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Abstract: Modelling of a mineral dissolution front propagation is of interest in a wide range of
scientific and engineering fields. The dissolution of minerals often involves complex physico-
chemical processes at the solid-liquid interface (at nano-scale), which at the micro-to-meso-scale
can be simplified to the problem of continuously moving boundaries. In this work, we studied the
diffusion-controlled congruent dissolution of minerals from a meso-scale phase transition perspective.
The dynamic evolution of the solid-liquid interface, during the dissolution process, is numerically
simulated by employing the Finite Element Method (FEM) and using the phase—field (PF) approach,
the latter implemented in the open-source Multiphysics Object Oriented Simulation Environment
(MOOSE). The parameterization of the PF numerical approach is discussed in detail and validated
against the experimental results for a congruent dissolution case of NaCl (taken from literature) as
well as on analytical models for simple geometries. In addition, the effect of the shape of a dissolving
mineral particle was analysed, thus demonstrating that the PF approach is suitable for simulating
the mesoscopic morphological evolution of arbitrary geometries. Finally, the comparison of the PF
method with experimental results demonstrated the importance of the dissolution rate mechanisms,
which can be controlled by the interface reaction rate or by the diffusive transport mechanism.

Keywords: mineral dissolution; numerical simulation; phase-field (PF) method; moving boundary
problem; reaction rate; diffusive transport

1. Introduction

Mathematical modelling of the moving-boundary dissolution fronts of minerals is im-
portant in a wide range of engineering technologies. For example, it is of great importance
in fields of geochemistry, materials science, hydrometallurgy, etc. Predictions of the moving
boundary dissolution phenomena can support in the design of engineering processes where
dissolution is desired: e.g., in extraction of elements or reactivity of cementitious minerals,
but also when not desired, e.g., in durability (corrosion) issues of building materials (e.g.,
steel-reinforced concrete frames). In general, minerals dissolve when exposed to aggressive
solution environments and form leached layers of varying density and strength [1]. This in
turn affects the mechanical and transport properties of the microstructure which further
may be relevant at higher scales, for example when the material (rock, concrete or mortars)
has structural applications. In addition, the dissolution mechanisms of some special min-
erals can be of great industrial and environmental interest. For example, the dissolution
of scorodite is considered a potentially good carrier for arsenic fixation [2]. Moreover, the
application of innovative self-healing concrete in civil engineering has been extensively
and intensively studied in recent years. The dissolution of Ca(OH), from the concrete
matrix is one of the key processes of the durability and self-healing mechanisms [3-5].

The dissolution of minerals often involves complex physico-chemical processes at the
solid-liquid interface. However, this can be simplified at the mesoscale to the problem of
a continuously moving boundaries. Traditional sharp interface models are thus required
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to trace these moving fronts [6-16]. However, this becomes extremely difficult for high-
dimensional problems, with complex dynamic geometries, especially those whose interface
evolution is accompanied by energy changes. In this sense, phase-field (PF) methods
provide a powerful way to track such interfaces. The PF method has been applied to
various phenomena in materials science area, such as, solidification, solid-state phase
transformation, recrystallization, grain growth, fracture, and electromigration [17-22].

Generally speaking, the PF model can be regarded as a kind of diffusion interface
model [23-25], which assumes that the thickness of the interface is limited, while the
physical properties on the interface are continuous and smooth [26,27]. The moving
solid-liquid interface can thus be accurately tracked [28]. Compared with sharp interface
models, the PF diffusion interface model has the important advantage that no boundary
conditions are specified on the interface between different domains [29,30]. This allows us
to study the evolution of arbitrarily complex morphology without tracking the microscopic
shape of the grain [31,32]. A new variable, namely the order parameter, is required to
represent the ordered numbers of materials in terms of time and position [33,34]. In these
works, the complex interfacial spatial-temporal evolution has been investigated through
the aforementioned order parameter in an implicit way. An additional feature of the PF
method is that there is a functional total free energy that can characterize the nature of
the phase transition. It includes the various energy contributions of the system at the
non-equilibrium state: i.e., chemical energy [35-38], electric potential energy [39-41], stress
energy [42—44], etc. It is the competition between these different energies that leads to the
generation of changing microstructural topography during the phase transition. In solving
the PF model, conservative fields such as concentration fields can be described e.g., through
the Cahn-Hilliard equation [45], while non-conservative fields, as order parameters, can
be described via the Allen—Cahn one [46].

There are four models in the literature that are most commonly used to address two-
or multi-phase transition processes. They provide important insights into solving of the
mineral dissolution problems: the Wheeler-Boettinger-McFadden (WBM) model [30,47], the
Kim-Kim-Suzuki (KKS) model [48], Steinbach model [49] and Losert model [50]. The WBM
model is derived in a thermodynamically consistent way, which is based on an assumption
that each point of the interface is a mixture of coexisting phases with the same composition
but different volume fractions [27]. This model works under both sharp-interface condition
and finite-interface thicknesses [51,52]. However, the larger interface thickness will lead
to unreliable calculation results [53-55]. KKS model shows a different definition of the
free energy density, which defines the interface as a mixture of liquid and solid phases of
different compositions, but with the same chemical potential [56]. For the KKS model, the
relationship between model parameters and material properties can be established through
the equilibrium and thin interface limit analysis [48]. The Steinbach model is not based on
the thermodynamic treatment, but based on the geometric description of interface through
the interpolating function of interface curvature. This model is more suitable for a dilute
alloy [57]. Losert et al. [50] finally used the similarity of alloys and pure materials to expand
the thin interface model by matching variables in pure materials. However, there are two
strict assumptions in the model that limit its application (1) the liquidus and solidus lines
need to be parallel, and (2) the diffusivity of the solute is constant in the entire region [58].

