus P(α) ∼ N−α/ν giving the exponen-

tial tails with λ = −1/ν. With this in mind, we construct a
new ensemble of wave functions, which we call the MRS
model, by combining RS eigenstates ψ (p) with a smooth
PL1-type envelope fν (p/N ) to obtain a vector |ψ̃ (p)|2 =
A|ψ (p)|2 fν (p/N ), where A is the normalization. We choose
fν (p/N ) = | sin [π ( p

N − P0)]|ν , with ν = 1 and P0 ∈ (0, 1)
drawn at random for each associated RS eigenstate. In
Figs. 1(c) and 1(h) we show �q for the MRS states. As
expected from the above discussion, the symmetry is no
longer verified. Moreover, P(α), displayed in Fig. 2(a) (solid
grayscale lines), presents exponential tails P(α) ∼ N−α/ν . As
a consequence, Eq. (5) applies [see Fig. 1(c)]. The modulation
of the RS eigenstates with fν thus leads to anomalously small
wave function components not previously present.

For the SWloc system [i.e., (4) in the localized phase], the
symmetry is also absent with and without coarse graining
[Figs. 1(e)–1(j)]. As observed from Fig. 1(j), it is due to the
fact that the maximum of �q has shifted away from q = 1/2,
thereby precluding �q = �1−q. In this case, the origin of this
behavior is an effective algebraic localization of type PL2,
resulting from the interplay between the typical exponential
localization of wave functions e−r/ξtyp around their localization
center (with the localization length ξtyp being the same in
almost all directions) and the exponential proliferation Kr of
sites at distance r [37]. Setting R ≡ Kr and q∗ = ξtyp ln K ,
we have e−r/ξtyp = R−1/q∗

. The moments for such wave func-
tions can then be rewritten as Iq ∼ ∫ N/K

1 dR R−q/q∗, and thus
they behave in the same way as for PL2-type algebraically
localized wave functions |ψR|2 ∼ R−1/q∗

(note that q∗ > 0)
of a one-dimensional system of size ∼N , known to arise,
e.g., for eigenstates of the supercritical PRBM model [81,82].
The corresponding multifractal spectrum is �q = q(1/q∗ −
1) for q < q∗ and �q = 1 − q for q > q∗, where q∗ < 1/2
and q∗ → 1/2 as the transition is approached [29,37]. This
behavior is verified in Figs. 1(e)–1(j). As in the PL1 case, the
singular point q∗ is related to the exponent ν of the effective
algebraic localization through q∗ = 1/ν. At the level of P(α),
shown in Fig. 2(b), the PL2-type algebraic localization man-
ifests itself in the position of the maximum of P(α), which
(for ν > 1) should be approximately located at ν = 1/q∗ (red
arrow), and in the exponential behavior P(α) ∼ Nκα with κ =
1/ν = q∗ (green curves). However, the range of α over which
such a behavior holds now stands to the left of the maximum
of P(α), in contrast to what happens for PL1 and Gaussians
fluctuations. Note that this model also presents Gaussian fluc-
tuations, leading to P(α) ∼ Nλα with λ = −β/2 (red curves)
to the right of the maximum, as previously discussed. Finally,
we note that the effective algebraic localization of type PL2
that describes the localized phase of the SW model also serves
to describe the intermediate nonergodic fractal phase of the
Cayley tree at the root [29,83]. This is seen by considering
that the extension of the exponentially localized behavior no
longer scales as the full volume of the system ∼N but scales
instead as ∼Nγ with 0 < γ < 1 [77]. The resulting �q is
given by �q = qγ (1/q∗ − 1) for q < q∗ and �q = (1 − q)γ
for q > q∗, which coincides with Eq. (32) of Ref. [29] with
the identification γ = 1 − α∗.
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FIG. 3. Average correlation function C−2(r) in the RS (top,
black), MRS (middle, brown), and INT models (bottom, green). Sys-
tem size is N = 210 and number of random realizations 128. System
parameters are g = 11/24, ν = 1, and γ = 1/3. Strong correlation
in the RS model is associated with the cutoff in P(α) that favors
the symmetry. Algebraic localization in MRS translates into less
correlated eigenfunctions and violation of the symmetry. The INT
map has both algebraic localization and Gaussian fluctuations.

The effective algebraic localization in the SW system
is reflected in the typical correlation function Ctyp(r) =
exp〈ln(

∑
i |ψi|2|ψi+r |2)〉 defined along the 1D lattice. As

shown in [37], it decays as Ctyp(r) ∼ exp(−r/ξtyp) = R−1/q∗
,

and therefore algebraically with the number R = Kr of pairs
of sites at a distance r of a given site.

