
A certifying and dynamic algorithm for the recognition of proper
circular-arc graphs

Francisco J. Soulignac ∗

CONICET and Departamento de Ciencia y Tecnología, Universidad Nacional de
Quilmes, Buenos Aires, Argentina.

Abstract
We present a dynamic algorithm for the recognition of proper circular-arc (PCA) graphs,

that supports the insertion and removal of vertices (together with its incident edges). The
main feature of the algorithm is that it outputs a minimally non-PCA induced subgraph
when the insertion of a vertex fails. Each operation cost O(logn + d) time, where n is the
number vertices and d is the degree of the modified vertex. When removals are disallowed,
each insertion is processed in O(d) time. The algorithm also provides two constant-time
operations to query if the dynamic graph is proper Helly (PHCA) or proper interval (PIG).
When the dynamic graph is not PHCA (resp. PIG), a minimally non-PHCA (resp. non-PIG)
induced subgraph is obtained.

Keywords: dynamic representation, certifying algorithm, proper circular-arc graphs,
proper interval graph, proper Helly circular-arc graphs.

1 Introduction
A circular-arc (CA) model is a family of arcs of a circle. A graph G admits a CA model M
when its vertices are in a one-to-one correspondence with the arcs ofM in such a way that two
vertices of G are adjacent if and only if their corresponding arcs have a nonempty intersection.
Those graphs that admit a CA model are called circular-arc (CA) graphs. Proper circular-arc
graphs and proper interval graphs form two of the most studied subclasses of CA graphs. A
CA modelM is proper when no arc ofM is properly contained in another arc ofM, whileM
is an interval (IG) model when the union of its arcs does not cover the entire circle. A graph
is a proper circular-arc (PCA) graph when it admits a proper CA model, while it is a proper
interval (PIG) graph when it admits a proper IG model.

The (static) recognition problem for PCA (resp. PIG) graphs asks if an input graph G is
PCA (resp. PIG). A recognition algorithm that outputs YES or NO is not that useful in practice
for two reasons. First, there are many applications in which PIG and PCA models of G are
looked for, while several algorithms work more efficiently when a PIG or PCA model of G is
available [10, 15, 28]. Second, and not less important, a buggy implementation can lead to
incorrect answers that a user cannot corroborate. A certifying recognition algorithm yields a
witness W proving that the output is correct for G. Besides proving correctness, two additional
properties are required for W [25]. First, there exists a checker with a “trivial” implementation
that, given G and W , authenticates that the output is correct for G. Second, there is a simple
proof that the existence of W implies the output on G. With these two ingredients, a user can
test that the output for G is correct, even when the implemented algorithm has bugs [25].

∗mail: francisco.soulignac@unq.edu.ar

1

ar
X

iv
:1

50
9.

05
82

8v
1

 [
cs

.D
S]

 1
9

Se
p

20
15

Witnesses are classified as positive or negative according to the output given for G. The for-
mer prove that G is PCA (YES output), while the latter prove that G is not PCA (NO output).
A priori, there are many certifying algorithms for the recognition of PCA graphs, as we can
chose different kinds of witnesses. Although all of them can be used to authenticate the output,
they need not be equally useful for the user. This statement is obvious in those application
where the goal is to produce a PCA model of G, but it also holds for those applications on PCA
graphs that require a specific kind of input. Thus, a positive witness with the required inter-
face is better than one that has to be further processed. Similarly, a negative witness should
highlight the reason why G is not PCA. Arguably, PCA models are the most useful positive
witnesses, while minimally forbidden subgraphs are the most useful negative witnesses.

Unfortunately, the positive witnesses that we use in this article are not PCA models, but
round representations [8]. Roughly speaking, a round (resp. straight) representation Φ is like a
PCA (resp. PIG) model in which the actual position of the arcs is missing. Instead, we know
the order of the arcs and which are the leftmost and rightmost arcs intersected by a given arc.
Fortunately, Φ is enough for all those applications in which knowing the actual position of an
arc is not required, e.g. [15]. Also, it is trivial to obtain a PCA (PIG) modelM associated to
Φ in O(n) time, where n is the number of arcs ofM; by associated, we mean that the arcs of
Φ andM appear in the same order.

In this article we consider a dynamic version of the recognition problem for PCA graphs.
The goal is to keep a round representation Φ of a graph G while some operations are applied.
We allow two kinds of updates: the insertion of a new vertex (and the edges incident to it),
and the removal of an existing vertex (and its incident edges). Those insertions that yield non-
PCA graphs have no effects on Φ; instead, an error message is obtained. Also, the algorithm
must answer if G is PIG or not and, if affirmative, then Φ must be a straight representation.
Consequently, Φ can be immediately applied on algorithms that work on PIG graphs. When
efficiency does not matter, the dynamic problem is solved by applying any static recognition
algorithm for each update. The idea, however, is to reduce the complexity of the operations.

To motivate the development of dynamic algorithms for PIG graphs, Hell et al. [13] describe
an application to physical mapping of DNA. The problem is to find a straight representation Φ
of an input graph G that encodes some biological data, or to prove that no such model exists.
As time goes by, further experiments may prove that the initial biological data is not accurate.
The resulting changes in the data correspond to the insertion and removal of vertices and edges
from G. Instead of building a new straight representation from scratch, the goal is to “fix” Φ
efficiently.

The concerns about the reliability and usefulness of the outputs, that we had for the static
recognition algorithms, hold also for the dynamic ones. The existence of a round representation
Φ proves that G is a PCA graph, thus Φ can be taken as the positive witness. However, when
the algorithm rejects an update claiming that it leads to a non-PCA graph, can we trust this
claim blindly? And, even if we do trust, we still want a negative witness to check if the input
data is incorrect. This is particularly true for the above application to physical mapping of
DNA, since we expect the experiments to be inaccurate at some point, and we cannot assume
the erroneous data yields a PCA graph. A certifying and dynamic algorithm for the recognition
of PCA graphs outputs a minimally forbidden subgraph when some update is rejected.

Authenticating that a round representation Φ encodes G or that F is minimally forbidden
subgraph of G are trivial tasks, as desired. However, the time required for these authentications
is linear on the size of G. Thus, we cannot expect the user to authenticate the witnesses after
each operation, as doing so throws out the efficiency benefits of the dynamic algorithm. The
difference between static and dynamic algorithms is that the latter are not, strictly speaking,
algorithms. Instead, they are abstract data types that keep a certain data structure that reacts

2

to different operations. Thus, Φ is not given as output when an insertion or removal is applied
and, so, Φ should be authenticated against G only occasionally.

We can conceive three types of checkers, which we call static, dynamic, and monitors. Static
checkers are static algorithms that authenticate the witness against the static graph G. Dy-
namic checkers are also static algorithms, but they check one update of the dynamic algorithm
against the round representation Φ. Finally, monitors are dynamic algorithms that ensure the
correctness of data structure Φ̃ implementing Φ [2, 25]. Thus, a monitor is an abstract data type
that sits between the user and the recognition algorithm. The user interacts with the monitor
as if it were a round representation. In turn, the monitor forwards each operation to Φ̃, while
it checks the correct behavior of Φ̃ and the generated output. In case of an error, the monitor
raises an exception. The main difference between checkers and monitors is that the latter may
require access to operations that the are restricted to the user. Checkers are usually simpler,
as they have no knowledge of Φ̃, and can be implemented even when the source code of the
recognition algorithm is unavailable. However, the same reason could make them less efficient.
Thus, checkers and monitors are complementary tools.

