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The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which

interacts with a wide range of organic molecules of endogenous and exogenous origin,

including environmental pollutants, tryptophan metabolites, and microbial metabolites.

The activation of AHR by these agonists drives its translocation into the nucleus where

it controls the expression of a large number of target genes that include the AHR

repressor (AHRR), detoxifying monooxygenases (CYP1A1 and CYP1B1), and cytokines.

Recent advances reveal that AHR signaling modulates aspects of the intrinsic, innate

and adaptive immune response to diverse microorganisms. This review will focus on the

increasing evidence supporting a role for AHR as a modulator of the host response to

viral infection.
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INTRODUCTION

Viral infectious diseases are a major cause of death and disability for millions of people throughout
the world. Many factors, from host gender, age, genetics, up to nutritional status play a role in
determining the susceptibility to and pathophysiological consequences of infection. In the end, the
clinical outcome is variable and greatly dependent on the net result of the damage caused both
by the pathogen as well as by the immune response of the host in response to the pathogen.
Importantly, environmental factors, such as chemical exposures, also contribute to differential
clinical outcomes of infections at the individual and populations level.

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that interacts
with a diverse array of anthropogenic and natural agonists (1–5). Because of the ubiquitous
distribution of AHR agonists, we are constantly exposed to a diverse spectrum of AHR ligands;
AHR signaling participates in our adaptation to changing environments as defined by alterations
in the diet, the microbiome and metabolism.

Recent reports have shown a role for AHR as a modulator of the intrinsic, innate and adaptive
immune response to viral infections (6, 7), with both positive and negative effects on host
resistance and survival based on the experimental system used. In this review, we will evaluate
the role of AHR on the host response to viral infection and its potential as a candidate target for
therapeutic intervention.

AHR SIGNALING

AHR is a member of the basic helix–loop–helix (bHLH)/PER-ARNT-SIM (PAS) superfamily
of transcription factors (8). AHR is a well-conserved protein, with an ubiquitous presence in
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mammalian tissues, and variable expression levels among tissues
and throughout life (9–11) AHR controls a broad range of
biological processes in response to environmental and metabolic
cues (9–11). When inactive, AHR is part of a stable cytoplasmic
multiprotein complex composed by the chaperone heat-shock
protein 90 (HSP-90), the co-chaperone p23 (p23) and the
hepatitis B virus X-associated protein (XAP2) (12–21). This
complex has been proposed to stabilize the conformation of
AHR, protect it from proteolitic degradation and contribute to
its subcellular localization. AHR canonical signaling pathway
is triggered by the binding of an agonist (A), which triggers a
conformational change that exposes AHR nuclear localization
signal (NLS), resulting in the nuclear translocation of the A-
AHR-HSP90-p23 complex via β-importins. There is still some
discrepancy over the role of XAP2 on nuclear translocation.
Some studies suggest that XAP2 is involved in the cytoplasmic
anchorage of the AHR complex. However, other studies suggest
that XAP2 interferes with the interaction of the NLS with β-
importins; this last interpretation would require the XAP2 to be
released from the AHR complex before the nucleocytoplasmic
shuttling occurs (12–16, 21–28). Inside the nucleus, the
chaperones disassemble from the complex, the AHR-A structure
heterodimerizes with the AHR nuclear translocator (ARNT) and
interacts with specific sequences in DNA (xenobiotics response
element, XRE) to control the expression of target genes (12, 13,
19, 21, 29, 30). Among these target genes are those encoding the
Cytochrome P450 enzymes, specifically, members of the families
1 and 2: CYP1A1, CYP1B1, and CYP2A1 (21, 30) (Figure 1A).

AHR also controls biological processes through a non-
canonical signaling pathway, which involves multiple molecular
mechanisms. For instance, AHR activation can result in the
increase of the intracellular concentrations of Ca+2, or the
activation of Src tyrosine kinase and focal adhesion kinase.
Regarding the non-canonical genomic regulation, it has been
reported that AHR can heterodimerize with other nuclear
proteins, including transcription factors, to modulate their
activity by transactivation/transrepression or protein-protein
interactions. In this context, AHR has been shown to cross-talk
with the nuclear factor kappa light chain enhancer of activated B
cells (NFκB), activator protein-1 (AP-1), estrogen receptor (ER)
and glucocorticoid receptor (GR), Krüppel-like Factor 4 and 6
(KLF4, KLF6), signal transducers and activators of transcription
(STAT) proteins and members of the CCAAT-enhancer-binding
proteins (C/EBP) family (2, 20, 21, 30–34) (Figure 1B).

