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Instituto de F́ısica de Ĺıquidos y Sistemas Biológicos (IFLYSIB), UNLP,

CCT La Plata-CONICET, Calle 59 no. 789, B1900BTE La Plata, Argentina

Federico Vazquez∗

Instituto de Cálculo, FCEN, Universidad de Buenos

Aires and CONICET, Buenos Aires, Argentina

(Dated: June 30, 2021)

Abstract

We study a model for the collective behavior of self-propelled particles subject to pairwise copying

interactions and noise. Particles move at a constant speed v on a two–dimensional space and, in

a single step of the dynamics, each particle adopts the direction of motion of a randomly chosen

neighboring particle within a distance R = 1, with the addition of a perturbation of amplitude

η (noise). We investigate how the global level of particles’ alignment (order) is affected by their

motion and the noise amplitude η. In the static case scenario v = 0 where particles are fixed at the

sites of a square lattice and interact with their first neighbors, we find that for any noise ηc > 0 the

system reaches a steady state of complete disorder in the thermodynamic limit, while for η = 0 full

order is eventually achieved for a system with any number of particles N . Therefore, the model

displays a transition at zero noise when particles are static, and thus there are no ordered steady

states for a finite noise (η > 0). We show that the finite-size transition noise vanishes with N

as η1D

c ∼ N−1 and η2D

c ∼ (N lnN)−1/2 in one and two–dimensional lattices, respectively, which

is linked to known results on the behavior of a type of noisy voter model for catalytic reactions.

When particles are allowed to move in the space at a finite speed v > 0, an ordered phase emerges,

characterized by a fraction of particles moving in a similar direction. The system exhibits an order-

disorder phase transition at a noise amplitude ηc > 0 that is proportional to v, and that scales

approximately as ηc ∼ v (− ln v)−1/2 for v ≪ 1. These results show that the motion of particles is

able to sustain a state of global order in a system with voter-like interactions.
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I. INTRODUCTION

The study of the collective properties of systems composed by self-propelled individuals

has been the focus of intense research in the last two decades [1–3]. The flocking behavior

of a large group of animals is observed in many different species such as fish, birds, bacteria

and insects, among others. From a statistical physics viewpoint, the interactions between

particles in a system are responsible of its collective behavior, and lead to well characterized

classes represented by archetype models. For the case of flocking, the alignment interaction

among individuals is usually modeled as a local averaging of moving directions of nearby

individuals, plus a noise that accounts for errors in the average process [4]. A crucial role in

the emergent behavior of the system is played by the displacement of the individuals, which

changes dramatically its ordering properties [5].

Within the context of flocking, the dynamics of collective alignment in groups of fish

was recently studied in [6]. The authors performed experiments with cichlid fish Etroplus

suratensis that swim in a circular shallow tank, in order to explore how schooling is affected

by the fish group size. The level of group alignment is quantified by a vector order param-

eter M that is the average velocity of fish, also called group polarization, in such a way

that |M| ∼ 1 corresponds to a polarized state where fish move in a coherent direction, while

|M| ∼ 0 represents a collectively disordered state –each fish moving in a random direction.

Performing the experiments for group sizes N = 15, 30 and 60, they found that the col-

lective alignment |M| increases as N decreases. An insight into this phenomenon is given

by a phenomenological stochastic differential equation (SDE) for the time evolution of M,

where its parameters were extracted from the experimental data. It is shown that group

polarization is the result of the interplay between the drift and the demographic (popula-

tion) noise terms in the SDE, that is, the fewer the fish, the greater the demographic noise

and so the greater the alignment level. Thus, they conclude that schooling (highly polar-

ized and coherent motion) is induced by the intrinsic population noise that arises from the

stochasticity related to the finite number of interacting fish. They derived the SDE for M

by means of a mean-field (MF) model in which particles (fish) interact by pairs and follow

a simple imitation dynamics: each particle either copies the direction of another random

particle or spontaneously changes its direction, modeled as an external noise of amplitude η.

They also show that other ternary or higher-order aligning interactions, including local aver-
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ages like in the Vicsek-like family of models, are unnecessary to explain these experimental

results. Therefore, they arrive to the conclusion that the minimal theoretical mechanism

that reproduces the collective alignment properties of fish observed in the experiments is

that of pairwise interactions with copying dynamics and noise. We notice that the noiseless

version of this particular alignment dynamics that induces flocking was first introduced in

[7], where the authors study the collective motion of particles on a two–dimensional (2D)

space subject to voter-like interactions, that is, each particle aligns its direction of motion

with that of a random neighboring particle within an interaction radius.

From the theoretical point of view, an interesting result can be inferred from the work

in [6] by analyzing the SDE for the group polarization M. That is, this equation predicts

complete order (|M| = 1) for zero noise (η = 0) and full disorder (|M| = 0) for any finite

noise amplitude η > 0 in the N → ∞ limit. This observation is in agreement with recent

analytical results obtained in a similar model with a discrete set of S angular directions, a

multistate voter model (MSVM) with external noise [8], where it is shown that the order

parameter |M|2 approaches 1.0 as 1 − |M|2 ∼ η2N in the η → 0 limit, and vanishes when

N increases as 1/(η2N) for any 0 < η ≪ 1. Thus, the partial order obtained with voter

interactions and noise in a MF set up is only a finite size effect that eventually disappears

in the thermodynamic limit. These results suggest a peculiar order-disorder transition at

zero noise, unseen in related flocking models such as the binary Vicsek model [9] where

each particle averages its direction with that of other random particle, and the transition

happens at a critical noise larger than zero. However, we notice that the experimental results

obtained in [6] correspond to fish moving on a 2D set up (tank), while both the SDE and

the model in [8] are for a MF set up (infinite dimension), where every particle interacts with

any other particle, and thus motion plays no role in the dynamics. It is natural, therefore,

to wonder whether these results hold when particles move on a 2D space. Do space and

motion affect the transition at zero noise?