In applying the PF model, described above, to the moving boundary problem of
minerals, it is necessary to understand how to select the interface mobility so that the
model can effectively describe the dissolution process. In the literature, there are only a
few studies that address this issue. Qin and Bhadeshia [59] proposed that, in a single-
component system, the interface mobility is related to the interface velocity and the driving
force according to the chemical rate theory. In the case of spinodal decomposition, the
interface mobility can be obtained from the diffusion coefficient and thermodynamics.
When the model is used to simulate the complex meso-morphological evolution, the
interface mobility needs to be determined based on experiments, as also demonstrated
in this paper (Section 6.3). Karma and Rappel [25] made a linear approximation of the
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temperature gradient at the interface and proved that in dealing with the solidification
problem of pure melting, the PF parameters can be accurately determined under the thin
interface limit. Based on this model, Xu and Meakin [60] developed a phase-field approach
for aqueous dissolution/precipitation reactions assuming first order reaction kinetics. The
model was validated by a one-dimensional analytical solution of interface motion due
to solute precipitation. Two additional terms were added to the diffusion equation, one
corresponding to the discontinuity of the solute concentration gradient, at the interface,
while the second one represents the net source (or sink) of the solute, coming from the
discontinuity in the solute concentration across the interface. In most of the studies, the
values of interface mobility are used as empirical or hypothetical ones [61-67]. Furthermore,
few attempts have been made to explain in detail the calculation of the interface mobility
and its relation to other physical parameters [51,68-71]. Therefore, tackling of this difficulty
will be one of the innovations of this paper.

In contrast to the reaction kinetics controlled case, here we further validate the PF
approach on the experimental results (of NaCl dissolutions) and are focusing mainly on
the diffusion limited mechanisms. First, the one-dimensional diffusion-controlled dissolu-
tion problem will be simulated using an analytical solution and the classical KKS model,
separately. The results will then be compared to clarify the estimation and interaction
of the interface mobility with other PF parameters. The effect of solid particle shape on
the dissolution process is 2D analysed and validated on literature data for NaCl dissolu-
tions. The PF results are then validated against the data obtained from analysis by the
video-microscopy images and compared with the analytical model. Finally, a concluding
discussion on the whole article is given.

2. Dissolution Mechanisms
2.1. Types of Dissolution

Chemical dissolution of minerals occurs as a congruent or an incongruent reaction,
depending upon the type of a mineral [72]. Congruent dissolution of a solid mineral is a
chemical reaction which completely dissolves the mineral and all products of this reaction
are dissolved species. An obvious example would be calcite CaCO3 and NaCl [73,74]:

A,By,(s) — aA(aq)+bB(aq) (1)

when the primary solid phase is altered and at the same time a secondary solid phase
is formed, incongruent dissolution occurs, for example the alteration of albite to gibb-
site NaAlSi3Og, or Kaolinite [75,76], which requires a more advanced thermodynamic
modelling approaches to be integrated in the PF:

A;By(s) — cC(s)+dD(aq) ()

2.2. Diffusion-Controlled Dissolution Mechanisms

Figure 1 shows the dissolved diffusion process of soluble minerals based on the
diffusion interface. When dealing with the problem of moving boundaries, the conventional
approach separates the different phases by a sharp interface. The interface movement
is solved by a partial differential equation describing, for example, mass and thermal
diffusion equations. These equations have to be combined with boundary conditions of
varying values and positions. When some variables (heat flux or concentration) cross the
sharp interface, jump discontinuities can occur, making the calculation very difficult. In the
PF model, the interface is described as a diffuse interfacial layer with smooth transitions.
Thus, the phase transformation is represented by a change in an order parameter (¢). As
shown in Figure 1, the solid phase is represented by “1” while the liquid phase by “0”,
hence the order parameter varies continuously between 0 and 1 at the solid-liquid interface.
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Figure 1. Schematic representation of solute concentration of soluble minerals in situ (i.e., green
dotted line) and equilibrium states (i.e., red solid line), and the phase transformation within a diffuse
and sharp interface, respectively. For the sharp interface, the evolution of the solute concentration is
discontinuous at the interface. However, for the diffuse interface, the solute concentration evolves
continuously between their equilibrium values at the mineral (cse) and solution boundary (cre).

As the congruent dissolution process occurs, the solute is gradually transferred into the
solution, the length of the solute base phase decreases, and the solid-liquid diffuse interface
gradually moves toward the inside of the solute base phase. The solute concentration in
the initial solution is ¢y, while the solute concentration at equilibrium is c .. The solute
concentration in the solid is kept constant when the diffusion phenomenon in the solid is
not taken into account. The change of solute concentration in solution with time is related
to its position. The solute concentration (cp) increases with time away from the solute
matrix phase; solute concentration (cjs) decreases with time near the solute matrix phase.
The solute concentration in between (c) is in a state of dynamic increase or decrease. xse,
xs0, XLe and xp indicates the positions corresponding to the above solute concentrations.