The first AHR agonists identified were the non-halogenated
polycyclic aromatic hydrocarbons (PAH) and halogenated
aromatic hydrocarbons (HAH), which are major anthropogenic
pollutants. These compounds are quite abundant and
persistent in the environment due to their long half-life
and bioaccumulation in the trophic chain. Their toxicity has
been largely documented in humans as well as in other species
with estimates indicating that more than 90% of the human
exposures occur via contaminated food (21, 35–41). However,
over the last decades, a wide variety of agonists from multiple
sources such as the environment, the microbiome, the diet and
metabolism have been shown to activate AHR. Currently they
are classified into natural or synthetic, endogenous or exogenous

agonists depending on their nature and sources (Figures 2, 3)
(2, 21, 42, 43).

Multiple AHR modulators are used to study the function of
this pathway in the control of immunity and other biological
processes. The most utilized AHR agonists include the 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD), an industrial by-product
that persists as contaminant in the environment and is well-
known for its toxicity in humans and other species; the 6-
formylindolo(3,2b)carbazole (FICZ), an endogenous tryptophan
(Trp) photoproduct; the endogenous indole derivative indoxyl
3-sulfate (I3S) and kynurenine (Kyn), a metabolite from the
Trp catabolic pathway product from the enzymatic activity
of the tryptophan 2,3-dioxygenase-2 (TDO2) and indoleamine
2,3-dioxygenase−1/2 (IDO-1/IDO-2) (Figures 2, 3). IDO-1 is
expressed in response to IFN-γ stimulation and is thought to
contribute to IFN-γ antiviral activity by the depletion of L-Trp
during Kyn generation (44–47). Kyn produced by IDO-1 can
then activate AHR, which can further boost IDO-1 expression,
establishing an IDO1-AHR-IDO1 positive feedback loop to
prolong AHR activation (21, 48).

Conversely 2-methyl-2H-pyrazole-3-carboxylic acid
(2-methyl-4-o-tolylazo-phenyl)-amide (CH223191) is a
synthetic potent and specific AHR competitive antagonist
that preferentially inhibits the response to TCDD and related
HAHs (Figure 3).

ENVIRONMENTAL FACTORS AND AHR

AHR agonists are incorporated from the environment via the
oral route (e.g., dietary agonists), and also via their inhalation
and absorption across mucosal barriers (1, 5, 49, 50). The
environmental levels of AHR-activating pollutants (i.e., dioxins,
PAH and HAH) are being reduced in the most developed
countries, but their levels are increasing in the developing world
(51–54). Therefore, these AHR agonists remain a continued
threat to public health. Moreover, epidemiologic and animal-
model studies suggest that environmental chemicals influence
host responses to infectious diseases (55), and strong associations
have been described between dioxin and HAH levels and
viral respiratory tract infections, wheezing, and poor vaccine
responses in infants and children (56–62). Hence, based on its
multiple effects on the immune response, themodulation of AHR
signaling by environmental chemicals is likely to have important
effects on the host response to viral infection.

AHR VARIANTS IN HUMAN DISEASES

AHR regulates numerous genes associated with cellular
homeostasis, proliferation, immune maturation and function,
hematopoietic stem cell expansion, glucose tolerance, and the
development of many human diseases. Indeed, accumulating
evidence supporting a role for AHR signaling in various
diseases has encouraged the investigation of the potential
impact of AHR genetic variants in the susceptibility and
development of human disorders. For instance, a splicing variant
of AHR has been associated with retinitis pigmentosa (63). In
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FIGURE 1 | (A) In stationary state, the aryl hydrocarbon receptor (AHR) is part of a complex composed by the 90kDa heat shock protein (HSP90), the co-chaperone

p23 (p23) and the hepatitis B virus X-associated protein (XAP2/AIP/ARA9). The complex stabilizes AHR conformation, protects AHR from proteolitic degradation and

contributes to its subcellular localization. The ligand (L) binding triggers a conformational change in AHR exposing a nuclear localization signal (NLS). Then, XAP2 is

released from the complex and the L-AHR-HSP90-p23 structure translocates into the nucleus via β-importins. Inside the nucleus, the chaperones are released from

the complex and return to the cytoplasm whilst the AHR-L structure heterodimerizes with the aryl hydrocarbon receptor nuclear translocator (ARNT), interacts with its

DNA- response-elements -xenobiotics response element (XRE)- and regulates the expression of different genes. The AHR canonical signaling pathway is

characterized by the expression of CYP1A1, CYP1B1, CYP2A1, TIPARP and AHRR. Following the modulation of its target genes, the ARNT-AHR-L complex exits the

nucleus and is targeted for proteasomal degradation. (B) The AHR non-canonical signaling pathway involves the regulation of cytoplasmic proteins as well as the

control of gene expression. Within the cytoplasm, the AHR-L complex can function as an E3 ubiquitin ligase, promoting the proteasomal degradation of target

proteins. It also increases the intracellular Ca2+ levels and interacts with different proteins such as PKA, NFκB and Src1. Once in the nucleus, AHR-L is capable of

interacting and controlling the activity of other transcription factors (Tf) through transactivation/transrepression or it can exert a Co-activator/Co-Inhibitor role when it is

associated with ARNT.