In this article we study a noisy multistate voter model for flocking in finite dimensions,

and we investigate the order-disorder phase transition in different case scenarios. We start

by analyzing the simplest case of all-to-all interactions or MF. We then explore the static

case where each particle occupies a site of a square lattice and interacts with its first nearest-

neighbors, and we finally study the dynamic case in which particles move on a 2D continuous

space and change their direction when they interact with other nearby particles that are lo-
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cated within a distance R = 1. In the case that particles are allowed to have only two

possible angular states and interact on a MF set up, the model turns to be equivalent to the

noisy voter model (NVM) introduced in [10, 11], in which each individual of a population

holds one of two states (opinions) that are updated by either copying the state of a random

neighbor or spontaneously switching state (noise). In the absence of noise, any finite pop-

ulation eventually reaches full order (consensus) in all dimensions, as in the original voter

model [12, 13], with all individuals sharing the same opinion. However, the addition of a

weak noise leads to a bi-stable regime in which the system jumps between two steady states

corresponding to a quasi-consensus in one or the other opinion [10, 11], while for strong

noise the system remains disordered. This is in line with the fact that adding thermal bulk

noise in the voter model destroys global order in any dimension [14], even when the noise is

weak. In square lattices, the NVM is equivalent to a particular limit of the catalytic reaction

model with desorption originally introduced in [15] and widely studied after [16, 17], which

exhibits a finite size transition induced by noise called saturation transition [18–20]. More

recently, the dynamics of the NVM has been investigated in complex networks [21–23], and

its version with multiple states has been explored in fully connected systems [8, 24]. Also,

an asymmetric variant of the NVM with long-range interactions has recently been proposed

to study the competition between two species for territory [25].

While in 2D lattice models bulk noise inhibits the formation of long range order in the

thermodynamic limit, it is known that in flocking systems the displacement of particles

plays an ordering role. This ordering phenomenon is observed in the Vicsek model, thought

as a non equilibrium version of the XY model in 2D with particles moving ballistically

in the directions of their spins. That is, while the Vicsek model can sustain long-range

order for finite values of noise amplitude due to particles’ motion [5], the 2D XY model is

unable to do so [26]. Then, the velocity of particles in Vicsek-type models leads to steady

states associated with a new ordered phase below a transition noise ηc. However, voter-

type interactions (copying) are different from Vicsek-type interactions (averaging), leading

to different behaviors in MF and three dimensions: long-range order in the XY model,

and disorder in the NVM. Therefore, in the flocking voter model (FVM) studied in this

article, we expect a non-trivial competition between the ordering mechanism generated by

particles’ motion and the typical disordering effect induced by noisy voter interactions that

leads to complete disorder in the thermodynamic limit. Thus, we aim to explore whether
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the ordered phase observed in flocking models is still present in the FVM, or it is rather

completely suppressed by noise.

The rest of the article is organized as follows. In section II we define the model. Section III

presents MF results, while section IV is dedicated to the static version of the model in one

and two dimensional square lattices. In section V we study the dynamic version of the model

in a continuous 2D space. We investigate the effects of particles’ velocity in the transition,

with a particular focus on the behavior at low speeds in the thermodynamic limit. Finally,

in section VI we summarize and give some conclusions.

II. THE MODEL

A set ofN particles are allowed to move at a constant speed v on a 2D square box of side L

with periodic boundary conditions. The position and velocity of particle i (i = 1, 2, .., N) at

time t are denoted by r
t
i = (xti, y

t
i) and v

t
i = (v cos θti , v sin θ

t
i), respectively, where v = |vt

i| is
the particle’s speed and θti is its angular moving direction. The density of particles ρ = N/L2

is fixed at 0.5 in our analysis, unless stated. Initially, each particle adopts a random position

inside the box and points in a random direction. In a given time step ∆t = 1 of the dynamics,

each particle i updates it position and direction according to

r
t+1

i = r
t
i + v

t
i ∆t, (1a)

θt+1

i = θtj + ξt+1

i , (1b)

where θtj is the moving direction of a randomly chosen particle j that is inside a disk of radius

R = 1 centered at rt
i, and ξ

t
i is a random angle drawn uniformly in [−ηπ, ηπ) with amplitude

η (0 < η < 1). This update is performed for all particles at the same time (parallel update).

That is, each particle moves at a constant speed v following a given straight path and

updates its direction at integer times t = 1, 2, 3, ..., by adopting the direction of a random

neighboring particle with an error of amplitude η. If a particle has no neighbors inside its

interaction range R, then its direction is changed only by the noise ξ.

In flocking models, noise –in its various forms– plays a fundamental role in the behavior

of the system. It is known that the amplitude of noise η induces an order-disorder phase

transition, from a phase where a large fraction of particles move in a similar direction (order)

for small η, to a phase in which particles move in random directions (disorder) for large η.
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To study this phenomenon in the FVM we define the order parameter (see for instance [6, 7])

ϕ(t) ≡ 1

v N

∣

∣

∣

∣

∣

N
∑

i=1

v
t
i

∣

∣

∣

∣

∣

=
1

N

√

√

√

√

[

N
∑

i=1

cos θti

]2

+

[

N
∑

i=1

sin θti

]2

(2)

that measures the level of collective alignment in the system (magnitude of the normalized

mean velocity of all particles), and the susceptibility

χ ≡ N
[

〈ϕ2〉 − 〈ϕ〉2
]

, (3)

which accounts for the amplitude of fluctuations of ϕ at the stationary state. Here 〈ϕm〉 is
the m-th moment of ϕ, and the symbol 〈·〉 represents the average value of a given magnitude

over many realizations of the dynamics at the steady state.