Previous work. Linear-time algorithms for generating PIG models of graphs are known since
more than twenty years, e.g. [4, 8, 14]. While dealing with the correctness of their algorithm,
Deng et al. [8] prove that a minimally forbidden subgraph F must exist when the algorithm fails.
Although it is not discussed in [8], F can be obtained in O(n) time. A second way to find a F
is to apply the dynamic recognition algorithm by Hell et al. [13]. In a first phase, the algorithm
finds a set of vertices V such that the subgraph G[V] induced by V is PIG, and G[V ∪{v}] is not
PIG. In a second phase, the algorithm transforms G[V ∪ {v}] into F by removing vertices from
V . This strategy, which is discussed in [30] for PCA graphs, costs linear time for PIG graphs.
A similar approach using only incremental graphs is discussed in [25] for planar graphs and
in [21] for interval graphs. Arguably, the simpler linear time algorithm to find F was presented
in 2004 by Hell and Huang [12], who extend the LexBFS algorithm by Corneil [3] to exhibit
such a forbidden when the input is not PIG. Meister [26] also applies LexBFS to find a negative
witness, but this witness is not always a minimally forbidden subgraph.

The problem of building a PCA model of a graph G is also well settled, but fewer algorithms
are known [8, 20, 30]. Regarding the certification problem, Hell and Huang [12] show how to
obtain a minimally forbidden subgraph F when G is co-bipartite and not PCA. The first algo-
rithm that shows how to obtain a negative witness when G is not co-bipartite was presented
in 2009 by Kaplan and Nussbaum [20]. Unfortunately, their witnesses are not forbidden sub-
graphs, but odd cycles of incompatibility graphs. Up to this date, the only algorithm that is
able to compute F in linear time for every PCA graphs was given by the author [30] in 2015.
The idea is to apply a dynamic recognition algorithm in two phases as discussed above.

Lin and Szwarcfiter [23] survey different algorithms for the recognition of other classes of
circular-arc graphs, while McConnell et al. [25] discuss a theoretical framework for certifying
algorithms and explain why they are preferred over non-certifying ones. McConnell et al. survey
certifying recognition algorithms for other classes of graphs as well.

In the last years, dynamic recognition algorithms for many classes of graphs were devel-
oped [5–7, 9, 11, 17–19, 27, 29, 31]. Among these examples, the only one providing negative
witnesses is the one by Crespelle and Paul [6] for the recognition of directed cographs. We
remark that the minimally forbidden subgraphs for directed cographs have O(1) vertices, thus
they are generated when required. On the other hand, a minimally forbidden subgraph for PCA
graphs can have Θ(n) vertices with degree O(1). Thus, the computation of such a forbidden is
dynamic.

3

Type of data structure ep+ ep−
Incremental O(1) O(n)
Decremental O(n) O(1)
Fully dynamic O(logn) O(logn)

Table 1: The actual values of ep+ and ep− according to the data structure employed

Our results. We conceive our manuscript as the forth in a series of articles. The series begins
in 1996 with the recognition algorithm for PCA graphs developed by Deng et al. [8]. As part
of their algorithm, Deng et al. devise a vertex-only incremental algorithm for the recognition
of connected PIG graphs that runs in O(d) time per vertex insertion, where d is the degree of
the inserted vertex. The data structure that supports their recognition algorithm is a straight
representation. The second article of the series dates back to 2001, where Hell et al. [13] extend
the algorithm by Deng et al. to solve the dynamic recognition of PIG graphs. Their algorithm
runs in O(d+ ep+) time per vertex insertion, O(d+ ep−) time per vertex removal, O(ep+) time
per edge insertion, and O(ep−) time per edge removal. The values of ep+ and ep− depend on
the data structure employed to implement the straight representations, as depicted in Table 1.
Note that the algorithm is optimal if only insertions are allowed, while it is almost optimal when
both operations are allowed. Indeed, Hell et al. prove that at least Ω(logn/(log logn + log b))
amortized time is required by the fully dynamic algorithm in the cell probe model of computation
with word size b. Finally, in 2015, the author [30] extended the algorithm by Hell el al. for the
recognition of PCA graphs. The algorithm works with round representations and has the same
complexity as the one by Hell et al. Moreover, the round representation is straight when the
input graph is PIG, thus the algorithm solves the dynamic recognition of PIG graphs as well.

In this article we further extend the algorithm in [30] to provide a certifying and dynamic
algorithm for the recognition of PCA graphs as discussed above. The algorithm is restricted to
the insertion and removal of vertices, and we ignore the problem for edge operations. Specifically,
the algorithm implements a round representation Φ of the input graph G, and it yields a
minimally forbidden subgraph when a vertex insertion fails. Our algorithm is as efficient as the
one by Hell et al., as it handles the insertion of a new vertex v in O(d + ep+) time, while the
removal of v costs O(d + ep−) time. The user can also ask, at any point, if G is a PIG graph;
this query costs O(1) time. If affirmative, then Φ is a straight representation of G. Otherwise,
a minimally forbidden subgraph is obtained.

We remark that when the insertion of a vertex v with O(1) neighbors fails, the minimally
forbidden subgraph F can be of size Θ(n). However, only O(ep+) time is available to generate
F . Thus, besides keeping Φ, the dynamic algorithm stores a partial forbidden subgraph P(Φ).
When an insertion fails, P(Φ) is extended with v to yield F . This scheme is similar to the one
used for the positive witness. The difference is that P(Φ) is not accessible by the user, who
observes the dynamic algorithm as an implementation of Φ. As is the case with Φ, the output
F must provide an efficient and convenient interface to the user. Of course, because of the
inevitable aliasing between F and G, no updates on F are possible, and any modification on G
invalidates F . If required, a copy of F can be obtained in O(|E(F)|) = O(n) time.

Organization of the manuscript. Section 2 introduces the basic terminology and notation.
Section 3 presents the Reception Theorem, which characterizes when a graph H is PCA knowing
that H \ {v} is PCA. The Reception Theorem sums up the results we require from [8, 13, 30],
and guides the certifying algorithm that we develop later. Section 4 describes the data structure
that we employ, and the algorithms required to update the partial forbidden subgraph P(Φ).
Section 5 shows the certifying algorithm we use when a vertex is inserted. Section 6 depicts the

4

complete recognition algorithm, including the insertion and removal of vertices and the query
for the recognition of PIG graphs. Section 6 also discusses the authentication problems. Finally,
Section 7 has some further remarks and open problems.

2 Preliminaries
For a graph G, we use V (G) and E(G) to denote the sets of vertices and edges of G, respectively,
and n = |V (G)| and m = |E(G)|. The neighborhood of a vertex v is the set NG(v) of all the
neighbors of v, while the closed neighborhood of v is NG[v] = NG(v) ∪ {v}. If NG[v] = V (G),
then v is a universal vertex, while if NG(v) = ∅, then v is an isolated vertex. Two vertices v and
w are twins when NG[v] = NG[w]. The cardinality of NG(v) is the degree of v and is denoted
by dG(v). We omit the subscripts from N and d when there is no ambiguity about G.