The difference between Gaussian fluctuations and al-
gebraic localization in the INT and RS models can also
be visualized considering the average correlation function
Cq(r) = (N〈|ψ |2q〉)−1 ∑

r′ 〈|ψr′ |q|ψr′+r |q〉. As we are inter-
ested in the smallest wave function components, in Fig. 3
we consider the case q < 0. Gaussian fluctuations are spa-
tially uncorrelated and are therefore associated with a very
low constant value of Cq<0(r) for r > 0. On the contrary,
algebraic localization is associated with a power-law decay
of the correlation function, which enhances the usual alge-
braic decrease due to multifractality [27]. In Fig. 3, the MRS
model (brown line) shows a faster algebraic decay than the
RS model (black line), an effect of the envelope fν . The INT
model (green line) has a similar decay as the MRS model, but
multiplied by a very small constant prefactor, a signature of
the presence of both algebraic localization and Gaussian fluc-
tuations. In contrast, Gaussian fluctuations are absent in the
RS model, consistent with the symmetry (2) holding without
coarse graining.

In summary, we have studied the multifractal symmetry
�q = �1−q known to be valid for a large class of systems at
criticality, and found two mechanisms that lead to its viola-
tion. The first one concerns anomalously small wave function
components that are due to Gaussian fluctuations at small
scales. Though such fluctuations are known and eliminated by
coarse graining, we showed that their precise characteristics
can be obtained through their effect on multifractality. The
second mechanism corresponds to algebraic localization of
an otherwise homogeneously multifractal wave function that
generates anomalously small values of |ψ |2. In that case, the
symmetry violation is robust to coarse graining.

We find that the robust violation of the multifractal sym-
metry is intrinsically related to inhomogeneous multifractal
properties. For the Floquet critical system in the semiclas-
sical regime our results suggest that the wave functions are

modulated by an envelope with algebraic behavior around
local minima, inducing a spatial inhomogeneity of the mul-
tifractal fluctuations without destroying their characteristic
scale invariance. We interpret this envelope as similar to EBK
envelopes [84], localized around regular tori in integrable sys-
tems. Experimentally, the properties of the Floquet system we
have studied could be assessed in photonic crystal implemen-
tations [85–87] or in cold atom experiments [88–92], both of
which have been of paramount importance in the experimental
study of Anderson localization. Pseudo-integrable billiards,
for which multifractal dimensions have been calculated nu-
merically [93], are also amenable to experiments, for instance
via electromagnetic microwaves in cylindrical cavities [94], or
liquid crystal smectic films [95].

Anderson localization in random graphs is also associated
with an effective algebraic localization due to the interplay
between the exponential localization of wave functions and
the exponential growth of available sites, leading to strong
multifractality in the localized phase where the symmetry
relation is not respected. The nonergodic properties of this
problem have been much discussed recently in relation to
the many-body localization problem [28,31,36,48–57,59–65],
the Cayley tree [29,36,57,58,60], and certain types of random
matrices [31,55,96–98]. Also, the MBL phase [12,13] and
many-body eigenstates [8–11] are generically multifractal in
Hilbert space. It would be interesting to study these important
problems along the lines of this paper.
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APPENDIX: P(α) AT LARGE α AND SYMMETRY OF �q

In this Appendix we discuss in more detail the relationship
between the distribution P(α) at large α and the symmetry
�q = �1−q.

We first observe that the distribution P(α) at large α affects
�q at small q. In particular, when P(α) ∼ Nλα+b for α ∈
[ᾱ, αmax], with λ < 0, we have �q = (q − λ)αmax − q − b for
q � λ < 0 [see Eq. (5)]. Thus, the function �q in this region
q � λ < 0 can be expressed in terms of the parameters λ and
b that govern the exponential tail of P(α) at α > ᾱ. For q > 0,
on the other hand, the behavior of �q is dependent only on the
properties of P(α) for α < ᾱ. As a consequence, given a �q

that satisfies the symmetry �q = �1−q, any modification of
P(α) on one side of ᾱ only will result in the violation of this
symmetry.
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Suppose now that we have two systems for which the
distributions P(α) coincide for α < ᾱ, but with P(α) van-
ishing at α > ᾱ for one of them and P(α) ∼ Nλα at α > ᾱ

for the other one. This is illustrated in Fig. 2 of the main
text, where the dashed line vanishes at ᾱ = 2 while the solid
lines display exponential tail beyond that value. It follows
from the considerations above that if one of these systems
satisfies the symmetry �q = �1−q then the other one will
not.

An instance of this is precisely given by the models
whose distributions are displayed in Fig. 2: the Ruijsenaars-
Schneider (RS) random matrix model and the modulated
Ruijsenaars-Schneider (MRS) vector ensemble. As can be

seen in Fig. 2 the P(α) at α � 2 are almost identical (and
all the more so as N gets larger), whereas for α � 2 the
distribution vanishes for the RS model while it behaves as
P(α) ∼ Nλα for the MRS model. Since �q is symmetric for
the RS model, this implies the violation of the symmetry for
the MRS model. This is confirmed by the plots in Figs. 1(b)
and 1(c).

Another example is the small-world model at criticality
(SWcrit), where coarse graining only affects the tail of P(α)
at α > ᾱ. Since with coarse graining the symmetry holds, in
the absence of it the symmetry breaks down [see Figs. 1(d)
and 1(i)]. In the RS model, the coarse graining does not affect
P(α) for α > ᾱ and the symmetry remains valid.
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