Our aim is to explore via computational simulations and scaling theory how space and

motion affects the phase transition in the FVM. For that, we first study the model in MF

(R = L), we then explore the static case v = 0 in lattices, and we finally investigate the

dynamic case v > 0 in 2D.

III. MEAN FIELD

In order to gain an insight into the behavior of the FVM, we start by analyzing in this

section the simplest case scenario of all-to-all interactions or MF, which corresponds to the

large interaction range limit R → L of the model defined in section II. In this case, the

dynamics of the angular directions of particles θ is independent of the positions of particles,

and thus it is entirely determined by Eq. (1b). That is, each particle simply adopts the

direction of another randomly chosen particle in the system, with the addition of noise.

This dynamics is equivalent to that of the multistate voter model with imperfect copying

introduced and studied in [8], in the limit of continuum angular states. In a single time

step ∆t = 1/N , a particle i with state θi is picked at random, then it copies the state θj of

another randomly chosen particle j, and this state is slightly perturbed:

θi(t+∆t) = θj(t) + ξi(t+∆t). (4)

We note that we are implementing here a sequential update in which only one particle

updates its state in a time step, unlike the parallel update where all N particles are updated
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FIG. 1. Results of the FVM in MF. (a) Average value of the order parameter ϕ at the stationary

state as a function of noise amplitude η for the system sizes N indicated in the legend. The inset

shows the collapse of the data points when they are plotted as a function of the scaling variable

xMF = η2N . The dashed line has slope −1/2. (b) Susceptibility χ vs η for the same system sizes

as in panel (a). Inset: collapse of the data when it is plotted vs xMF and the y–axis is rescaled by

N−1. Averages were done in a time window ∆t ∼ 107 over 10 independent realizations.

at once. However, we have verified that the behavior of the macroscopic variables ϕ and χ

under the parallel update is recovered by making the substitution N → 2N in the results

obtained with the sequential update, as mathematically proved by Blythe and McKane in

[28] for population genetic models akin to the voter model. Inversely, the transformation

N → N/2 allows to obtain the behavior under the sequential update from the results with

parallel update.

Figure 1 shows simulation results for the model in MF. Data points correspond to average

values in a time interval after the system reached the stationary state, between times t = 106

and t = 2×107, and over 10 independent realizations. In panel (a) we observe that the order

parameter ϕ continuously decreases as η increases, and that approaches the value ϕ = 1

(full order) as η → 0, which corresponds to the absorbing consensus state obtained in the

zero noise case η = 0, as it is known from previous works of the multistate voter model

[7, 8, 29, 30]. We also see that, for a fixed value of η > 0, ϕ vanishes as the system size N

increases, suggesting that ϕ → 0 for any η > 0 in the N → ∞ limit. Indeed, an expression

7



10
1

10
2

10
3

10
4

10
5

10
6

N

10
-3

10
-2

10
-1

η
c

MF
2D
1D

10
2

10
3

10
4

10
5

10
6

N

10
-3

10
-2

10
-1

η
c η

c
η

c

(a)

^

10
1

10
2

10
3

10
4

10
5

10
6

N

10
0

10
2

10
4

χm
ax 2D

10
0

10
2

10
4

χm
ax 1D

10
0

10
2

10
4

χm
ax MF

(b)

FIG. 2. Results of the FVM in MF (circles) and in square lattices of dimensions d = 1 (diamonds)

and d = 2 (squares). (a). Transition noise ηc vs system size N . Straight lines are best power-law

fits ηc = AN−α with exponents α = 0.5± 0.015 (MF), 0.99± 0.02 (d = 1) and 0.56± 0.01 (d = 2).

Inset: ηc for d = 2 (squares) and the effective noise η̂c = ηc
√− ln ηc (circles). The upper solid

line is the best power law fit η̂c ≃ BN−1/2, with B = 1.3 ± 0.04, while the bottom solid curve is

the approximation ηc ≃ 1.8 (N lnN)−1/2 from Eq. (15c). (b) Maximum value of the susceptibility

χmax vs N . Best power-law fits χmax ∼ Nγ (straight lines) have exponents γ = 1.01 ± 0.01 (MF),

0.997 ± 0.005 (d = 1) and 0.99 ± 0.01 (d = 2).

for the scaling of 〈ϕ〉 with η and N that confirms this assumption can be obtained from

analytical results of this model recently presented in [8], for an order parameter ψ = ϕ2.

It was shown in [8] that 〈ψ〉 ∼ (η2N)
−1

for η ≪ 1 and η2N & 1, and thus assuming

〈ϕ〉 ∼ 〈ψ〉1/2 we obtain the approximate MF behavior

〈ϕ〉MF ∼
(

η2N
)

−1/2
for η ≪ 1 and η2N & 1. (5)

In the inset of Fig. 1(a) we plot the data as a function of the scaling variable xMF ≡ η2N ,

where we can see that 〈ϕ〉MF obeys the power law decay from Eq. (5) for η2N & 1 (dashed

line). We also observe a good collapse of the curves for different system sizes in the entire

range of xMF, showing that the order parameter is a function of xMF, 〈ϕ〉MF = f (η2N), with

f (xMF) ∼ x
−1/2
MF for xMF & 1.