3. Mathematical Methods
3.1. Analytical Solutions

A following 1D planar analytical description of a diffusion-controlled dissolution
for phase transformation is considered, where the solid is immersed in a (semi-)infinitive
liquid solution. The diffusion equation is a parabolic partial differential equation, which is
expressed as follows:

ac(x, )
ot

where Dy is the diffusion coefficient, ¢(x, t) is the concentration at location x and time ¢,
subject to the conditions:

= DLVZC(X, f), (3)

C|x:R,t = CLe(O <t< oo), (4)
x, t=0 = cro(x > R), )

where x = R is the position at the solid-liquid interface, cy o and cy. represents the initial
concentration and the equilibrium concentration of one component in the liquid phase.

At the solid-liquid interface, the following independent flux balance condition must
be fulfilled:

[

drR ac
(cs — CLe)E = DL@ x=R/ (6)

where cg is the concentration in solid phase which is taken as a constant.
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The exact analytical solution for the field is [6]:

erfc{(x - Ro)/Z\/ﬁ}

c(x,t) —em = (cLe — CL0) erfe(—A) @)
The interface position at current time can be expressed as
R=Ry—A;VDt, (8)
where R denotes the value of R at the time ¢t = 0, while
AL =24, )
where A is given by:
ViAexp(AD)erfe(—A) = B/2, (10)

where B = 2(cre — c10)/(cs — cLe)-

Different from the planar solid where exact solution is available, only approximately
analytical solution model for the diffusion-controlled dissolution of the spherical solid has
been found. The stationary-interface approximation is expressed as [6]:

. x_Rl' (11)

ClLe — CLO R
( € ) erf 7
Z(DLt)

c(x,f) —epm = .

where the current interface position is R> = R3 — Dy t; B as defined in Equation (10).
The implicit expression for the particle radius ratio y (y = R/Rg) with respect to time
is defined as follows:

1/2 2p ( —P2)1/2 _
Inly +2p(t)"“y+ 1] + marctam <le/z+P> =0, (12)
where, )
T= 0;{(2:, (13)
a* = BDy, (14)
=i (15)

3.2. The Phase-Field (PF) Method

The total free energy of the thermodynamic system drives changes in the microstruc-
ture of materials only when the total free energy changes from a high chemical potential
(or a higher free energy) state to a low chemical potential (or a lower free energy) state to
eventually attain an equilibrium. The total free energy F of the system is a function of the
solute concentration c and the phase parameter ¢ and expressed as:

F(e:9) = Fio+ Fint = [ |fic(cs9) + 5199F |V, a6
14

where F, is the local free energy of the system, Fy; is the interfacial energy, and k is
the gradient energy coefficient. In order to simplify the numerical calculation, the molar
concentration of the solute is normalized by the molar concentration of the solid cg, that is,
¢ = ¢/ /cs. The molar concentration of the solid is defined as the density of the solid divided
by its average molar mass [77]. Each point in the entire domain is a mixture of two phases
with different chemical compositions. The Gibbs free energy expression, in the KKS model,
has been widely employed in solidification mechanisms of binary alloys [78,79], in addition
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to the recent extension to the field of electrochemical corrosion [61,68]. The mechanism
of the corrosion reaction is similar to that of the dissolution reaction, i.e., both are phase
transformations triggered by the diffusion of ions. Hence, the double well potential (i.e.,
Gibbs free energy density) has two minima at ¢ = 0, ¢ = 1 and a maximum at ¢ = 0.5
(middle of the interface). Based on this theoretical basis, the present model identifies the
local free energy fioc(c, ¢) as a fractionally weighted average of the solid fs(cg) and liquid
free energies f1 (¢ ), and imposes a double-well potential wg(¢) as follows:

foc(€,¢) = h(P) fs(cs) + [1 = ()] fLler) + wg(¢), (17)

where the interpolation function h(¢) is built as h(¢) = —2¢* + 3¢?, and w is the height of
the double-well potential function given by g(¢) = ¢2(1 — ).

The free energy density of the solid and liquid phase is approximated by a parabolic
function with the same curvature A as follows:

fs(es) = A(cs — cse)?, (18)

fler) = AleL — cre)?, (19)

where cse = ¢g/cg = 1 and 1 = csat/cg are the solute concentrations at the normalized
equilibrium of the solid and the liquid phase, respectively.

Complementary condition indicates that the phase concentrations are constrained
such that the chemical potentials of each phase are equal:

dfs(es) _ file) (20)

aCs aCL

The solute composition in the interface area is the fraction-weighted average of the
liquid and solid composition, and the same formula is used for the diffusion coefficient, as
shown below:

¢ = h(¢)es + [1 = h(¢)]er, (21)

D = h(¢)Ds + [1 —h(¢)]Dr, (22)

The interfacial evolution is controlled through coupled conserved and non-conserved
dynamics. Particularly, the Allen-Cahn equation is used to describe the temporal evolution

of the non-conserved variable ¢. However, the diffusion equation is applied for solving the
evolution of the conserved parameter c:

ap(x,t)  OF _ (Of(¢)
T L 5 = L<8¢ kAqb), (23)
where L is the PF mobility:
ac(a’;’t) =D - V2c(x,1), (24)

where D is the diffusion coefficient.