addition, single-nucleotide polymorphisms (SNPs) in AHR were
identified as risk factors for the development of lung cancer
in a population of Chinese cigarette smokers (64); other AHR
SNPs were recently associated with higher risk of Crohn’s disease
(65, 66). In addition, AHR genetic variants have been linked
to endocrine disorders such as cyclical Cushing’s disease (67)
and to acromegaly or somatotropinoma (68, 69). Finally, AHR
variants have been identified as risk factors for the development
of coronary arterial (70) and heart disease (71). Taken together,
these studies highlight the potential contributions of AHR

polymorphisms to human disease, and call for future studies
focused on the investigation of the role of these polymorphisms
in viral infections.

AHR AND VIRAL INFECTIONS

RNA Virus Infections
Influenza Virus

Evidence showing that AHR activation has a strong influence on
host resistance to viral infection was first reported over 40 years
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FIGURE 2 | Selected AHR endogenous agonists.

ago (72, 73). Those studies concluded that even very low doses of
the AHR agonist TCDD enhance morbidity and mortality in rats
and mice infected with lethal strains of influenza A virus (IAV)
(74, 75). Influenza viruses are negative-sense single- stranded
RNA viruses belonging to the Orthomyxoviridae family. IAVs
cause acute respiratory infections in humans and are a great
burden to public health and the global economy. As a result
of the 2009 H1N1 pandemic, more than 120,000 people died
worldwide, the majority of which were in the young age range

(<65 years old) (reported by CDC). Avian influenza strains such
as the H5N1 and H7N9 have also raised concern for future
pandemics due to their capacity to cross the species barrier and
cause lethal infections in humans. Although vaccination against
seasonal influenza is an essential part of the public health strategy,
its efficacy is variable, and there are only few therapeutic options
for people who become infected.

Host defense during a primary IAV infection is mainly
promoted by virus-specific CD8+ cytotoxic T lymphocytes
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FIGURE 3 | Selected AHR exogenous agonists and antagonists.

(CTL), which kill infected cells in the lung (76). At this stage,
B cells do not play a major role as they do not produce virus-
specific antibodies. However, class-switched B cells, antibody-
secreting plasma cells, and memory B cells participate in the
generation of antibodies that protect against repeated infection
with homotypic virus strains (77). It has been reported that AHR
is highly induced upon B cell activation and has a critical role in
regulating activation-induced cell fate outcomes. Of note, AHR
suppresses antibody class switching in vivo after IAV infection
and immunization with model antigens (78).

In addition, IAV-specific CD4+ T cells are key for the
generation of virus-specific antibodies by B cells and the
establishment of immunologic memory; additional functions are
played by Foxp3+CD25+ regulatory CD4+ T cells (Tregs), Th17,
and T follicular helper (TFH) cells during virus infection (79–
82). Importantly, early life exposure to chemical AHR ligands
alters the CD4+ T cell responses to IAV infection in adulthood
(83). Finally, upon successful viral clearance, a pool of memory

lymphocytes remains, which secures a rapid response if the same
or similar influenza virus strains are later encountered. The
proper regulation of these cell populations is required to generate
an immune response which can successfully resolve the viral
infection while averting an excessive inflammatory response with
its associated immunopathology.

Treatment with a single oral dose of TCDD has been shown
to increase morbidity and mortality in mice infected with a
sublethal inoculum of IAV. The adaptive immune response is
impaired upon AHR activation, with a marked reduction in
dendritic cell (DC) function, the expansion and differentiation
of CD4+ and CD8+ T cells, and virus-specific IgG titers (84).
Recent genome wide transcriptional analyses of DCs isolated
from lungs of IAV-infected mice treated with TCDD detected
a strong down-regulation of CD209a and CCL17 expression.
Indeed, Ingenuity Pathway Analysis (IPA) revealed that the
most altered signaling pathways in these DCs are related to
immune cell trafficking, cellular movement and hematological
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system development and function (85). Interestingly, although
AHR activation increases morbidity and mortality caused by IAV
infection, the kinetics of viral growth and the efficacy of the
viral clearance, are not significantly different between control
and TCDD-treated mice in primary infections nor even during
homotypic reinfections (86–89). These findings suggest that the
dysregulated expansion of the virus itself is not to blame for the
poorer outcomes of TCDD-treated mice. Indeed, AHR activation
increases the recruitment of neutrophils to the infected lung, and
elevates the expression of IFNγ and the inducible nitric oxide
synthase (iNOS) in the lungs during IAV infection (90, 91). These
molecules could participate in antiviral mechanisms, but their
dysregulated activity promote immunopathology which results in
poorer survival. Indeed, neutrophil depletion markedly improves
survival and abrogates the enhancement of broncho-pulmonary
inflammation triggered by AHR activation with TCDD during
acute IAV infection (92).