The results above imply that in the absence of noise η = 0 the system reaches full order
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(ϕ = 1), but a tiny amount of noise η > 0 is enough to drive the system to complete disorder

(ϕ = 0) in the thermodynamic limit, which suggests a transition at zero noise. To study

this in more detail, we show in Fig. 1(b) the behavior of the susceptibility χ with η. We

observe that the curve for a given system size N exhibits a maximum that is an indication

of a transition that depends on N , between an ordered phase for η < ηc(N) and a disordered

phase for η > ηc(N), where the transition point ηc(N) is estimated as the location of the

peak. In Fig. 2(a) we plot the transition noise ηc vs N (circles), where we can see that ηc

vanishes as N increases following a power-law behavior N−α, with a best fitting exponent

α = 0.5± 0.015. This implies a transition value ηc(∞) = 0 in the thermodynamic limit. In

panel (b) of Fig. 2 we see that the maximum value of the susceptibility increases with N as

χmax ∼ Nγ , where γ ≃ 1.01± 0.01 is the best fitting exponent.

These scalings can be nicely verified by assuming that χ is also a function of the scaling

variable xMF = η2N for ϕ in Fig. 1. Indeed, rescaling the y–axis of Fig. 1(b) by N−1 and

plotting the resulting data vs xMF we find a good collapse of all curves for different N values

(see inset), showing that the MF susceptibility behaves as

χMF = Ng
(

η2N
)

, (6)

where g(xMF) is a smooth function of xMF. From Eq. (6) we have that at the MF transition

point ηMF

c is χmax

MF
/N = g

[

(ηMF

c )2N
]

= constant and, therefore,

ηMF

c ∼ N−1/2, (7)

in agreement with numerical results [Fig. 2(a)].

In summary, the mean field version of the FVM exhibits an order-disorder phase transition

at zero noise ηc = 0 in the thermodynamic limit, between a perfectly ordered phase where

ϕ = 1 for η = 0 and a completely disordered phase where ϕ = 0 for η > 0.

IV. STATIC CASE v = 0 IN ONE AND TWO DIMENSIONS

In this section we analyze the static version of the FVM in finite dimensions. For that, we

consider that each particle occupies a site of a square lattice of length L and d dimensions

(N = Ld sites), and interacts with its 2d nearest neighbors only. We have simulated the

dynamics of the model under the sequential update described in section III on lattices of
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FIG. 3. Results of the static version of the FVM in one dimension. (a) Average value of ϕ at

the stationary state vs η for the system sizes N indicated in the legend. Inset: same data vs the

scaling variable x1D = ηN showing the collapse of curves for different N values. The dashed line

has slope −1/2. (b) Susceptibility χ vs η for the same system sizes as in panel (a). Inset: x and

y–axis are rescaled by N and N−1, respectively, to show the collapse of the data.

dimensions d = 1 and d = 2 with periodic boundary conditions. In a time step ∆t = 1/N ,

a randomly selected particle copies the angular state of a first neighbor chosen at random,

with the addition of an error of amplitude η.

Figure 3 shows simulation results for the FVM in one dimension. The behavior of 〈ϕ〉
and χ are similar to those of the MF model, with a scaling variable x1D ≡ ηN in this

one–dimensional case. The variable x1D was obtained from the behavior of the transition

noise η1D

c with N given by the peak of χ in panel (b) of Fig. 3. We found η1D

c ∼ N−α, with

α = 0.99 ± 0.02 [Fig. 2(a)], while for the peak of the susceptibility we found the scaling

χmax ∼ Nγ , with γ = 0.997± 0.005 [Fig. 2(b)]. Therefore, assuming the scalings

η1D

c ∼ N−1 and (8)

χmax ∼ N, (9)

we arrive at the following scaling for the susceptibility:

χ1D = Ng1(ηN), (10)

and thus the scaling variable is x1D = ηN , as stated above. Indeed, we can check in the
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FIG. 4. Static version of the FVM in two dimensional lattices. (a) Average order parameter

〈ϕ〉 and (b) normalized susceptibility χ/N vs the scaling variable η2N1.1 for the system sizes N

indicated in the legend. (c) 〈ϕ〉 and (d) χ/N vs the scaling variable x2D = η̂2N for the same system

sizes as in panels (a) and (b), with η̂ = η
√− ln η. Dashed lines in panels (a) and (c) have slopes

−0.45 and −1/2, respectively.

insets of Fig. 3 the collapse of the curves for different system sizes when the data is plotted

vs x1D, and the y–axis in panel (b) is rescaled by N−1. Also, in the inset of panel (a) we

show that the order parameter scales as 〈ϕ〉1D ∼ x
−1/2
1D for x1D & 1 (dashed line), which

exhibits the same behavior with respect to the scaling variable as that of MF [Eq. (5)], i.e.,

a power-law decay with exponent 1/2.

The scaling relation Eq. (8) shows that the transition noise vanishes withN and, therefore,

we conclude that the static version of the FVM in one dimension exhibits an order-disorder

transition at zero noise in the thermodynamic limit, as it happens in MF.

We repeated the same analysis for the FVM model on two dimensional lattices. Simula-

tion results are presented in Fig. 4, where the data collapse was obtained by means of two

different scaling variables, as we describe below. As it happens for the MF and the 1D cases,

the transition noise (given by the maximum of the susceptibility) decays as a power law with

the system size N as η2D

c ∼ N−α [square symbols in Fig. 2(a)], with a best power-law fitting

exponent α ≃ 0.56 ± 0.01. Even though this exponent is different from the MF and 1D
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exponents 0.5 and 1, respectively, this numerical scaling implies an extrapolated transition

noise η2D

c = 0 in the N → ∞ limit. The peak of the susceptibility χmax seems to increase

linearly with N as in MF and 1D, with a best-fitting exponent γ ≃ 0.99± 0.01 [Fig. 2(b)].