The energy of the system is minimal when it reaches equilibrium. In order to find the
PF profile ¢ (x) and the composition ¢y (x) at equilibrium state, Kim, et al. [48] deduced
a one-dimensional solidification problem with boundary conditions ¢|x——c = 1 (solid)
and ¢glx—+o0 = 0 (liquid). Since the equilibrium state means the vanishing of the driving
force, the PF profile ¢y (x) should satisfy the following Equation:

OF  df(¢o) _
S = ag kA =0 (25)
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Thus, by combining with the double well equation, the PF profile can be expressed as:

¢Po(x) = % [1 — tanh <x ;;{)] (26)

Then, the composition is:

co(x) = h(¢o(x))es + [1 = h(¢o(x))]ct. (27)
4. Problem Description and Model Tests

In this section a 1D congruent dissolution case study is presented selected as bench-
mark for verifying the soundness and capability of the proposed PF procedure.

4.1. Benchmark with Analytical Model for One-Dimensional (1D) Congruent Dissolution

The model consists of a one-dimensional domain with a size of 20 mm. The solid and
liquid domains have a 3:17 ratio (see Figure 2). This is chosen to ensure that the length of
the solution must be long enough for diffusion to take place in a system whose domain is
considered to be semi-infinite.

3 17

2 o Y
= VA Y g A\
| PR ?(r, 0H=0; cu(r.n=1; e, (r,)=0.1; | ﬁ(,u,) —(: — Analytical
on = on model
a A
=0 hn=1 $(r.1) =0 20,00 —— PF model

Figure 2. Initial benchmark configurations and boundary conditions for 1D single-component
dissolution of a planar solid.

In the initial aqueous solution concentration cyg is specified as 0.1 mol/ m3. The
concentration cg of the solid was constant at 1 mol/m?>. The equilibrium concentration cp .
was maintained at 0.4 mol/m? at the fluid-solid interface. The diffusion coefficient of the
solute in the liquid Dy, is taken as 1.0 x 10~ m? /s, while the diffusion of the solute in the
solid Dg is 1.0 x 107> m?/s. Neumann conditions (zero flux) were applied on the right
and left side of the domain boundary. The parameters used in this study and their values
are listed in Table 1.

Table 1. Summary of benchmark parameters.

Parameter Description Value Unit
AG Gibbs free energy 2233.23 J/m3
A curvature of the frge energy density 6.20 x 103 I/m
function
w height of the double well potential 1.94 x 10* J/m3
L interface mobility 4.02 x 1072 m3/ (] -s)
k gradient energy coefficient 112 x 107° J/m
Iy initial thickness of the diffuse interface 1.0 x 1074 m
o interfacial energy 1.1 x 1071 J/m?
Dp diffusion coefficient in solution 1.0 x 10~ m2/s
Dg diffusion coefficient in solute 1.0 x 10715 m2/s
CSe saturation concentration in the solid phase 1.0 mol /m®
CLe saturation concentration in the solution 4.0 %1071 mol / m3
R gas constant 8.31 J/ (K - mol)
ambient temperature 2.93 x 107 Kelvin
K equilibrium constant 0.4 [-]
t calculation time 2.88 x 10* 5




Appl. Sci. 2021, 11, 2464

8 of 22

4.2. Simulation Case Study Based on Available Measured Experimental Data of Mineral
Particle Dissolution

Most of the available experimental data on solid dissolution in the literature focus on
recording the evolution of solute concentration [11,14,80,81] or dissolved solid mass over
time, and do not explicitly observe the movement of the solid-liquid boundary [80,81].
In some experiments, the dissolution process was influenced by convection with stir-
ring [82-85]. In this sense, sodium chloride (NaCl) is one of the most common minerals:
its congruent dissolution mechanism and the corresponding reaction thermodynamics
and kinetics are well documented in the literature [74,86-91]. However, studies address-
ing solid-liquid boundary regression due to diffusion-controlled dissolution have mainly
tended to focus on the nanoscale [92-94].

The study of Quilaqueo and Aguilera [95] is one of the few studies that provides
detailed experimental dataset to be used for the experimental validation of the PF numerical
models. They performed image analysis by coupling a digital camera to a stereo microscope
to obtain microscopic images of the dissolution process. Recording started by placing a
single NaCl particle in 500 pL of water without stirring at 20 °C. The time profile of
dissolution was obtained by calculating the projected area of the single crystal as a function
of dissolution time from the video microscope image.

Based on these experimental data, one-dimensional simulations of the dissolution
process of a single salt particle performed, in a spherical coordinate system, and two-
dimensional simulations of the dissolution process of three different shapes of NaCl
particles, namely round, ellipsoidal and irregular, have been performed by using the PF
model. Neumann no-flux boundary conditions are applied for 1D simulation. Periodic
boundary conditions are used for 2D simulations. The thin interface limit is supported by
the chosen experimental case of the highly soluble mineral crystals, which can be considered
as non-porous. This results in negligible solid-liquid thickness (at the mesoscopic scale) and
it has been considered in this paper. The employed parameters are summarized in Table 2.
For easier implementation of energy equations at microscale, all length dimensions were
normalized by the solution radius and energy terms normalized by A (see Appendix B).

Table 2. Model parameters for diffusion-controlled NaCl dissolution.