The subgraph of G induced by V ⊆ V (G) is the graph G[V] that has V as its vertex set,
where two vertices of G[V] are adjacent if and only if they are adjacent in G. A clique is a
subset of pairwise adjacent vertices. We also use the term clique to refer to the corresponding
subgraph. An independent set is a set of pairwise non-adjacent vertices. A semiblock of G is a
nonempty set of twin vertices, and a block of G is a maximal semiblock.

The complement of G, denoted by G, is the graph that has the same vertices as G and such
that two vertices are adjacent in G if and only if they are not adjacent in G. Each component
of G is called a co-component of G, and G is co-connected when G is connected. The union of
two vertex-disjoint graphs G and H is the graph G∪H with vertex set V (G)∪ V (H) and edge
set E(G) ∪ E(H). The join of G and H is the graph G + H = G ∪H, i.e., G + H is obtained
from G ∪H by inserting all the edges vw, for v ∈ V (G) and w ∈ V (H).

A graph G is bipartite when there is a partition V1, V2 of V (G) such that both V1 and V2
are independent sets. Contrary to the usual definition of a partition, we allow one of the sets
V1 and V2 to be empty. So, the graph with one vertex is bipartite for us. The partition of
V (G) into V1, V2, denoted by 〈V1, V2〉, is called a bipartition of G. When G is bipartite, G is a
co-bipartite graph and each bipartition of G is a co-bipartition of G.

For v ∈ V (G) and W ⊆ V (G), we say that v and W are: adjacent if N(v) ∩ W 6= ∅,
co-adjacent if W \N(v) 6= ∅, and fully adjacent if W ⊆ N(v). Two disjoint semiblocks B and
W are adjacent if some vertex in B is adjacent to some vertex in W ; observe that B and W
are adjacent if and only if every vertex in B is fully adjacent to W . If B ∪W is a semiblock,
then B is a twin of W . A semiblock B is universal when its vertices are universal, and isolated
when the vertices in B are not adjacent to V (G) \B. For a disjoint family of semiblocks B, the
subgraph G[B] of G induced by B is obtained from G[

⋃
B] by removing all but one vertex from

each semiblock of B. Clearly, G[B] is an induced subgraph of G.

2.1 Orderings and ranges

In this article, an order is a pair (S,R) where S is a finite, and possibly empty, set that admits
an enumeration X = x1, . . . , xn of its elements such that R(xi) = xi+1 for every 1 ≤ i < n and
R(xn) ∈ {x1,⊥} for some undefined value ⊥ 6∈ S. We say that (S,R) is linear when R(xn) = ⊥,
while (S,R) is circular when R(xn) = x1. When (S,R) is linear, x1 and xn are the leftmost
and rightmost elements of (S,R). The enumeration X of S is said to be an ordering of (S,R).

Clearly, every enumeration X of a finite set S defines a linear order and a circular order
(S,R), both of which have X as its ordering. Thus, we say that X is a linear (resp. circular)
ordering to mean that (S,R) is a linear (resp. circular) order. In such a case, we write RX as
a shortcut for R; we omit the superscript X when X is clear by context. For each x ∈ X, the
element R(x) is the right near neighbor of x. When we want to make no distinctions about

5

X being linear or circular, we simply state that X is an ordering. Note, however, that every
ordering is either linear or circular, and it cannot be both at the same time.

Every ordering X = x1, . . . , xn that we shall consider is embedded in some larger circular
order. Hence, all the operations on the indices of X are taken modulo n, regardless of whether
X is linear or circular. We use the standard interval notation applied to orders, though we call
them ranges to avoid confusions with interval graphs. So, the range [xi, xj] of X is the linear
ordering xi, . . . , xj where, as stated before, x1 = xn+1. Similarly, the range [xi, xj) is obtained
by removing the rightmost element of [xi, xj], the range (xi, xj] is obtained by removing the
leftmost element from [xi, xj], and the range (xi, xj) is obtained by removing both the leftmost
and rightmost elements from [xi, xj]. The reverse of X is the ordering X−1 = xn, . . ., x1, where
X−1 is linear if and only if X is linear. We write LX as a shortcut for RX−1 and we omit X
when it is clear from context. Note that L(xi+1) = xi for every 1 ≤ i < n, while L(x1) ∈ {xn,⊥}
equals xn if and only if X is circular. For each x ∈ X, the element L(x) is the near left neighbor
of x. If X and Y = y1, . . ., ym are linear orderings, then X • Y denotes the linear ordering x1,
. . ., xn, y1, . . ., ym.

The range notation that we use for ranges clashes with the usual notation for ordered pairs.
Thus, we write 〈x, y〉 to denote the ordered pair (x, y). The unordered pair formed by x and
y is, as usual, denoted by {x, y}. Also, for the sake of notation, we sometimes write #S to
denote the cardinality of a range S. For any function f , we write f0 to mean the identity and
fk+1(x) = fk(f(x)).

2.2 Contigs, round representations, and proper circular-arc graphs

In this section we present an alternative definition of proper circular-arc graphs that follows
from [8, 16]. These definitions are based on the notion of round representations, which are
combinatorial views of proper circular-arc models; see [1].

A contig is a pair φ = 〈B(φ), Fφr 〉 where B(φ) = B1, . . . , Bn is an ordering of pairwise disjoint
sets, and F φr is a mapping from B(φ) to B(φ) such that:

(i) F φr (Bi) ∈ (Bi, F φr (Bi+1)], for every 1 ≤ i < n,

(ii) if B(φ) is linear, then F φr (Bn) = Bn; otherwise F φr (Bn) ∈ [B1, F
φ
r (B1)], and

(iii) Bi 6∈ (F φr (Bi), F φr (F φr (Bi))] for every 1 ≤ i ≤ n.

We classify each contig φ as either linear or circular according to whether B(φ) is linear or
circular. Note that φ is linear if and only if F φr (Bn) = Bn.

We use a convenient notation for dealing with the range (B,FΦ
r (B)]. For B,W ∈ B(φ), we

write B −→φ W to mean that W ∈ (B,F φr (B)]. Similarly, we write B X−→φ W to indicate
that W 6∈ (B,F φr (B)], and B =−→φW to indicate that either B = W or B −→φ W . With the
−→-notation, we can rewrite conditions (i)–(iii) as follows:

(i) Bi −→φ Bi+1 and Bi+1
=−→φFr(Bi) for every 1 ≤ i < n,

(ii) if φ is linear, then Bn X−→φ B1; otherwise, Bn −→φ B1 and B1
=−→φFr(Bn), and

(iii) either Bi X−→φ Bj or Bj X−→φ Bi for every 1 ≤ i ≤ j ≤ n.