Based on these results, we plot 〈ϕ〉 and χ/N as a function of η2N1.1 in Figs. 4(a) and (b),

respectively, where we observe a good collapse of curves for different system sizes. For the

sake of simple comparison, we have also collapsed the same data using the MF scaling vari-

able η2N instead, and found that the data points do not fall into a single curve but they

look rather disperse (plot not shown). Therefore, we conclude that the 2D case appears to

have its own scaling variable, which is proportional to a non-trivial power of N .

A more appealing scaling variable can be obtained from known results of the behavior

of the surface-reaction model introduced by Fichthorn, Gulari and Ziff (FGZ) in [16] and

studied later in [18–20], akin to the two-state NVM [10, 11], which be believe it belongs to

the same class of the MSVM for flocking studied here. In the FGZ model, N particles of

two different species A and B occupy the sites of a square lattice that simulates a catalytic

substrate. In a single step, two possible reaction events can take place. (i) With probability

pd one particle is chosen at random and desorbs, and the vacant site is immediately occupied

with a particle of species A or B with the same probability 1/2. This corresponds to the

external noise of the NVM that switches the state of a particle with probability pd/2. (ii)

With the complementary probability 1− pd a pair of neighboring sites is chosen at random

and, if it is an AB pair, both particles desorb and are replaced with an AA or a BB pair,

equiprobably. This represents the copy dynamics of the NVM. The control parameter of the

FGZ model is the desorption probability pd (noise amplitude). The steady state at pd = 0

is a poisoned absorbing state with a coverage equals to 1.0 (all particles in state A or B),

which is analogous to complete order for η = 0 in the FVM. For pd > 0 the coverage is

smaller than 1.0, depending on the values of pd and N , similarly to the partial order in the

FVM.

It turns out that the scaling variables that we obtained for the FVM in MF and 1D

are the same as those of the FGZ model, by making a suitable change of variables. In the

FGZ model they obtained analytically the scaling variables XMF = pdN in MF (d = 3) and

X1D = p
1/2
d N in 1D [18, 19], while in the FVM are xMF = η2N in MF and x1D = ηN in

1D. Thus, the scaling variables of both models match if we make the substitution pd → η2.

Finally, 2D is a marginal dimension in the FGZ model, with a scaling variable similar to

12



that of MF with a logarithmic correction in pd, that is, X2D = pd ln(1/pd)N . Therefore, for

the FVM in 2D we expect a scaling variable x2D = η̂2N , where we have defined an effective

noise amplitude η̂ ≡ η
√
− ln η.

Panels (c) and (d) of Fig.4 show 〈ϕ〉 and χ/N plotted as a function of the scaling variable

x2D, where we see a good data collapse. Even though this collapse with x2D seems as good as

that with η2N1.1 [panels (a) and (b)], the advantage of using x2D = η̂2N is two fold: we are

not fitting any parameter and we recover the linear dependence on N found in MF and 1D

scaling variables xMF and x1D. Additionally, Fig. 4(c) shows that the order parameter scales

as 〈ϕ〉2D ∼ x
−1/2
2D for x2D & 1 (dashed line), consistent with the power law decay found in MF

and 1D. In comparison, 〈ϕ〉2D decays as a power law of η2N1.1 with a non-trivial exponent

−0.45 [dashed line in Fig. 4(a)]. Finally, from the scaling relation for the susceptibility

χ2D = Ng2(η̂
2N), (11)

where g2 is a smooth function of x2D [see Fig. 4(d)], we obtain the effective transition noise

η̂2D

c ≃ BN−1/2 (12)

in 2D, where B is a proportionality constant. Interestingly, the exponent α̂2D ≡ 1/2 in the

2D case agrees with that of the MF case [Eq. (7)]. In the inset of Fig. 2(a) we compare the

effective transition noise

η̂2D

c = η2D

c

√

− ln η2D

c (13)

from simulations (circles) with the approximate scaling given by Eq. (12) (upper solid line),

with a best fitting constant B = 1.3 ± 0.04. The good agreement between simulations and

Eq. (12) shows that the transformation of the original noise η2D

c into the effective noise η̂2D

c

leads to power-law decay in N with a MF exponent α̂2D = 1/2.

We can now obtain an approximate expression for the transition noise assuming that it

has the power law behavior η2D

c ≃ AN−α as found numerically [squares in Fig. 2(a)], where

the exponent α depends on N and A ≃ 0.96 is a constant obtained from the fitting of the

data. Starting from the relation Eq. (13) between the effective and original noise, we apply

the logarithm at both sides and replace ln η̂2D

c by lnB − 1

2
lnN from Eq. (12) and ln η2D

c by

lnA− α lnN , which leads to

(2α− 1) lnN − 2 ln (A/B)− ln (lnN)− lnα = 0, (14)
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after doing some algebra and rearranging terms. We have also considered the expansion

ln (− lnA+ α lnN) = lnα+ln(lnN)+O [(lnA) /(α lnN)] to zero-th order in (lnA) /(α lnN) ≪
1, as we can check for N & 102, A ≃ 0.96, and α & 1/2. Then, as we expect α to be similar

to 1/2 (α ≃ 0.56 from the fitting of the 2D data in Fig. 2), we replace lnα in Eq. (14)

by the Taylor expansion lnα ≃ ln(1/2) + 2α − 1, and solve for α. We finally arrive at the

following approximate scaling for the transition noise with N :

η2D

c ≃ AN−α, with (15a)

α(N) ≃ 1

2
+

ln
[

A
B

(

1

2
lnN

)1/2
]

lnN − 1
or (15b)

η2D

c ≃ 1.8 (N lnN)−1/2 for N ≫ 1, (15c)

using B ≃ 1.3. In the inset of Fig. 2 we can see that the approximation from Eq. (15c) (bot-

tom solid curve) reproduces very well the behavior of η2D

c vs N from simulations (squares).