Parameter Value Unit Ref.
AG 5.15 x 10° J/m3
A 5.17 x 10° J/m3
w 1.51 x 10° J/m3
L 411 x 1073 m3/(J -s)
k 1.44 x 1076 J/m
Iy 1.28 x 10~ m
o 1.10 x 1071 J/m? [96]
Dy 1.68 x 10~° m2/s [96,97]
Dg 1.68 x 10~1° m2/s
Csolid 3.70 x 10% mol / m> [95]
p 357-360 g/L [98,99]
r 641 x 1074 m [95]
t 5 x 102 Second [95]

5. PF Modelling Methodology and Numerical Implementation
5.1. Summary of Modelling Assumptions

In the analytical solution and the PF model, following simplifying assumptions
are made:

1.  The NaCl particle dissolves isotropically;

2. The diffusion coefficients of aqueous species in solids and in solution are constants,
respectively;

3. The diffusion of all aqueous species is expressed in terms of a single ionic concentration;
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4. The solubility of NaCl in solution is independent of particle size.

5.2. Parameterization

The relationships between material properties (interface thickness /y and interface
energy o) and PF parameters (coefficient of PF gradient k and double-well potential w)
are discussed in Appendix A.1. The derivation of the interface mobility L, under the thin-
interface thickness condition, is shown in Appendix A.2. The curvature of the free energy
density function A can be determined from the Gibbs free energy, i.e., AG (Appendix A.3.).

5.3. Parameter Normalization

Normalization of the model parameters is one of the important steps of data pre-
processing. A series of input values are normalized to the range [0, 1] according to
Appendix B, in order to let models converge effectively.

5.4. Finite Element Implementation

Numerical implementation of the PF model is carried out by using finite element
method in the framework of multiphysics object-oriented simulation (MOOSE) environ-
ment [28]. Transient solver with preconditioned Newton’s method was used. In this
case, the full and accurate Jacobian was calculated. The backward Euler algorithm was
employed. Adaptive time stepping was used to improve computational efficiency. The
time step would grow or shrink according to the number of iterations taken and needed
to obtain a converged solution in the last converged step. The maximum number of non-
linear iterations per time step was also set to provide optimal solution efficiency. For 2D
simulation, the triangular element type was chosen to mesh the geometry.

In addition, an adaptive mesh refinement (AMR) was used [97]. Based on the error
estimated from the FEM results, the global and local mesh errors were calculated, and
then the mesh size was automatically adjusted to the changing morphology of the grain
boundaries at each time step. This is very effective for the numerical solution of partial
differential equations in regions of arbitrary shape. In order to ensure numerical stability
and simulation accuracy, at least 5 nodes on the diffusion interface were used to describe
the boundary morphology, while coarser grids were used for solutions and solids that were
far from the boundary (Figure 3). This does not only provide an accurate representation of
the boundary evolution, but also improved the computational efficiency. The relative and
absolute error tolerance was set to 1078,

} 40 ]

40

Figure 3. Adaptive mesh refinement in the simulation for mineral dissolution.

5.5. Central Processing Unit (CPU) Computation

The analytical experiments were performed using an Intel Core i7-6500U central
processing unit (CPU) 2.5 GHz with 8 GB of RAM and MATLAB R2017a (64-bit). For
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the PF computation, a parallel computing was achieved by using Open Multi-Processing
(OpenMP 42.0.51) on a High Performance Computer.

6. Results and Discussion
6.1. PF Validation against Analytical Solution for a Dissolution of Planar Mineral

Under diffusion-controlled dissolution conditions, if the initial thickness of the diffuse
interface (lp) is known, the interface mobility L can be determined using Equation (A10).
Due to the lack of relevant experimental data upon the values of [, a parametric study
of L was carried out. Under the assumption of a thin interface condition [48], the value
of Iy should be taken much smaller than the minimum radial dimensions of the initial
solid phase; however, from a computational point of view, it is expected that the thickness
of the interface has to be as large as possible in order to keep the interface from being
overly densely meshed, which increases the computational effort. Therefore, three cases of
initial interface width, i.e., 1 x 10~8 (PFM1); 1 x 107> (PFM2) and 1 x 10~* (PEM3), were
tested, corresponding to 0.0003%, 0.33% and 3.33% of the initial length of the solid phase.
In addition, there must be at least 5 to 10 grid points in the interface area to ensure the
stability of the numerical calculation and the reliability of the results [28]. Three cases of Vj
(1 x 107 (PFM4); 1 x 10~8 (PFM5) and 1 x 10710 (PFM6)) were tested.