Figure 1 depicts three contigs with their corresponding −→ relation.
The sets in B(φ) are referred to as semiblocks of φ, while V (φ) =

⋃
B(φ) is the set of vertices

of φ. For simplicity, we write Lφ and Rφ as shortcuts for LB(φ) and RB(φ). Recall that Lφ(B)
and Rφ(B) are the left and right near neighbors of B for every B ∈ B(φ). Similarly, we say

6

φ

B4

B3

B2

B1 B5

B(φ) = B1,B2,B3,B4,B5
Rφ = B2,B3,B4,B5, ⊥
Fφr = B3,B4,B5,B5,B5
Uφr = B4,B5, ⊥ , ⊥ , ⊥

ψ
B10

B9

B8

B7

B6

B(ψ) = B6, B7 , B8 , B9 ,B10
Rψ = B7, B8 , B9 ,B10, ⊥
Fψr = B8, B9 , B9 ,B10,B10
Uψr = B9,B10,B10, ⊥ , ⊥

γ

W2 W3

W1 W4

B(γ) = W1,W2,W3,W4
Rγ = W2,W3,W4,W1
F γr = W2,W3,W4,W1
Uγr = W3,W4,W1,W2

Figure 1: Two linear contigs φ and ψ and a circular contig ρ. Each contig • is depicted with
their corresponding −→• relations that corresponds to the semiblock ordering B(•) and the
mappings R• and F •r . The mapping U•r = R•(F •r) is also shown.

that F φr (B) is the right far neighbor of B. The left far neighbor of B is the unique semiblock
F φl (B) such that W −→φ B if and only if W ∈ [F φl (B), B), for every W ∈ B(φ). Two other
mappings are highly used in this manuscript: Uφr (B) = Rφ(F φr (B)) and Uφl (B) = Lφ(F φl (B))
are the unreached right and unreached left semiblocks, respectively. As usual, we do not write
the subscript and superscript φ for L, R, Fl, Fr, Ul, Ur, and −→ when φ is clear by context.
Figure 1 shows the values of R, Fr, and Ur for some contigs. Note that φ is linear if and only
if R(B) = ⊥ (and Fr(B) = B) for some semiblock B.

A round representation is a family Φ = {φ1, . . . , φk} of vertex-disjoint contigs such that either
k = 1 or φi is linear for every 1 ≤ i ≤ k. A straight representation is a round representation
whose contigs are all linear. We extend the notation used for contigs to round representations:

• B(Φ) =
⋃

1≤i≤k B(φi) and V (Φ) =
⋃

1≤i≤k V (φi),

• if B ∈ B(φi), then fΦ(B) = fφi(B) for every f ∈ {L,R, Fl, Fr, Ul, Ur},

• if W ∈ B(φj), then B −→Φ W if and only if i = j and B −→φi
W , and

• B X−→Φ W if and only if j 6= i or B X−→φi
W .

As usual, we omit Φ from the previous notation. Note that Φ is uniquely determined by
the triplet 〈B(Φ), R, Fr〉, thus sometimes we write 〈B(Φ), R, Fr〉 as an alternative definition of
Φ. (Note that B(Φ) is a family of semiblocks and not a family of orderings.) Any (linear)
contig φ can be regarded as the (straight) round representation {φ} = 〈B(φ), Rφ, F φr 〉, thus all
the definitions that follow for round representations hold for contigs as well. We say that a
semiblock B ∈ B(Φ) is a left (resp. right) end semiblock when Fl(B) = B (resp. Fr(B) = B).
Equivalently, B is a left (resp. right) semiblock of Φ if and only if B is the leftmost (resp.
rightmost) of its contig, which happens if and only if L(B) = ⊥ (resp. R(B) = ⊥). We treat ⊥
as a special semiblock outside B(Φ), one for which f(⊥) = ⊥ for every f ∈ {L,R, Fr, Fl}. In
Figure 1, Φ = {φ, ψ} and Γ = {γ} are round representations, whereas {φ, γ} is not. Moreover,
B1 and B6 are the left end semiblocks of Φ, while γ has no end semiblocks. Indeed, a round
representation is straight if and only if it contains end semiblocks.

Each round representation Φ defines a graph G(Φ) that has V (Φ) as it vertex set, where
v ∈ B and w ∈ W are adjacent, for B,W ∈ B(Φ), if and only if B =−→W , or W =−→B. Observe
that: each contig φ ∈ Φ defines a component G(φ) of G(Φ), each semiblock of Φ is a semiblock

7

S3 H2 H3 H5 H4

Figure 2: Complements of the forbidden induced subgraphs for PCA graphs

of G(Φ), and NG(Φ)[v] =
⋃

[Fl(B), Fr(B)] for every vertex v ∈ B of Φ. We say a semiblock of
B(Φ) is isolated or universal according to whether it is isolated or universal in G(Φ). Similarly,
two semiblocks of B(Φ) are adjacent or twins when they are adjacent or twins in Φ. We write
NΦ(B) to denote the set of semiblocks adjacent to B and NΦ[B] = NΦ(B) ∪ {B}; we drop the
subindex Φ as usual. Note that N [B] = [Fl(B), Fr(B)]. In Figure 1, G({γ}) is obtained from a
cycle with four vertices w1, w2, w3, w4 by adding |Wi| − 1 twins of wi, for 1 ≤ i ≤ 4. Also, B3
is universal in {φ} but not in {φ, ψ}.

A graph G is a proper circular-arc (PCA) graph if it is isomorphic to G(Φ) for some round
representation Φ. In such a case, G admits Φ, while Φ represents G. It is a well known fact that
PCA graphs are precisely those graphs that admit a PCA model, as defined in Section 1 [8, 16,
30]. PCA graphs are characterized by a family of minimal forbidden induced subgraphs, as in
Theorem 2.1. There, H∗ denotes the graph that is obtained from H by inserting an isolated
vertex, while Cn denotes the cycle with n vertices. Graph C∗3 is also denoted by K1,3.

Theorem 2.1 ([32]). A graph is a PCA graph if and only if it does not contain as induced
subgraphs any of the following graphs: C∗n for n ≥ 4, C2n for n ≥ 3, C∗2n+1 for n ≥ 1, and the
graphs S3, H2, H3, H4, H5 and S∗3 (see Figure 2).

Proper interval graphs are defined as PCA graphs, by replacing round representations with
straight representations. That is, a graph is a proper interval graph (PIG) graph when it is
isomorphic to G(Φ) for some straight representation Φ. It is well known that PIG graphs are
precisely those graphs that admit PIG models [8, 13]. PIG graphs are also characterized by
minimal forbidden induced subgraphs.

Theorem 2.2 ([22]). A PCA graph is a PIG graph if and only if it does not contain Ck for
k ≥ 4, and S3 as induced subgraphs.

Two semiblocks B,W of a round representation Φ are indistinguishable when Fl(B) = Fl(W)
and Fr(B) = Fr(W) (e.g., B7 and B8 in Figure 1). Clearly, if B −→W , then all the semiblocks
in [B,W] are pairwise indistinguishable in Φ. It is not hard to see that B and W are twins
when they are indistinguishable. We say that Φ and a round representation Ψ are equal when
Φ can be obtained from Ψ by permuting some indistinguishable semiblocks in the contigs of
Ψ. Of course, Ψ is an alternative round representation of G(Φ). A PCA graph can also have
non-equal representations. Indeed, Φ−1 = 〈B(Φ), LΦ, FΦ

l 〉, which is called the reverse of Φ, is a
representation of G(Φ). By definition, RΦ−1 = LΦ, FΦ−1

l = FΦ
r , and Φ−1 = {φ−1 | φ ∈ Φ}.