The second term in the exponent α(N) [Eq. (15b)] leads to a very slow curvature in log-log

scale with an effective exponent α ≃ 0.56 in the shown range of N , which approaches very

slowly to the value 1/2 as N increases. Finally, from Eq. (15c) we can see that the transition

point η2D

c vanishes in the N → ∞ limit.

Summarizing the results of this section, the static version of the FVM in one and two–

dimensional lattices exhibits an order-disorder transition at zero noise in the thermodynamic

limit.

V. DYNAMIC CASE v > 0 IN TWO DIMENSIONS

When particles are allowed to move over the space, their speed v becomes a relevant

parameter that drastically changes the behavior of the system respect to the static case

analyzed in section IV, as we shall see below. Simulations were done on a two–dimensional

continuous space (square box) using the parallel dynamics defined in section II. We remark

that interactions are local, that is, each particle can only interact with other particles that

are less than a distance R = 1 apart, by copying the direction of one of them chosen at

random.

In Fig. 5 we plot the susceptibility χ and the order parameter 〈ϕ〉 (inset) vs noise am-

plitude η for speeds v = 0.1 [panel (a)] and v = 1.0 [panel (b)]. In principle, we observe a
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FIG. 5. Results of the dynamic version of the FVM in a two–dimensional continuous space with

particles’ speed v = 0.1 (a) and v = 1.0 (b). The main panels show the susceptibility χ vs noise

amplitude η for the system sizes indicated in the legend. The insets show the average of the order

parameter 〈ϕ〉 vs η. Vertical dashed lines indicate the estimated location of the transition noise ηc

(maximum of χ).

behavior similar to that of MF and the 1D and 2D static cases studied previously where 〈ϕ〉
decays monotonically with η, and χ exhibits a maximum at a value ηc that decreases with

N , as we can clearly see for v = 0.1. However, an inspection of the v = 1.0 plot reveals that

ηc appears to decrease and saturate at a minimum value ηc ≃ 0.05 as N increases, unlike in

MF and the static cases where ηc vanishes with N . Also, if we compare the level of order 〈ϕ〉
and its fluctuations χ for the two speeds, we can see a larger order with smaller fluctuations

for the largest speed v = 1.0, suggesting that the speed has an ordering effect.

To look at this in more detail, we plot in Fig. 6 the transition noise ηc(v,N) vs the system

size N for different speeds. Indeed, for a given speed v & 0.2, we can see that ηc exhibits

a decay similar to a power law for small values of N , and saturates at a minimum value

ηc(v,∞) > 0 for large N , which decreases as v decreases. We also plot for comparison the

transition noise η2D

c (N) for the static case v = 0 in two–dimensional lattices (empty circles).

For the sake of clarity, the dashed line has been shifted in the y-axis to match the estimated

asymptotic behavior of ηc(v,N) in the zero speed limit v → 0, as we do not expect η2D

c (N)

and ηc(0, N) to be exactly the same. This is because some macroscopic magnitudes of the
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FIG. 6. (a) Transition noise ηc vs system size N for the speeds v indicated in the legend. The

empty circles correspond to the two–dimensional static case (v = 0) on square lattices. The

horizontal dashed lines indicate the asymptotic values ηc(v,∞) for large N . Inset: transition noise

ηc(v,∞) vs v (circles) obtained from the main panel, and effective transition noise η̂c(v,∞) vs v

(squares). The straight line is best power-law fit C vβ of η̂c(v,∞) for v ≤ 0.75, with resulting

constant C = 0.095 ± 0.01 and exponent 1.01 ± 0.02. (b) Collapse of the curves for the different

speeds of panel (a) by means of η̂c(v,N). The exponents z = 2 and β = 1 in the x and y–axis,

respectively, correspond to the scaling Eq. (22). The dashed line with slope −1/2 indicates the

power law regime for v2N . 2. The inset shows ηc vs N for v = 0.1. The dashed line has slope

−1/2.

dynamic model (〈ϕ〉, χ and ηc) depend on other variables besides v and N , such as the

density of particles ρ.

The numerical results described above show that, in the thermodynamic limit, there is

an order-disorder transition at a finite noise amplitude ηc > 0 that increases with the speed

v. To study this transition in more detail, we investigate below the scaling behavior of ηc

with the speed and the system size.