Figure 4 shows a comparison between the analytical (diffusion limited) model and six
cases of PF models, where the reaction rates are slower than in case of diffusion control.
As Iy decreases, L increases (as they are inversely related by Equation (A10)), causing
a faster dissolution reaction, till reaching a limit defined by a diffusion control. At 8h,
PFM1 dissolves at a thickness 1.15 times greater than that of PEM3. The result of PFM2
is in good agreement with that of the analytical model. It can also be seen that the slope
of the dissolution curve becomes progressively smaller with dissolution time due to the
diffusion-controlled dissolution, i.e., the overall rate of dissolution slows down as it is
governed by the diffusion flux and thus dependent on the concentration gradient that
reduces with saturation of the solution. However, the (slow) reaction-controlled mechanism
(see curves PFM4, PFM5 and PFM6) approaches linearity as the Vy decreases, and the
lower the V), the slower the dissolution speed. The above results show that the PF model
developed is capable of describing both the diffusion-controlled and the reaction-controlled
dissolution. Under the thin interface limit condition, the agreement between the analytical
(diffusion-controlled) results and the PF model for the diffusion-controlled dissolution is in
satisfactory agreement with the converged solution (PFM2).
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g 25 F| =-=- PFM2(Z=4.02X 1075) o
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Figure 4. Comparison of analytical and phase-field (PF) model results of a dissolving planar mineral
with variation of interface mobility L, to shift from the fastest diffusion controlled mechanism towards
the slower ones limited by reaction rates.
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A slight overestimation by the PFM1 model may be attributed to the used approx-
imation (Equation (A10)) to numerically approach the diffusion-limited case. In this
approximation, Vj is approximated as Dy /Iy (where Dy, is the diffusion coefficient of the
solute in the solution). The slight difference could also be the result from small incompati-
bility issues between the employed thermodynamic parameters, namely the used NaCl
interfacial energy in PF model, and the NaCl solubility constant (p). Overall, we argue
that the obtained agreement is overwhelming considering that no fitting calibration of the
parameters has been performed.

Figure 5 shows the spatial distribution of solute normalised concentration over time.
As solid dissolution starts, the concentration of solution ¢y, at the diffusive solid-liquid
interface rapidly reaches saturation concentration (i.e., c; equilibrium state), while the
solute normalised concentration in the solid phase keeps constant at 1 (i.e., at initial concen-
tration). The solutes form a diffusion layer at the thin solid-liquid interface and continue
to enter (diffuse) into the bulk solution. This results in a gradual decrease in the width of
the solid phase. The concentration of solutes in the solution is gradually increasing, and
the increase of the concentration near the solid-liquid interface is particularly significant
due to diffusion limited transport through the solution. In turn the concentration of solute
smoothly decreases to zero from the interface zone to the right end of the solution. This
confirms also that the dissolution is carried out in a system that is regarded as semi-infinite
space, which is only controlled by a diffusion mechanism without any significant effects of
the imposed boundary conditions (which deviate from the idealized semi-infinitive case).
Figure 6 shows the movement of the interface over time. As the dissolution proceeds, the
interface gradually moves toward the solid phase. It can be seen from the reduced width
of the solid phase that the speed of dissolution starts faster and then slows down, again
due to the limited diffusion process of the solute through the exposure solution.
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Figure 5. One-dimensional distribution of solute concentration by PF model (L = 4.02 x 1071).
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Figure 6. One-dimensional distribution of interface by PF model (L = 4.02 x 10~ 1.

6.2. The Effect of Mineral Shape: Dissolution Simulation by Two-Dimensional (2D) PF Model

Irregular particles can be simplified by spherical shapes provided certain conditions
are met. Numerical simulations are then performed using the spherical symmetry and
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coordinate system, reducing the model to only one space dimension (1D model). However,
some studies have shown, both theoretically and experimentally, that the particle shape and
surface roughness may affected the dissolution rates [98-102]. Therefore, before adopting
the spherical simplified 1D model for NaCl crystals in this study, the effect of particle
shape on the dissolution rate was analysed. In this way one can determine whether the
simplification of the spherical shape for NaCl particle having some circularity factors
(0.71 £ 0.06) as in used literature data [95] is reasonable.

Therefore, Figure 7 shows the 2D dissolution simulation results over time for spherical,
elliptical and irregular shapes but with the same area. Qualitatively, the sharp edges of
irregular shapes gradually disappear during the initial stages of dissolution, and the
curvature decreases until they are completely rounded. The ratio of the major axis to the
minor axis of the ellipse gradually decreases and develops towards the circular direction.
The radius of the circle decreases gradually and the curvature remains constant. It can be
seen that the dissolution under all shapes follows the process of spheroidization. The edges
of the particle become smoother during dissolution. As the dissolution reaction proceeds,
the morphological differences between the particles with different shapes become smaller.

/b

Spherical

Elliptical

Irregular
shape

Figure 7. Snapshots corresponding to different time points in the dissolution profile of the NaCl
crystal in 2D simulation.

The reason for this trend is that among closed geometries of equal area, circles have the
smallest circumference. This means that the total interfacial free energy of the solid-liquid
is minimal. Irregularly shaped solids have a high solid-liquid total interface free energy
due to their uneven boundaries. A high interfacial energy means a high total free energy
of the system. The system always tends to decrease the total free energy, this being an
important factor in determining the mineral shape during dissolution. The area of the
solid-liquid interface tends to decrease, which causes the flange at the solid-liquid interface
to disappear and eventually to become round.

Since the solid-liquid interface is described in the PF model as a diffuse interface,
with a certain width, it is difficult to describe the interface length in terms of the absolute
perimeter of the solid phase. However, in order to characterize the change in the surface
morphologies of crystals for different shapes with time, the contour length of ¢ = 0.5 is
taken to approximate the solid-phase perimeter. Figure 8 shows that at the initial condition,
the irregular mineral grain has the maximum interfacial length. As the dissolution reaction
proceeds, the interfacial length gradually decreases and the curves of the ellipse and circle
almost coincide.
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Figure 8. The contour change diagram of different particles for ¢ = 0.5.