For B ⊆ B(Φ), we write Φ|B to denote the round representation Ψ such that B(Ψ) = B
and B −→Ψ W if and only if B −→Φ W for every B,W ∈ B. Observe that Ψ is a round
representation of G(Φ)[V (Ψ)], thus Ψ is referred to as the representation of Φ induced by B.
Similarly, the removal of B from Φ is the representation Φ \ B = Φ|(B(Φ) \ B); this time,
G(Φ \ B) = G(Φ) \ (

⋃
B).

We extend the notion of ranges to round representations. Let Bi be a semiblock of a contig
φi of the round representation Φ, for i ∈ {1, 2}. When φ1 = φ2, the range [B1, B2] of Φ is

8

defined as the range [B1, B2] of B(φ1). When φ1 6= φ2, the range [B1, B2] of Φ is defined as the
range [B1, B2] of B(φ1) • B(φ2). That is, [B1, B2] is obtained by traversing φ1 from B1 to its
right end semiblock, followed by the range obtained by traversing φ2 from its left end semiblock
to B2. This non-standard definition is useful to deal with the different possible orderings of the
contigs of Φ; in this case, φ1 would immediately precede φ2. For instance, [B4, B7] of {φ, ψ} in
Figure 1 is B4, B5, B6, B7. The ranges (B,W], [B,W), and (B,W) of Φ are defined analogously.

Our definition of ranges allows us to define some robust versions of L, R, Ul, and Ur. By
definition, any range B = [B1, B2] of Φ is a linear ordering, thus RB(B) is the semiblock that
follows B in B, for any B ∈ [B1, B2). Let φ1 and φ2 be the contigs that contain B1 and B2,
respectively. By definition, B could contain the right end semiblock Br of φ1 followed by the left
end semiblock Bl of φ2. Although RΦ(Br) = ⊥ and LΦ(Bl) = ⊥, the semiblocks RB(Br) = Bl
and LB(Bl) = Br are well defined. The robust version R〈Φ,B〉 of RΦ behaves exactly as RΦ,
with the exception that it maps Br to Bl. Similarly, the robust version L〈Φ,B〉 of LΦ maps Bl
to Br and B to LΦ(B) for B 6= B(Φ) \ {Bl}. The robust versions U 〈Φ,B〉l of UΦ

l , and U
〈Φ,B〉
r of

UΦ
r are defined analogously. For the sake of notation, we write L̂, R̂, Ûl and Ûr when Φ and
B are clear. Thus, if we consider the range [B4, B7] of {φ, ψ} in Figure 1, then R̂(B5) = B6,
L̂(B6) = B5, thus Ûr(B3) = B6, and Ûl(B8) = B5; note, however, that L̂(B1) = R̂(B10) = ⊥.

Before we advance, we describe the rationale behind our definitions of round representations,
ranges, and the robust mappings L̂ and R̂. Our main goal in this article is to insert a new vertex
v into a round representation Φ to obtain a new round representation Ψ. As we shall see, v can
have neighbors in at most two contigs φ1 and φ2 of Φ (possibly φ1 = φ2). To insert v, we must
join the semiblocks in B(φ1) ∪ B(φ2) together with v into a new contig ψ that “replaces” both
φ1 and φ2, i.e., Ψ = (Φ \ {φ1, φ2}) ∪ {ψ}. Since ψ is a contig, B(φ1) ∪ B(φ2) must be somehow
together in Ψ. Prior to the insertion of v, any pair of contigs of Φ could play the role of φ1 and
φ2, thus it is inconvenient to prefix an ordering of the contigs of Φ. As this ordering is absent,
it makes no sense to define the follower (resp. predecessor) of a right (resp. left) end semiblock.
However, once v and N(v) are given, we have access to the neighbor semiblocks in φ1 and φ2.
A priori, there is no way of knowing if φ1 = φ2; all we can query is if v is adjacent to end
semiblocks. Yet, since ψ is a contig, the semiblocks adjacent to v must appear consecutively in
ψ. In other words, N(v) should be a range of [B1, B2] of B(φ1) • B(φ2). We want to make no
case distinctions according to whether φ1 = φ2 or whether [B1, B2] has end semiblocks. This
is the reason why ranges are defined for semiblocks in different contigs, and why the range of
an ordering can include its rightmost element. Finally, to test if v can be inserted, we have to
check some conditions on R(Bm) for Bm ∈ [B1, B2]. However, this semiblock is not well defined
when R(Bm) = ⊥ and, in this case, the role of this semiblock is played by the left end semiblock
of φ2. The robust definition of R̂ allows us to treat the case in which R(Bm) = ⊥ in the same
way as we treat the other case.

Although we need access to B for the robust versions to be efficient, there is one case in
which specifying B is not required. If Φ = {φ1, φ2} for (possibly equal) contigs φ1, φ2, then
R̂(Br) = Bl and L̂(Bl) = Br for the left end semiblock Bl of φi and the right end semiblock
Br of φj (if existing), i, j = {1, 2}, while R̂(B) = R(B) and L̂(B) = L(B) for every other
semiblock. In this case, we refer to Φ is being robust.

By definition, each contig φ of a straight representation Φ is “equivalent” to a range [Bl, Br]
of Φ, where Bl is a left end semiblock, Br is a right end semiblock, and (Bl, Br) has no end
semiblocks. The term “equivalent” employed here means that {φ} equals Φ|[Bl, Br]; moreover,
Φ|[Bl, Br] is a round representation of some component of G′ of G(Φ). We refer to [Bl, Br]
simply as a contig range of Φ that describes G′. The following observation then follows.
Observation 2.3. If Φ is a straight representation of a graph G, then every component of G
is described by a contig range.

9

B4
B3

B2

B1

B8

B7

B6

B5

B1B6

B2
B4

B7

B8

B3

B5

Φ φ1 φ2 φ3

Figure 3: A round representation Φ with three co-contigs φ1, φ2, and φ3 (gray lines are used to
depict the edges that are implied by black edges). The left co-end semiblocks of Φ are B1, B2,
B3, B6, and B7, while its right co-end semiblocks are B1, B2, B5, B6, and B8. Note that each
co-contig pair other than 〈B2, ∅〉 describes a co-component of G(Φ).

In a similar way, the co-components of co-bipartite PCA graphs are described by co-contig
pairs (see Figure 3). Let Φ be a round representation of a co-bipartite graph G; observe Φ
is robust. Say that a non-universal semiblock B ∈ B(Φ) is a left co-end semiblock of Φ if
B = Û2

r (B); similarly, B is a right co-end semiblock of Φ when B = Û2
l (B). A co-contig range

is a range [Bl, Br] such that Bl is a left co-end semiblock, Br is a right co-end semiblock, and
(Bl, Br) has no co-end semiblocks. As it is shown in [16, 30], B = [Ûr(Bl), Ûl(Br)] is also a co-
contig range for any co-contig range B = [Bl, Br]. Moreover, G′ = G[

⋃
(B∪B)] is a co-component

of G, and 〈
⋃
B,

⋃
B〉 is a co-bipartition of G′. The pair 〈B,B〉 is said to be a co-contig pair of

Φ that describes G′, while Φ|(B ∪ B) is a co-contig of Φ.

Theorem 2.4 ([16, 30]). If Φ is a round representation of a co-bipartite graph G, then Φ is
robust and every co-component of G with at least two vertices is described by a co-contig pair.