Since we have learned in section IV that working with an effective noise η̂ in 2D lattices

leads to scalings with simple MF exponents, it seems reasonable to explore the data of Fig. 6

for an effective transition noise

η̂c(v,N) ≡ ηc(v,N)
√

− ln ηc(v,N), (16)
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which incorporates a correction factor
√
− ln ηc to the original noise ηc. The approximate

power-law decay of ηc for small N and its saturation for large N [Fig. 6(a)] suggests that

the scaling behavior of η̂c(v,N) could be described by the following standard Family-Vicsek

function with two independent exponents β and z [31]:

η̂c(v,N) ∼ vβf (vzN) , (17)

where f is a scaling function with the asymptotic properties

f(x) ∼











x−α for x≪ 1,

constant for x≫ 1.
(18)

We can check that Eq. (17) exhibits the two limiting behaviors

η̂c(v,N → ∞) ∼ vβ (19)

in the thermodynamic limit, and

η̂c(v → 0, N) ∼ N−α (20)

in the zero speed limit, where the exponent α satisfies the relation

β = z α. (21)

By means of the scaling relation Eq. (17) we can collapse the data points of Fig. 6 into a

single curve. For that, we first estimate the exponents β, α and z. From the plot η̂c(v,∞)

vs v in the inset of Fig. 6 (squares) we find the best power-law fitting C vβ (straight line),

where C = 0.095± 0.01 and β = 1.01± 0.02. Then, in the zero speed limit we assume that

α takes the value α = α2D = 1/2 of the 2D static case, and thus we obtain z = 2.02 ± 0.04

from Eq. (21). Based on these exponents, we propose the following scaling for the effective

transition noise:

η̂c(v,N) ∼ v f
(

v2N
)

, (22)

with f(x) ∼ x−1/2 for x ≪ 1 and f(x) ∼ const for x ≫ 1. Figure 6(b) shows a good

data collapse obtained with the scaling Eq. (22). Remarkably, this result only required the

estimation of the best fitting exponent β of the η̂c(v,∞) vs v data, and assuming that the

scaling of the transition noise with N in the zero speed limit is the same as that of the 2D

static case.
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The effective transition noise given by Eq. (22) scales linearly with the speed in the

thermodynamic limit,

η̂c(v,∞) ≃ C v, (23)

where C = 0.095 is the best fitting constant for low speeds v . 0.75 [straight line in the

inset of Fig. 6(a)]. An approximate power-law scaling ηc(v,∞) ≃ Dvβ for the original

noise can be obtained by following the same approach described in section IV to obtain

the scaling of η2D

c with N [Eq. (15)]. For that, we start from the relation between η̂c

and ηc in logarithmic scale ln η̂c = ln ηc + (1/2) ln(− ln ηc) and replace ln η̂c by lnC + ln v

[Eq. (23)] and ln ηc by lnD+β ln v. After rearranging terms and making the approximation

ln (− lnD − β ln v) ≃ ln β + ln(− ln v) to zero-th order in (lnD)/(β ln v) < 1 we arrive at

2(β − 1) ln v − 2 ln(C/D) + ln(− ln v) + ln β = 0. (24)

As we expect β to be similar to 1.0 [circles in the inset of Fig. 6(a)], we use the linear

approximation ln β ≃ β − 1 in Eq. (24) and solve for β. We finally obtain the following

approximate expressions for the transition noise:

ηc(v,∞) ≃ Dvβ, with (25a)

β(v) ≃ 1 +
ln
[

C
D
(− ln v)−1/2

]

ln v + 1/2
or (25b)

ηc(v,∞) ≃ C v (− ln v)−1/2 for v ≪ 1. (25c)

The second term in Eq. (25b) gives an effective exponent β(v) & 1 that decreases and

approaches the value 1 very slowly as v decreases. Equations (25) are only valid for low

speeds due to the fact that the approximate expansion of the logarithm that we used in

Eq. (24) assumes that (lnD)/(β ln v) < 1, which happens for v . 0.08. Unfortunately, the

comparison of Eq. (25) with simulation results is not possible because to obtain the numerical

value ηc(v,∞) for speeds v < 0.2 is extremely costly in terms of simulation running times.

Equation (22) also implies the scaling

η̂c(v,N) ∼ N−1/2 for v2N ≪ 1, (26)

which is confirmed in Fig. 6(b), where the collapsed data exhibits an approximate power

law decay with exponent −1/2 for v2N . 2, denoted by the dashed line. Finally, in the
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inset of Fig. 6(b) we compare the curve ηc vs N for the lowest speed v = 0.1 with the N−1/2

scaling (dashed line). A good agreement is observed only at intermediate values of N , while

for small or large sizes a deviation from the slope −1/2 becomes clear. We understand that

the discrepancy for small N is due to the absence of the logarithmic correction
√
− ln ηc

that becomes more relevant as ηc decreases, while for large N we expect that ηc reaches

a saturation at a minimum value ηc(0.1,∞) > 0. This asymptotic value of ηc(0.1, N) is

reached for system sizes outside the shown range and, in general, the approximate system

size from where we start to see a plateau in ηc seems to diverge as v approaches zero [see

Fig. 6(a)]. An insight into this can be given in terms of the crossover size Ncross that separates

the two limiting behaviors of ηc(v,N) for small and large N . For N ≪ Ncross the effective

transition noise decays with N as η̂c ∼ N−1/2, while for N ≫ Ncross is η̂c ∼ v. At the

crossover size, these two limiting scalings should match, leading to Ncross ∼ v−2. This simple

relation shows that, as v approaches zero, the crossover size diverges very fast, and so we

need to run simulations in very large systems to observe the asymptotic value of ηc(v,N).

In summary, we showed in this section that the FVM in a 2D continuous space exhibits

and order-disorder phase transition at a finite noise amplitude ηc > 0 that is proportional to

the speed v of particles. For low speeds, ηc is linear in v with a logarithmic correction that

leads to an effective power law with a v–dependent exponent slightly larger than 1. Thus,

the transition at a finite noise ηc > 0 induced by particles’ motion is in contrast with the

zero-noise transition found in MF and the static version of the model in lattices.