The normalized phase ratio ¢* is defined as ¢* = (¢r — Pin) / (Pmax — Pmin), being
¢: the integration of the phase at the time t, over the domain, while ¢,,;;, and ¢y are
representing the min and max integration of the phase, respectively (for c as well). The
profile of the normalized phase ratio physically represents the projected area of particles. It
can be seen from Figure 9 that the projected area of the three shapes of particles decreases
with time, while the normalized concentration ratio (c*) keeps constant, which proves the
conservation of mass for solute transport. The slope of ¢* becomes progressively smaller.
This is because as the solid phase dissolves, the interfacial area decreases. The contact
area between the solute source and the diffusion-solution zone is getting smaller. This
results in a decreasing solute flux to the solid surface, which leads to a progressively slower
dissolution rate. It can also be seen from this figure that the ¢* profile of the circles and
ellipses basically overlap. The dissolution rate of irregular shapes before 200 s is slightly
faster than that of circles and ellipses, while after 200 s, the three curves overlap and
dissolve completely at the same time. This is because the perimeter of the irregular shape is
much larger than that of the circles and ellipses, which exhibits a faster rate at the beginning
of dissolution. As the dissolved shape tends to be round with the lowest interfacial energy,
the circumference between the three shapes becomes similar (Figure 8). Therefore, in the
later stages of dissolution, the dissolution curves of the three shapes are coincident.
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Figure 9. Evolution of normalized ¢* and c*.

Figures 10 and 11 show the concentration along the radial of the circle and the spatial
distribution of its phase with time, respectively. The concentration of the solute in the
solid phase remains constant. The radial length of the solid phase decreases symmetrically
towards the centre. After the onset of dissolution, the concentration of solutes near the solid-
liquid interface saturates rapidly. The concentration of solutes in the solvent gradually
increases with the diffusion mechanism.
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Figure 10. Concentration profiles of single NaCl spherical particle along radial direction with time.
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Figure 11. Phase profiles of single NaCl spherical particle along radial direction with time.

6.3. PF Validation against Experimental Results and Analytical Solution

Figure 12 shows a comparison of the analytical solution, the PF model results and
experimental results regarding the dissolution rate of individual NaCl crystals. The undis-
solved area is calculated from the residual solid phase length in the 1D simulation. The
analytical solution is slightly below the lower boundary of the experimental values. In
order to ensure that the dissolution reaction rate is completely controlled by the diffusion,
the length (volume) of the exposure solution must be large enough so that semi-infinitive
conditions are met, corresponding to the analytical solution. In that case no increase in
concentration of solute should occur at the system (solution) boundary point. The length
of solution 0.3 times (PFM_D1), 0.4 times (PFM_D2) and the original length (PFM_D3,
4.92 x 1073 m) were tested using the PF method. From the results it can be seen that the
dissolution rate slows down and the solute concentration increases significantly at the solu-
tion boundary point as the solution phase length becomes shorter (Figure 13). The change
in solute at the boundary point, calculated using the solution lengths in the experiment
(PEM_D3), is almost zero. It was thus verified that the diffusive dissolution of individual
NaCl crystals can be simulated well using our implementation of the PF method.

1.0

Lower and upper bound
of experimental results [95]

~.=.—. PFM_DI
PFM_D2

08 }
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"""""" Analytical model
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0.0
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Time (s)

Figure 12. Comparison of numerical and experimental results of NaCl single particle dissolution.
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Figure 13. Change in solute at the solution boundary with time.

The experimental result in Figure 12 shows lower initial rates, due to the reaction
controlled mechanism. Initially, the diffusion flux is very high, as the solute concentration of
the initial exposure solution is zero (initial condition). Therefore the overall reaction rate is
limited by the reaction rate which is lower than the initial high diffusion flux. Such reaction
rates in the PF model can be considered in the interface mobility (L) that should vary with
time and is fundamentally a function of the Gibbs free energy of the chemical reaction or the
solute concentration. In future, it should be attempted to physically represent the interface
mobility kinetics (L) as a function of the solute-under saturation, as commonly used in
reaction rates expressions. Such a more fundamental approach is still missing in PF, due to
the complexity in its mathematical derivation. Here, L is adjusted in a simplified way as a
smaller value (4.11 x 10~°) within 100 s and a larger value (4.11 x 1073) after 100 s whose
result is represented by PFM_R1. As can be seen from the comparison, the dissolution rate
is relatively flat at the early stage of dissolution when process controlled by the reaction.
The curve of PFM_R1 is higher than that of PEM_D1, D2 and D3. However, after 100 s,
PFM_R1 almost overlap with the other three due to the conversion of the dissolution rate
control into the diffusion control mechanism.

7. Conclusions
Based on the results of this study, the following conclusions can be summarized:

e by comparing with the results of the analytical method, it is verified that the PF model
can accurately handle the dynamic evolution of the general diffusion-controlled phase
transformation process;

e using NaCl as an example, the PF model can successfully simulate the mesoscopic
evolution of inorganic non-metallic materials caused by diffusion-controlled dissolu-
tion. Using the derived interfacial mobility, the PF numerical simulation results show
accurate and consistent agreement with the analytical method results, as well as with
the experimental ones derived with video-microscopy images analyses. It is worth
mentioning that all the input parameters of the PF model have real physical meaning
and are based on the experiments data;

e an observed discrepancy was related to the dissolution mechanism, which was found
to be initially limited by the reaction rate, being slower than the diffusion flux due to
the rapid change of solute concentration. This change in dissolution mechanism was
successfully captured by adjusting the PF interface mobility (L).

e the dissolution characteristics of NaCl particles with different circularity factors were
analysed by the 2D PF model. The simplification of spherical shape for NaCl particles
was verified to hold.