Studies using AHR mutant mice suggest that changes in the
host response to IAV are mainly driven by direct interactions
of AHR with XREs (85, 91). However, the specific AHR
gene targets involved in the altered host responses to IAV
induced by TCDD remain to be determined. Recent reports
based on adoptive transfer, bone marrow transplantation, and
conditional gene ablation have shown that AHR modulates
both the response of hematopoietic cells, endothelial cells,
and lung epithelial cells to IAV (93), suggesting that CD8+

T cell responses to IAV are suppressed by AHR signaling
via indirect mechanisms (94). In addition, the increase in
neutrophils and iNOS and IFNγ expression in the lungs of
TCDD-treated mice is independent of AHR expression in
hematopoietic cells (93). Instead, arh knockout mice revealed
that the increased pulmonary neutrophilia induced by TCDD
requires AHR activation in the respiratory epithelium, while
the increase in iNOS expression is dependent on AHR
activation in endothelial cells (91). Hence, multiple cell types
participate in the AHR-mediated alterations of the host response
to IAV.

Further insights were provided by the comparison of
the alterations induced in the immune response to IAV by
four representative AHR agonists: (1) TCDD, (2) 3,3′,4,4′,5-
pentachlorobiphenyl (PCB126), a pollutant with documented
human exposure, (3) 2-(1′H-indole-3′-carbonyl)-thiazole-4-
carboxilic acid methyl ester (ITE), an AHR agonist isolated
from mucosal tissues, and (4) FICZ, a degradation product
of Trp. All these AHR ligands diminished virus-specific IgM
levels and increased the proportion of regulatory T cells (7).
TCDD, PCB126 and ITE, but not FICZ, reduced virus-specific
IgG levels and CD8+ T cell responses. Similarly, ITE, PCB126,
and TCDD reduced Th1 and T follicular helper cells, whereas
FICZ increased their frequency. In Cyp1a1-deficient mice,
all compounds reduced the response to IAV. Ahr knockout
mice denoted that these compounds require AHR within
hematopoietic cells to exert their effects (7). These findings
suggest that the differential effects of specific AHR agonists on
the immune response to IAV reflect differences in the half-
life of the agonists, and potentially the induction of different
AHR conformations. A deeper understanding of the mechanisms

behind these ligand-specific effects will pave the way for the
design of AHR-targeted therapeutics.

Coronaviruses

Coronaviruses (CoVs) are a family of positive-sense single-
stranded RNA viruses with public health and agricultural
importance. They mostly cause enteric or respiratory disease,
which can be severe and life threatening. Human CoVs first
come under the spotlight when outbreaks of the severe acute
respiratory syndrome (SARS-CoV-1) and the Middle East
respiratory disease (MERS-CoV) were reported in 2002-03 and
2012, respectively. At the end of 2019, a new human CoV (SARS-
CoV-2) was identified in Wuhan, China, and associated with a
severe respiratory infection, known today as CoVs disease 2019
(COVID-19). Compared to other positive-sense RNA viruses,
CoVs have an exceptionally large genome (30 kb) and employ a
complex genome expression strategy (95); our knowledge of host
factors involved in CoVs replication is still extremely limited.

It was recently reported that AHR is activated in cells
infected with a prototypic CoV, mouse hepatitis virus (MHV),
resulting in the expression of several effector genes (96).
Indeed, AHR was shown to be important for modulation
of the host immune response to MHV, playing a role in
the expression of the downstream effector TCDD-inducible
poly(ADP-ribose) polymerase (TiPARP), which is required for
maximal viral replication. In accordance with this, knockdown of
TiPARP reduced viral replication and increased IFN expression,
suggesting that TiPARP is a proviral factor for MHV infection.
Moreover, MHV replication induced the expression of other
AHR-driven genes in macrophages and DCs of infected mice.
The pharmacologic modulation of AHR activity regulated the
expression levels of cytokines induced by infection, specifically,
interleukin 1β (IL-1β), IL-10, and TNF-α, supporting a role
for AHR activation in the host response to MHV infection.
Of note, while IDO-1 drives AHR activation in the context
of other infections, MHV induced a similar expression level
of downstream genes in wild-type and IDO-1-/- macrophages,
suggesting that additional pathways besides IDO-1 are involved
in AHR activation.