Our definition of co-contig pairs above explicitly excludes universal semiblocks. Clearly,
each vertex in a universal semiblock induces a co-component of G. We say that a universal
semiblock B is both a left co-end and right co-end semiblock. Hence, B = [B,B] is a co-contig
range, 〈B, ∅〉 is a co-contig pair that describes G′ = G[

⋃
B], and Φ|{B} is a co-contig of Φ.

As defined so far, co-contigs only represent co-bipartite graphs. For the sake of generality,
we say that a round representation Φ is a co-contig of Φ when G(Φ) is co-connected. Note that,
consequently, we may not assume that co-contigs are robust or have co-contig ranges. Also, to
make clear the parallelism between contigs and co-contigs, we use lowercase Greek letters to
name the co-contigs of Φ when G(Φ) needs not be co-connected.

3 The Reception Theorem: a certification roadmap
Receptive pairs are the main concept used in [30] for dealing with the insertion of a non-
isolated vertex v into G. In simple terms, a pair of semiblocks is receptive when it witnesses
that H = G ∪ {v} is PCA. Its definition, however, depends on whether v belongs to an end
semiblock or not. Suppose H is represented by a round representation Ψ and {v} is a semiblock
of Ψ. Let Bl = Fl({v}) if {v} is not a left end semiblock, and Bl = R({v}) otherwise. Similarly,
Br = Fr({v}) if {v} is not a right end semiblock, while Br = L({v}) otherwise. By definition,
Φ = Ψ \ {v} is a round representation of G. The pair 〈Bl, Br〉 is referred to as being receptive
in Φ, while Ψ is the {v}-reception of 〈Bl, Br〉 in Φ. Strictly speaking, v plays no role when
deciding if a pair is receptive; 〈Bl, Br〉 is receptive if and only if G ∪ {w} is a PCA graph for
any w with N(w) = N(v) =

⋃
[Bl, Br] (recall v is not isolated). When applied to H and v, we

10

{v}

R(Br)

Br

L(Bl) = ⊥

Bl = Bm

{v}

L(Bl) R(Br) = ⊥

Bl Bm = Br

{v}

R̂(Bm)

R(Br)

Br

L(Bl)

Bm

Bl

(wita) (wita) (witb)

Figure 4: The possibilities for a semiblock Bm to witness that 〈Bl, Br〉 is receptive. A dashed
edge from X to Y means that X X−→ Y , while X −→ Y is possible when the edge is missing
(and Φ is a round representation). Also, some of the depicted semiblocks could be equal. The
corresponding {v}-receptions are drawn in gray.

obtain that H is a PCA graph if and only if G admits a round representation Φ with a receptive
pair 〈Bl, Br〉 such that N(v) =

⋃
[Bl, Br].

As defined, the concept of receptive pairs applies to any round representation. Yet, the
dynamic algorithm deals with a rather restricted subset of round representations. Say that a
semiblock B of a round representation Ψ is a block when B is a block of G(Ψ). If every semiblock
of Ψ is a block, then Ψ is a round block representation and all its (co-)contigs are referred
to as block (co-)contigs. When Ψ is a round block representation, the round representation
Φ = Ψ\{v} is almost a block representation. In fact, it can be easily observed that {L(Bl), Bl}
and {Br, R(Br)} are the unique possible pairs of indistinguishable semiblocks of Φ, while Φ has
at most two universal semiblocks, one in [Bl, Br] and the other outside [Bl, Br]. For the sake of
notation, we refer to Φ as v-receptive when it contains a receptive pair 〈Bl, Br〉 such that:

• N(v) =
⋃

[Bl, Br], and

• no pair of semiblocks in B(Φ) \ {Bl, Br} are indistinguishable.

Theorem 3.1. Let H be a graph such that v ∈ V (H) is not isolated. Then, H is PCA if
and only if H \ {v} admits a round representation Φ that is v-receptive. Furthermore, the
{v}-reception Φ is a round representation of H.

The above observation is quite straightforward, but it tells us little about the v-receptive
representations of G. In [8, 13, 30], tools for efficiently finding and transforming Φ into a round
representation of H are developed. The Receptive Pair Lemma of [30], that generalizes some
results in [8, 13], is one of such tools. For the sake of simplicity, we present a unified view
of [8, 13, 30].

Let Φ be a round representation andBl 6= Br be semiblocks of B(Φ). A semiblockBm ∈ B(Φ)
witnesses that 〈Bl, Br〉 is receptive in Φ when (see Figure 4):

(wita) Bm is an end semiblock, Bl =−→Bm, and Bm =−→Br, or

(witb) Bl =−→Bm, Bm X−→ R(Br), L(Bl) X−→ R(Bm), and R̂(Bm) =−→Br.

The essence of the insertions methods in [8, 13, 30] is captured in the next lemma.

Lemma 3.2 (Receptive Pair Lemma [8, 13, 30]). Let φ1, φ2 be two (possibly equal) contigs that
contain the semiblocks Bl and Br, respectively. Then, 〈Bl, Br〉 is receptive in {φ1, φ2} if and
only if Bm ∈ [Bl, Br] witnesses that 〈Bl, Br〉 is receptive in {φ1, φ2}.

11

The Receptive Pair Lemma can be proved with not much effort by following the definitions
(see [30] and Figure 4). Indeed, if Bm witnesses that 〈Bl, Br〉 is receptive, then a {v}-reception
is obtained by: inserting {v} immediately to the right of Bm if (witb) or Bm 6= Bl; or inserting
{v} immediately to the left of Bm = Bl if (wita). On the other hand, if Ψ is a {v}-reception of
〈Bl, Br〉, then either L({v}) or R({v}) (if L({v}) = ⊥) witnesses that 〈Bl, Br〉 is receptive. The
Receptive Pair Lemma is an asymmetric tool: it suffices to find one v-receptive representation
of G to claim that H is PCA, while all the round representations of G must be discarded before
claiming that H is not PCA. Moreover, a round representation of H is available when H is
PCA, whereas no minimally forbidden is found when H is not PCA. The Reception Theorem
combines Theorem 3.1 with a slight generalization of the Receptive Pair Lemma that takes
N(v) into account. For a better exposition, we consider only the case in which H is connected.
Nevertheless, conditions (rec1)–(rec3) are general.
Corollary 3.3 (Reception Theorem). Let H be a connected graph with a vertex v. Then, H is
PCA if and only if H \ {v} admits a round representation Φ that contains two semiblocks Bl,
Br such that:
(rec1) N(v) =

⋃
[Bl, Br],

(rec2) no pair of semiblocks in Φ \ {Bl, Br} are indistinguishable,

(rec3) Bm ∈ [Bl, Br] witnesses that 〈Bl, Br〉 is receptive in Φ.
Technically speaking, (rec1)–(rec3) are statements dealing with pairs of semiblocks. For the

sake of simplicity, we say that a round representation Φ satisfies a subset P of (rec1)–(rec3)
when Φ has two semiblocks Bl and Br that simultaneously satisfies all the conditions in P .