VI. SUMMARY AND CONCLUSIONS

We studied a model for the flocking dynamics of self-propelled particles with pairwise

copying interactions and noise. This model can be considered as a version of the noisy voter

model with infinite number of angular states, which also incorporates the motion of particles

over the space. We focused on the ordering properties of the system by exploring the order

parameter ϕ that measures the global level of alignment of particles. We found that the

system undergoes a transition as the noise amplitude η overcomes a threshold ηc, from an

ordered phase for η < ηc where a fraction of particles are aligned and thus ϕ > 0, to a

disordered phase for η > ηc characterized by each particle moving in a random direction,

leading to ϕ = 0. We performed a numerical analysis to investigate how the speed of
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particles, the space and its dimension affect the order-disorder phase transition. We started

by the simplest case of all-to-all interactions or infinite dimension or MF, followed by the

static case of fixed particles on one and two–dimensional square lattices, and ending with

the dynamic case of particles moving on a bounded continuous two–dimensional space. The

transition point ηc was determined by the location of the peak of the susceptibility, which

depends on the system size N . By doing suitable finite size scaling analysis we were able to

infer the scaling behavior of the relevant magnitudes in the thermodynamic limit, including

the transition noise.

In the MF case we showed that the transition noise vanishes with N as ηMF

c ∼ N−1/2,

which is related to known analytical MF results of the MSVM. In the static case (v = 0)

we found the scalings η1D

c ∼ N−1 in 1D and η̂2D

c ∼ N−1/2 in 2D, where η̂2D

c = η2D

c

√

− ln η2D

c

is an effective noise amplitude. This effective noise with a logarithmic correction in η2D

c was

found by drawing an analogy between our FVM and the FGZ model for catalytic reactions

with desorption probability pd, and making the transformation pd → η2. Our scaling results

on MF and lattices are compatible with those predicted theoretically for the FGZ model,

which is a version of the noisy two-state voter model.

We therefore conclude that, in MF and 1D and 2D static cases, the FVM displays an

order-disorder transition at zero noise in the thermodynamic limit. This result means that

any finite noise suppresses completely any level of order in the thermodynamic limit. That

is, even a tiny amount of noise is enough to bring the system to complete disorder.

The behavior of the model in the dynamic case, where particles move at a finite speed

v > 0 on a 2D box, is very different to that of the MF and static cases. We observed that,

for a fixed density of particles ρ = 0.5 and a given noise η > 0, increasing the speed leads to

a larger value of ϕ with smaller fluctuations (smaller susceptibility χ), eventually inducing a

stationary state of collective order for high enough speeds. We understand that this ordering

effect produced by particles’ motion is analogous to that found in Vicsek type models and, as

a consequence, the system exhibits an ordered phase below a finite transition noise amplitude

ηc(v) > 0 that depends on the speed. For low speeds, the behavior of the effective transition

noise η̂c = ηc
√
− ln ηc with v and N is well described by a scaling function with two simple

exponents. On the one hand, this leads to the scaling behavior η̂c ∼ N−1/2 for v2N ≪ 1,

which agrees with that of the 2D static case, and also with the theory developed for the

saturation transition in the FGZ model [18, 19]. On the other hand, the effective noise
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reaches an asymptotic value as N increases, which behaves as η̂c ∼ v in the N → ∞ limit.

This results in a transition noise with a superlinear dependence on the speed of the form

ηc ∼ v(− ln v)−1/2 for v ≪ 1, in the thermodynamic limit. For the sake of comparison, it

was recently found that in the Vicsek model the transition noise scales as ηc ∼ v0.45 in the

low density and low speed regime [27]. We also note that the transition noise for a given

speed and density ρ = 0.5 in the FVM is much smaller than that of the Vicsek model.

In summary, we found that the collective motion of self-propelled particles on a 2D space

with noisy voter interactions exhibits an order-disorder transition at a finite noise amplitude

ηc proportional to the speed of particles. This is a surprising result within the literature of

the voter model, as it is known that adding an external noise to the copying dynamics of the

model wipes up collective order in the thermodynamic limit, and in this article we showed

that order can indeed be sustained by particles’ motion.

It seems that the effect of motion is to correlate distant particles generating a state of

global order, as it happens in the Vicsek model. Thus, it might be interesting to study the

correlations between particles’ velocities and positions in order to understand the mecha-

nisms that lead to flocking in the model. We also note that the MF approximation, which

predicts a transition at zero noise, fails for the full version of the FVM with particles moving

at a finite speed, showing the importance of taking into account the space and motion of

particles in real life situations, as it happens for instance in the recent experiments with fish

[6] described in section I. It would be worthwhile to develop a mathematical description of

the FVM that goes beyond MF and accounts for correlations between particles, which could

correctly capture the ordering effect of motion. Finally, within the context of the experi-

ments in [6], the results we obtained in the present article suggests that a group of fish could

eventually reach an asymptotic polarized state when the group size increases, depending on

the relation between the amplitude of the spontaneous directional change (noise) of fish and

their speed.

ACKNOWLEDGMENTS

We acknowledge financial support from CONICET (PIP 11220150100039CO) and (PIP

0443/2014). We also acknowledge support from Agencia Nacional de Promoción Cient́ıfica

21



y Tecnológica (PICT-2015-3628) and (PICT 2016 Nro 201-0215).

[1] T. Vicsek, and A. Zafiris, Phys. Rep. 517, 71 (2012).

[2] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, Madan Rao, and R.

Aditi Simha, Rev. Mod. Phys, 85, 1143, (2013).

[3] A. M. Menzel, Phys. Rep. 554, 1 (2015).
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