In the context of the explosive amount of research performed
on SARS-CoV-2, a model was proposed where SARS-CoV-
2 would activate AHR by an IDO1-independent mechanism,
initially bypassing the IDO1-Kyn-AHR pathway, and then
AHR would enhance its own activity through an IDO1-AHR-
IDO1 positive feedback loop prolonging activation induced by
this novel pathogen (97). In this sense, researchers discussed
the possibility of a direct activation of AHRs by CoVs
inducing immediate and simultaneous up-regulation of diverse
AHR-dependent downstream effectors, which in turn, would
result in AHR-related syndromes, consisting of inflammation,
thromboembolism, and fibrosis, finally culminating in multiple
organ injuries, and death (98).

The activation of AHRs by CoVs may lead to a diverse
set of phenotypic disease scenarios depending on the time
after infection, overall state of health, hormonal balance,
age, gender, co-morbidities, diet and environmental factors
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modulating AHR signaling. In addition, infection by SARS-CoV-
2 or the non-related respiratory syncytial virus (RSV), results
in increased AHR and IDO-1 lung expression, concomitant
with increased pro-inflammatory gene expression, activation of
the Tissue Factor/Plasminogen Activator Inhibitor-1 (TF/PAI-
1) signaling pathway, and up-regulation of CYP1A1 (98).
Finally, bioinformatic screens of novel approaches for the
therapeutic modulation of AHR signaling established that
dexamethasone may down-regulate both AHR and IDO-1
expression, while calcitriol/vitamin D3 may down-regulate AHR,
and tocopherol/vitamin E may down-regulate IDO-1 (98).

Flavivirus Infections

Flaviviruses comprise a group of positive-sense single-stranded
RNA viruses of ∼9–13 kb that cause severe endemic infection
and epidemics on a global scale. Representative members of this
group include dengue, West Nile, and Zika viruses. Flaviviruses
constitute a significant health issue worldwide and many
members of this family have shown potential to emerge and cause
outbreaks in non-endemic geographical regions. Additionally,
reemergence in areas where circulation was previously thought
to be contained has been observed, such as the case of the
2018 outbreak of yellow fever virus in Brazil. Other medically-
important flaviviruses such as Japanese encephalitis virus, which
circulates mainly in Southern and Southeastern Asia, or tick
borne encephalitis virus, which is endemic in parts of Eurasia,
have not yet expanded globally. However, because their vectors
are widely distributed, they do have potential for spreading. Of
note, other worldwide human important diseases associated with
this family include hepatitis C virus (99).

Zika Virus
Zika virus (ZIKV) is a mosquito-vectored flavivirus isolated in
1947 inUganda. Its circulation has been reported in humans from
West Africa and Asia since the mid-1950s (100). ZIKV infection
used to be a neglected disease for most of its history due to the
mildness of its symptoms and the fact that it was geographically
restricted. However, in 2015 Brazil registered an unprecedented
epidemic (101) characterized by a high incidence ofmicrocephaly
cases, formally accepted to be linked to ZIKV in April 2016. The
mechanism by which ZIKV crosses the placenta is still unclear,
but its neurotropism and ability to destroy neural cells have
been well-established (102). Neural progenitor cells (NPCs) are
the primary target of the ZIKV, and this may partly explain
the high number of abnormalities detected in neuroimaging
examinations (103). It was reported that environmental factors
strongly correlate with nutrition and socioeconomic position
affecting the immune status and response to ZIKV infections
(85). When analyzing this relationship for Recife (Pernambuco,
Brazil), a city that was severely hit by ZIKV, it was found that
cases of reported microcephaly in 2015 and 2016 were largely
concentrated in areas with more impoverished living conditions
(104). Noticeably, AHR is highly expressed in the human placenta
and its expression is upregulated in placentas of women suffering
unexplained miscarriages (105, 106). Hence, it is conceivable
that sustained AHR activation in women exposed to pollutants
and living in impoverished conditions with degraded housing

and malnutrition (107, 108) might increase their susceptibility to
ZIKV infection and ZIKV congenital syndrome.

Consistent with these observations, we recently showed that
ZIKV infection up-regulates IDO-1 and AHR expression in
first trimester trophoblast cells (109) and NPCs (106). Indeed,
AHR was identified as a key proviral factor for ZIKV infection.
In addition, it was found that ZIKV infection triggers AHR
activation, limiting the production of IFN-I, involved in antiviral
immunity and favoring viral replication in vitro. Importantly, the
relevance of these findings was further evaluated using an in vivo
murine model, in which AHR pharmacologic inhibition blocked
ZIKV replication and ameliorated newborn microcephaly. These
results suggest that AHR is a candidate target for host-directed
therapies for flavivirus infection.