Despite the simplicity of the Reception Theorem, the problem of finding a v-receptive rep-
resentation is not an easy task, specially when the time constraints are tight. Most of the effort
in [8, 13, 30] is spent on finding such a v-receptive representation efficiently. The problem of
finding a minimally forbidden is mostly, but not completely, ignored in these articles. In fact,
the Reception Theorem made its first appearance in [8], where the authors consider a rather
restricted case in which G is PIG and both G and H are connected. The advantage of this case
is that G admits only two contigs, namely γ and γ−1. By (rec1), N(v) must be a range of γ,
which implies that there are exactly two contigs φ and φ−1 that can satisfy (rec1) and (rec2).
In their proof of the Reception Theorem, Deng et al. [8] exhibit a minimally forbidden of H
when either N(v) is not consecutive in γ or φ does not satisfy (rec3). Although it is not explicit
in [8], an O(n) time algorithm for obtaining such a minimally forbidden, when γ and N(v) are
give as input, follows as a by-product. It is not hard to extend this certified algorithm to the
case in which the PIG graph G can be disconnected.

Our aim in the present manuscript is to design a certifying and dynamic algorithm for the
recognition of PCA graphs, following the framework discussed in Section 1. Thus, we ought
to compute a minimally forbidden each time an insertion of a vertex v fails. The main idea is
to prove the Reception Theorem following the same path as Deng et al. That is, we show a
minimally forbidden of H when no round representation of H \ {v} is v-receptive. However, we
spend O(d(v) + ep+) time to build the minimally forbidden.

4 The data structure
As anticipated, the algorithm keeps two differentiated data structures. One implements a round
block representation to witness that G is PCA, while the other represents an induced path of
G that is extended to a negative witness when the insertion of a vertex fails. The following
sections present the data types involved in the dynamic algorithm.

12

4.1 Contigs

The data structure we use to implement contigs is the same as discussed in [30]. For complete-
ness, we describe its interface as an abstract data type; for implementations details see [30].

Each contig φ presents itself as the collection of semiblocks B(φ), where each B ∈ B(φ)
stores its set of vertices. Also, each B ∈ B(φ) and each v ∈ B allow the user to store some
additional data. The internal structure and the semiblocks and vertices of φ are exclusively
owned by φ, thus the modifications applied on φ have no impact on the data structures of other
contigs. Moreover, a user cannot directly access φ, a semiblock B ∈ B(φ), or a vertex v ∈ B.
Instead, a semiblock (resp. vertex) pointer B̃ (resp. ṽ) associated to φ must be employed to
access B (resp. v). For simplicity, we also say that φ is referenced by B̃ (resp. ṽ). The pointer
B̃ is aware of the internal structure of φ, thus it can be used used to manipulate both B and φ.
However, B̃ knows nothing about the other semiblock pointers associated to φ or the semiblocks
in B(φ) \ {B}. Hence, there is no way to answer, in O(1) time, if B̃ is associated to the same
contig as other pointer W̃ . (Roughly speaking, φ is similar to doubly linked lists in which the
semiblocks play the role of nodes and semiblock pointers are pointers to the nodes.)

The following functions that operate on contigs and semiblocks are provided in [8, 13, 30].
As usual, we use lower case Greek letters for contigs, capital Roman letters for semiblocks, and
tildes to indicate pointers.

newContig() creates a new contig that contains only one block B = {v} and returns the
pointers to B and v. Complexity: O(1) time.

vertices(B̃) returns (an iterator to) {ṽ | v ∈ B}. Complexity: O(1) time.

semiblock(ṽ) returns a pointer to the semiblock that contains v. Complexity O(1) time.

f(B̃) returns a semiblock pointer to f(B) for f ∈ {L,R, Fl, Fr, Ur, Ul}. Complexity: O(1) time.

[B̃1, B̃2] returns a list of semiblocks pointers that represents the range [B1, B2] of {φ1, φ2},
where φi is the contig referenced by B̃i for i ∈ {1, 2}. The ranges (B̃1, B̃2], [B̃1, B̃2) and
(B̃1, B̃2) work similarly. Complexity: O(#[B1, B2]) time.

receptive(B̃l, B̃r) is true when 〈Bl, Br〉 is receptive in {φ1, φ2}, where φ1 and φ2 are the
contigs referenced by B̃l and B̃r, respectively. Complexity: O(#[Bl, Br]) time.

reception(B̃l, B̃r) transforms φ1 and φ2 into the {v}-reception ψ of 〈Bl, Br〉, where φ1 and
φ2 are the contigs referenced by B̃l and B̃r, respectively. Returns a pointer to {v} ∈ B(ψ).
Requires 〈Bl, Br〉 to be receptive in {φ1, φ2}. Complexity: O(#[Bl, Br]) time.

remove(B̃) transforms the contig ψ referenced by B̃ into the contigs of {ψ} \ {B} and the
contig γ whose only semiblock is B. Note that {ψ} \ {B} has either one or two contigs,
thus at most three contigs are generated. Complexity: O(#[Fl(B), Fr(B)]) time.

separate(B̃, W) transforms the contig γ referenced by B̃ into a contig φ representing G(γ)
that is obtained by splitting B into two indistinguishable semiblocks B \W and W in
such a way that Rφ(W) = Rγ(B), Lφ(W) = B \W , and Lφ(B \W) = Lγ(B). The other
semiblocks of γ are not affected by this operation. It requires W ⊆ B, and it has no
effects when either W = B or W = ∅. Note that W is not a semiblock pointer, but a set
of vertex pointers. Complexity: O(|W |) time. (See Figure 5.)

separate(W, B̃) does the same as separate(B̃, B \W). Complexity: O(|W |) time.

13

Ul(B) Ur(B)

Fr(B)
B

Fl(B)

Ur(B)

Fl(B)

Ul(B)

B W

Fr(B)
B1

B4L(B1)

L(B3)

L(B4)

B3

B2

L(B2)

L̂(Bi)

L̂(Bi+2)

Bi+2

Bi

γ φ ψ φi

Figure 5: Effects of some operations on contigs: γ equals compact(B̃) for B ∈ B(φ); φ equals
separate(B̃, W) for B ∈ B(γ); ψ equals join(B̃1, B̃2) for B1 ∈ φ1 and B2 ∈ φ2; and {φi, φ2}
equals split(B̃1, B̃2) for B1, B2 ∈ ψ. Dashed lines represent non-edges, while missing lines
represent edges that could be present of absent. Note that some blocks may be equal, while B3
(resp. B4) does not exist when B1 (resp. B2) is universal.

compact(B̃) transforms the contig φ referenced by B̃ into a contig γ representing G(φ) that
is obtained by joining the indistinguishable semiblocks B and R(B) into one semiblock
B ∪ R(B) in such a way that Lγ(B ∪ R(B)) = Lφ(B) and Rγ(B ∪ R(B)) = Rφ(B). The
other semiblocks of φ are not affected by this operation. It has no effects when B and
R(B) are not indistinguishable. Complexity: O(min(|B|, |R(B)|) time. (See Figure 5.)

join(B̃1, B̃2) transforms φ1 and φ2 into a new contig ψ that represents G(φ1)+G(φ2), where
φi is the contig referenced by B̃i for i ∈ {1, 2}. The semiblocks of ψ appear as in the
ordering [B1, F

φ1
r (B1)] • [B2, F

φ2
r (B2)] • (F φ1

r (B1), B1) • (F φ2
r (B2), B2). It has an unde-

fined behavior when either 1. B1 or B2 is not a left co-end block or 2. B̃1 and B̃2 are
associated to the same contig. Time complexity: O(u) time, where u is the number of
universal semiblocks in ψ. (See Figure 5.)

split(B̃1, B̃2) transforms the contig ψ referenced by B̃1 and B̃2 into two co-contigs φ1 and
φ2 in such a way that G(ψ) = G(φ1) + G(φ2). The semiblocks of φ1 appear as in the
ordering [B1, B2)• (Fψr (B1), Fψr (B2)], while the semiblocks of φ2 appear as in the ordering
[B2, F

ψ
r (B1)] • (Fψr (B2), B1). It has an undefined behavior when either 1. B1 or B2 is not

a left co-end block or 2. B̃1 and B̃2 are associated to different contigs. Note that this
operation requires B1 −→ B2; if this is not the case, then B2 −→ B1, thus the operation
works as if the parameters where inverted. Time complexity: O(u) time, where u is the
number of universal semiblocks in ψ. (See Figure 5.)