In future studies, the reaction control and diffusion control mechanisms will be com-
bined with the second law of thermodynamics and non-equilibrium thermodynamics with
respect to L, so that L can be represented as the function of solute concentration or the Gibbs
free energy of the reaction. In addition, numerical simulations need to be implemented at
higher space dimensions to allow the introduction of complex microstructures in mineral
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particles, such as pores, grain structure and surface roughness, so that their impact on
dissolution kinetics can be assessed. The above results confirm that the dissolution kinetics
of mineral particles can be successfully simulated using the employed PF model and the
irregular morphological evolution can be effectively simulated in 2D. It is worth noting
that the surface morphology of irregular particles has a strong influence on the dissolution
kinetics. The complex evolution of particle morphology in physicochemical processes can
be accurately evaluated only in a full 3D system. Furthermore, a dynamic (apparent) diffu-
sion coefficient should be explicitly taken into account, e.g., as a function of concentration,
which is of critical importance in analyzing the diffusion-controlled dissolution through
porous materials involving additional chemical interactions. However, highly soluble
(NaCl) crystals, as investigated in this work, can be considered as non-porous which leads
to assume that their diffusion coefficient can be kept constant. It is worth mentioning that
the proposed PF approach can be also extended for simulating the opposite processes of
those presented in this paper, namely the precipitation of NaCl. This is part of forthcoming
research and will be undertaken by enriching the current free energy density function
of the liquid phase through adding an extra precipitation term, i.e., A, f. This should be
considered for further development to develop a comprehensive mineral dissolution and
precipitation modelling tool.
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Appendix A.
Appendix A.1. The Height of the Double Well Potential w and Gradient Energy Coefficient k

Using the composition and PF profile at equilibrium, the interface energy o, and the
interface thickness [y can be evaluated as:

v Vikw
3v2'

Iy = 2.94\6\/5, (A2)

In general, o and [y can be estimated from the experiment, then the height of the
double well potential w and gradient energy coefficient k can be easily obtained by the
Equations (A1) and (A2):

(A1)

w — 6~2.94(7/ (A3)
lo
o 3100’

T 2947 (A4)
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Appendix A.2. The Interface Mobility L

The interface velocity V is typically expressed as product of a factor involving the
thermodynamic driving force for dissolution and a kinetic factor involving the interface

mobility [103], i.e.,
AG

where the kinetic factor Vj corresponds to the limiting velocity under infinite driving force
(forward reaction rate), AG is the Gibbs free energy difference, between the free energy of
solid and liquid which is responsible for the interface displacement. The driving force of
dissolution AF is given by AF = fX(c) — f5(c§) — (¢ — ) f&.(cs), (—AG = AF). Thus,
Equation (A5) is obtained by Taylor series expansion and approximated as:

-~ AG  _ AF
VEVoRr = Vorr (40)
Using the derivation in the KKS model, Equation (23) can be expressed in terms of AF
as follows:

aaif — _L[VKV$ + h(§)AF] — wgr(g). (A7)

Under 1D instantaneous steady state, ¢ is derived for the position as follows:

dp L[ d*
TV k@ + n/(¢)AF — wg! () |- (A8)
Under the thin interface limit condition, Equation (A8) combined with the equilibrium
phase expression (dx/ddg = —vVk/\/2w[1/¢o(1 — ¢o)]) and Equation (A1) modifies into:

RT o
Vo T IK (A9)

It should be noted that this equation only holds if the diffusion potential of solute
in the interface region is constant. In addition, if the dissolution process is controlled by
diffusion, Vj is usually approximated as Dy /ly; where Dy is the diffusion coefficient of
the solute in solution [31]. In general, the determination of Vj is very difficult [104]. In
summary, L can be derived from Equation (A9):

DLO'
= Al
IoRTk’ (A10)
Appendix A.3. The Curvature of the Free Energy Density Function A
The Gibbs free energy AG can be obtained through equilibrium constant K:
AG = —RTInK (A11)
AG = —8.314-293.15 - In (10) = 223323 (]/m3), (A12)

The value of A can be derived from AG. Following [61], A makes the free energy of
the solid phase is equal to AG when ¢ is 0.4 (see Figure Al).
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Figure A1. Variation of concentration with chemical driving force.

Appendix B. PF Parameters Normalization

In order to ensure the convergence of the model on the mesoscale and improve the
calculation efficiency, all variables are normalized. All molar concentrations are normalized
by the solid molar concentration cg, and all length scales are normalized by the length of
the domain (/). According to the total energy function in Equation (9), three equations are
proposed as follows:

V*=1y-V, (A13)
;
P =, (A14)
«_Ds
Ds* = D,/ (A15)

The normalized variables are presented as follows:

A* =1, (A16)
k
— , Al7
AP (A17)
w
* 7
W' == (A18)
L*—A'lg'L (A19)
= D
po Dt (A20)
12
0
D =1, (A21)
se — Esolid =1, (A22)
Csolid
Cle = ’ (A23)
Csolid

where, p is the solubility of sodium chloride at 20 °C and 1 atm, which needs to be converted
to units of mol /m> in the calculation.
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