Dengue Virus
Dengue virus (DENV) is a flavivirus endemic in many tropical
and sub-tropical countries where the transmission vectors Aedes
spp. mosquitoes are present. There are four serotypes of DENV
(DENV1-DENV4). Each serotype is antigenically different,
meaning they elicit heterologous antibody responses. Infection
with one serotype elicits neutralizing antibodies to that serotype.
Cross-protection from infection with other serotypes is short
lived; instead heterotypic infection can cause severe disease. After
DENV infection, activation of innate immune pathways occurs,
including IFN-I, complement, apoptosis, and autophagy, which
the virus can evade or exploit to exacerbate disease.

With regards to the impact of AHR modulation on DENV
infection, only in vitro data is available, suggesting that
the pharmacological inhibition of AHR suppresses DENV
replication (106). AHR activation in A549 cells with I3S
increased DENV2 yield, as determined by standard plaque assay.
Conversely, AHR inhibition with the antagonist CH223191
reduced viral RNA level, viral protein expression and viral
titer in culture supernatants. Moreover, the knockdown of
AHR diminished the production of DENV2 infectious viral
particles. Of note, the treatment with the AHR antagonist
CH223191 prior the infection with DENV1, DENV3, and
DENV4, showed a comparable antiviral effect to the one
already described for the best characterized serotype, DENV2
(106). The four dengue serotypes usually co-exist in the same
geographical regions, which also leads to increased disease
severity mediated by antibody-dependent enhancement (110).
Also, different flaviviruses (e.g., ZIKV, yellow fever) may co-
exist in the same regions as well. Therefore, the development
of a single drug effective against many flaviviruses represents an
example of a “one-drug, multiple bugs” approach (111) which
may translate into major benefits, including: (i) the ability to
treat future yet-unknown flavivirus outbreaks, (ii) the potential
administration of a drug even before a differential diagnosis
between flaviviruses can be made, and (iii) much lower research
and development costs.

Hepatitis C Virus
Hepatitis C virus (HCV) is a flavivirus belonging to the
Hepacivirus genus. HCV infection can result in a persistent
disease (112), remaining asymptomatic for years before the
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development of severe liver pathology including cirrhosis
and hepatocellular carcinoma. HCV regulates critical signaling
pathways in hepatocytes, and actively evades the antiviral
immune response. In particular, HCVmodulates cell metabolism
and remodels specialized membrane structures and organelles
such as double-membrane vesicles and lipid droplets, favoring
virus replication and virion assembly. However, the molecular
bases of these host-virus interactions are still unclear. Recently
it was demonstrated that the benzamide derivative flutamide,
which has been shown to act as an AHR antagonist (113), inhibits
the cellular capacity to produce infectious HCV particles (113).
Flutamide blocks the biogenesis of lipid structures in HCV-
infected cells, disrupting virion assembly, indicating that AHR
plays a key role in modulating LD storage and HCV infection.
This novel role of AHR in lipid biogenesis was also confirmed
in non-infected Huh-7 cells and primary human hepatocytes,
suggesting that AHR regulates store lipid reserves independently
of viral infection. Indeed, the product of the prototypic AHR
target gene CYP1A1was identified as the main regulator of AHR-
mediated lipid biogenesis (113). Indeed, the inhibition of AHR-
induced CYP1A1 up-regulation diminished the lipid droplet
enlargement. Conversely, the enhanced expression of CYP1A1
restored lipid reserves in AHR-inhibited cells. Altogether, these
data identify a role for AHR in the control of lipid biogenesis,
a hallmark of HCV infection that boost the production of viral
particles, identifying AHR as a candidate therapeutic target for
HCV infection.

Retroviruses

Human immunodeficiency viruses (HIV) belong to Retroviridae
family, Orthoretroviridae subfamily in Lentivirus genus. They
harbor spherical particles surrounded by an envelope whose
outer part contains glycoproteins. The genome consists of
two positive-sense single-stranded RNA copies and can be
transcribed into double-stranded DNA by a reverse transcriptase,
an enzyme contained in the viral particle. This provirus can
integrate into the host cell chromosome until the initiation of a
replication cycle (114).

The acquired immunodeficiency syndrome (AIDS) caused by
HIV-1 is a progressive condition in which virus-induced immune
dysfunction results in the development of serious opportunistic
infections and cancers. Several metabolic pathways are altered
by HIV-1 infection, with an impact on immune activation,
inflammation, and acquisition of non-AIDS co-morbid diseases.
Unusual high levels of Kyn have been detected in association with
accelerated HIV-1 pathogenesis, but the molecular mechanism
behind this observation remains unclear. However, it was
recently reported that AHR is activated by Trp metabolites to
favor HIV-1 infection and reactivation (115), suggesting a novel
role for AHR in AIDS. AHR directly binds to the HIV-1 5′ long
terminal repeat (5′-LTR) to activate viral transcription.Moreover,
the binding of AHR with Tat viral protein facilitates the
recruitment of positive transcription factors to viral promoters.
These findings elucidate a previously unappreciated mechanism
through which cellular Trp metabolites affect HIV pathogenesis,
and also suggest that AHR signaling may be targeted to modulate
HIV-1 infection (115).

In another set of studies, in vitro treatment with TCDD,
benzo[a]pyrene, and 3-methycholanthrene increased HIV gene
expression and the level of secreted p24 viral protein in several
different cell lines; the use of mutant and dominant negative
AHR constructs suggest that these effects on HIV-1 are AHR-
dependent. Interestingly, the simian retrovirus SIV Vpx protein
provides complete and partial resistance to the antiviral effects
of AHR (116). Interactions between AHR and NF-κB have been
implicated in some, but not all, of these studies (117–120), leaving
the molecular mechanisms by which AHR impacts viral latency
and viral replication, as well as their in vivo relevance, uncertain.

DNA Virus Infections
Herpesviruses

The large family of DNA genomeHerpesviridae causes infections
and diseases in multiple animal species, including humans. In
particular, five herpesviruses are extremely widespread among
humans: HSV-1 and HSV-2 (causing orolabial and genital
herpes), varicella zoster virus or HHV-3 (causing chickenpox
and shingles), Epstein–Barr virus or HHV-4 (responsible for
several diseases, including mononucleosis and some cancers),
and cytomegalovirus or HHV-5. More than 90% of adults have
been infected with at least one of these pathogens (121–126). In
addition, Kaposi’s sarcoma-associated herpesvirus (KSHV), also
known as HHV-8 is an important human health problem among
immunocompromised people.

Herpes Simplex Virus-1
Ocular HSV-1 infection can result in chronic cornea
inflammation driven by conventional CD4+ T cells and
neutrophils, which ultimately leads to blindness. A recent
study showed that TCDD reduces effector Th1 and Th17
cells, neutrophilic inflammation, and increases Foxp3+ Tregs
in a mouse model of ocular HSV-1 infection (127). In this
HSV-1 model, TCDD-treated mice harbored higher virus
titers, and many succumbed to herpes encephalitis if AHR was
activated before to infection. However, when AHR activation was
triggered post HSV-1 infection, herpes encephalitis was reduced
and there was improved pathology in the eye tissue. Hence,
the timing of AHR activation seems to control the balance
between limiting immunopathology and eliminating anti-virus
protective immunity.

Human Cytomegalovirus
Human cytomegalovirus (HCMV), a beta-herpesvirus, causes
severe birth defects in newborn infants and serious disease
in immunocompromised patients (128). To replicate, HCMV
must interfere with cellular DNA replication and block the
cellular innate immune response, specifically IFN production
and the expression of interferon-stimulated genes (ISGs). IDO-
1 activation is believed to restrain HCMV multiplication by
depriving the infected cells of Trp, while it can also limit virus-
induced immunopathology via the production of Kyn. Indeed,
elevated Kyn levels are detected during HCMV replication,
high plasma Kyn levels have been correlated with HCMV
reactivation in renal transplant recipients, and AHR activation
has been shown to promote viral replication (129). Moreover,
recent reports have described the interplay between AHR
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signaling and HCMV replication: (i) HCMV infection of primary
human fibroblasts triggers the persistent induction of AHR
transcriptional activity; (ii) Sustained AHR activity is associated
with tightly balanced IDO-1 activity; (iii) AHR signaling is
required for the efficient replication of virus; (iv) HCMV induced
G1/S cell cycle arrest depends on AHR activity; and (v) HCMV
exploits AHR signaling to counteract the innate antiviral immune
response, in a negative feedback loop containing IDO1-Kyn-
AHR (129). Follow up studies are needed to establish the
molecular mechanisms by which endogenous AHR signaling
modulates HCMV infection.

Epstein Barr Virus
A relationship between Epstein Barr virus (EBV) and exposure
to environmental AHR agonists has been proposed as a risk
factor for non-Hodgkin lymphoma and other diseases (130, 131).
Independent studies also detected a link between AHR and EBV
genes and/or proteins. For example, the nuclear protein EBNA-3,
which contributes to the transformation of EBV-infected B cells
(132) interacts with AHR and the AHR chaperone protein XAP-2
(133, 134). However, the mechanistic roles of these associations
in diseases such as non-Hodgkin lymphoma remains to be
revealed. Surprisingly, it has been reported that EBNA-3 interacts
with AHR in a ligand-independent manner. However, EBNA-
3 boosts the TCDD-induced transcription of an AHR-driven
reporter gene, suggesting that AHR activation synergizes with the
effects of EBNA-3 during the control of AHR-target genes. The
molecular mechanisms underlying the functional interactions
between EBNA-3 and AHR might involve XAP2, which retains
AHR in the cytoplasm in the absence of an exogenous ligand.
Additional mechanisms might be involved, because XAP2
translocates to the nucleus in the presence of EBNA-3, which
suggests that EBNA-3 might stabilize transcriptionally active
AHR in the nucleus. Of note, these reports are the first to
describe the physical interaction of AHR with a viral protein,
identifying new roles and molecular mechanisms for AHR in
virus-host interactions.

THERAPEUTIC MODULATION OF AHR
ACTIVITY IN CLINICAL PRACTICE

As discussed in the previous sections, the available data support
a role for AHR in the regulation of the host immune response
against many viruses. Because AHR activity can be regulated
by small molecules, AHR is an attractive target for therapeutic
immunomodulation in the context of virus infection. Indeed, in
pre-clinical models, AHR antagonists were shown to ameliorate
ZIKV congenital syndrome in mice (106), increased survival in
IAV infected mice (135) and reduce lung pathology induced
by SARS-CoV-2 in hACE2-transgenic mice (136). However,
clinical studies evaluating the safety and efficacy of targeting
AHR for the treatment of viral infections are lacking. Conversely,
many studies have evaluated the AHR pathway as a candidate
target for the treatment of other diseases such as cancer (137).
Epacadostat (Incyte Corp), the first IDO1-selective inhibitor
to be tested on large phase 3 trials, failed to demonstrate

FIGURE 4 | Potential roles of AHR during viral infections.

anticancer efficacy, but a second generation of IDO inhibitors
are currently being investigated. Promising pre-clinical results
have been obtained for many AHR antagonists, including HP163
(Hercules Pharmaceuticals, also successfully tested against ZIKV
in vivo) and PX-A24590 (Phenex Pharmaceuticals). Moreover,
two additional AHR antagonists are currently under clinical
trials: BAY2416964 (Bayer) and IK-175 (Ikena Oncology).
All the lessons being learnt from the development of drugs
targeting AHR in the context of other diseases will likely
impact the development of molecules targeting AHR to treat
viral infections.

Antiviral drugs can be classified in two major categories:
direct-acting antiviral agents (DAAs) or host-targeted antivirals
(HTAs). While DAAs target virus components, HTAs target host
molecules that impact viral replication. HTAs offer two major
advantages over DAAs: i) They can target a broad range of
viruses that require a specific host factor, and ii) They minimize
the selection of drug-resistant virus strains. However, the major
caveat of HTAs is the greater risk of cellular toxicity. In this
context, the targeting of AHR is no different. In order to address
the potential issue of cellular toxicity, the use of nanoparticles
as a vehicle to deliver AHR modulators to specific cell types
has been proposed (138, 139). This approach has been shown
to minimize toxicity and maximize the therapeutic effect in the
target cell types.

In summary, the AHR pathway has stepped into the spotlight
for the treatment of several non-viral diseases. The growing
amount of evidence on the role of AHR in virus-host interactions
supports the development of AHR antagonists as a new family
of HTAs.

CONCLUSIONS

Human migration, urbanization, people agglomeration,
environmental factors and reassortment across species are
considered strong driving forces for viral re-emergence (140).
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One of the more astonishing aspects of the recent SARS-CoV-2
pandemic is the high level of variability among patients in terms
of disease severity: while some patients remain asymptomatic,
others require intensive care. Environmental factors interact with
genetic factors to control the response to multiple challenges
including viral infections. The collective of all exposures
throughout an individual’s lifetime could represent a possible
underestimated factor which may contribute to the variations
in disease severity. This “exposome” includes environmental
toxins, pharmacological treatments, lifestyle choices, diet, etc.
Technological advances and interdisciplinary experimental
systems combined with rational bioinformatic approaches (141)
have allowed us to initiate a comprehensive assessment of the
exposome and the pathways involved in sensing it, but our
knowledge in this area is still scattered.

The well-defined AHR pathway provides an excellent model
to investigate the effects of the exposome on multiple aspects of
physiology such as the response to viral infections. In addition,
a deep understanding of the complex interactions between the
viral pathogen and the immunological host response is required
in order to develop antiviral treatments.

In this context, multiple studies indicate a role for the AHR
environmental sensing molecule in the control of the adaptive,
innate and intrinsic response to multiple common human

viruses, including both RNA and DNA viruses (Figure 4). These
findings may shed new light on the effects of the exposome
on viral infections, while identifying novel approaches for
therapeutic intervention.
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