Several of the above operations transform a contig φ into a new contig ψ. This means that the
physical structure of φ is changed to obtain ψ, thus φ ceases to exist as such. The semiblock
pointers associated to φ are not invalidated, though; instead, they get associated to ψ. We
remark, also, that split(B1, B2) reverses the effects of join(B1, B2), but the converse is not
true in general. The subtle problem is that split outputs co-contigs, and co-contigs involve
two contigs when they represents disconnected graphs (see Figure 3 (φ1) and Figure 5 (φi)).
We deal with this problem in Section 4.3.

4.2 Semiblock paths

Together with each contig φ, the dynamic algorithm keeps a path of φ that is used for the
generation of negative witnesses. Say that a semiblock B ∈ B(φ) is long when Fr(B) −→ Fl(B);

14

those semiblocks that are not long are referred to as short. A semiblock path P of φ is an ordering
B1, . . . , Bk of a subset of B(φ) such that:

• Bi −→ Bi+1 and Bi X−→ Bj for every 1 ≤ i < k and j 6= i+ 1.

• If φ is linear, then P is linear and B1 and Bk are the end semiblocks of φ.

• If φ is circular, then P is circular and Bk −→ B1 and Bk X−→ B2.

• If φ contains a long semiblock, then k = 3.

Each semiblock path P(φ) = B1, . . . , Bk is implemented with a doubly linked list of semiblock
pointers B̃1, . . . , B̃k; the list is circular if and only if P(φ) is circular. Conversely, each semiblock
B ∈ B(φ) has a path pointer to the position that B̃ occupies in P(φ); this is a null value when
B 6∈ P(φ). Thus, O(1) time is enough to detect if B belongs P(φ), to access and remove B̃
from P(φ), and to insert new semiblock pointers in P(φ) to the left or the right of B̃.

We now show how to efficiently update P(φ) (and the path pointers of φ) each time a contig
φ is updated. As discussed in the previous section, there are eight operations that change
the structure of a contig: newContig, leftSeparate, rightSeparate, compact, join, split,
reception, and remove. Updating P(φ) in O(1) time is trivial for the first four operations.
Regarding join and split, note that the input and output contigs represent co-bipartite graphs.
Thus, the semiblock paths of the input contigs can be erased in O(1) time because they have at
most four semiblock pointers. After the semiblock paths are erased, we build the new semiblock
paths from scratch as in the next lemma.

Lemma 4.1. Let Bl be a left co-end semiblock of a contig φ. If a semiblock pointer to Bl is
given, then a semiblock path can be computed in O(1) time.

Proof. First suppose φ is a linear contig and observe that, in this case, Wl = F 3
l (B) is the

left end semiblock of φ. Indeed, if Wl is not a left end semiblock, then Fl(Wl), F 2
l (Bl), and

Bl are pairwise non-adjacent semiblocks, which contradicts the fact that G(φ) is co-bipartite.
Similarly, F 3

r (Wl) is the right end semiblock of φ. Thus, F 0
r (Wl), . . . , F ir(Wl) is a semiblock

path, where 0 ≤ i ≤ 3 is the minimum such that F ir(Wl) is a right co-end semiblock. Clearly,
this semiblock path can be computed in O(1) time.

Now suppose φ is circular and let Br = Fr(Bl), Wl = Ur(Bl) and Wr = Fr(Wl). Recall that
Wl is a left co-end block while Br and Wr are right co-end blocks. If Fl(Bl) = Wl, then Bl
is long and Bl, Br, Wl is a semiblock path. Otherwise, [Bl, Br] and [Wl,Wr] is a partition of
B(φ). Moreover, Br −→Wl and Wr −→ Bl because φ is circular. We consider two cases:

Case 1: φ contains a semiblock path B1, B2, B3. Note that at least one of B1, B2, B3 belongs
to [Bl, Br] (resp. [Wl,Wr]); say B1 ∈ [Bl, Br] and B3 ∈ [Wl,Wr]. If B2 ∈ [Bl, Br],
then Br −→ B3 and B3 −→ Bl, which implies that Bl, Br, Fr(Br) is a semiblock path.
Similarly, if B2 ∈ [Wl,Wr], then Wl, Wr, Fr(Wr) is a semiblock path.

Case 2: φ contains no semiblock B such that Fr(B) −→ Fl(B). In this case, Bl, Br, Wl, Wr

is a semiblock path.

Note that Fr(Br) =−→Wr, thus Bl, Br, Fr(Br) is a semiblock path if and only if F 2
r (Br) 6= Wr.

Similarly, Wl, Wr, Fr(Wr) is a semiblock path if and only if F 2
r (Wr) 6= Br. By Cases 1 and 2,

we can compute a semiblock path in O(1) time.

In the case of reception(B̃l, B̃r) we have to modify both P(φ1) and P(φ2) to obtain
P(ψ), where φ1 and φ2 are the contigs referenced by B̃l and B̃r, and ψ is the {v}-reception

15

of 〈Bl, Br〉. This update is applied after reception is completed, thus we have access to a
semiblock pointer of {v}. The following lemma shows how to obtain P(ψ) spending no more
time than the required for reception.

Lemma 4.2. Let φ1 and φ2 be two (possibly equal) contigs such that {φ1, φ2} contains a re-
ceptive pair 〈Bl, Br〉 for Bl ∈ B(φ1) and Br ∈ B(φ2), and ψ be the {v}-reception of 〈Bl, Br〉 in
{φ1, φ2}. Given a semiblock pointer to B = {v} in ψ, it takes O(#[Bl, Br]) time to transform
the semiblocks paths P(φ1) and P(φ2) into a semiblock path of ψ.

Proof. Recall that, by definition, N [B] = [Bl, Br] and {φ1, φ2} = {ψ} \ {B}. Consider the
following alternatives.

Alternative 1: B is an end semiblock of ψ. Suppose B is the left end semiblock as the other
case is analogous. By definition, φ1 = φ2, Bl = R(B) is the left end semiblock of φ1, and
Br = Fr(B). Traversing [Bl, Br] in ψ, we can check if B −→ B2 for the semiblock B2 that
follows Bl in P(φ1). If affirmative, then a semiblock path of ψ is obtained by replacing
Bl with B in P(φ1); otherwise, a semiblock path of ψ is obtained by inserting B before
B1 in P(φ1).

Alternative 2: B is not an end block of ψ, thus B ∈ (Bl, Br) in ψ, Bl = Fl(B), and Br =
Fr(B). Traversing [Bl, B), we can check if Fr(Br) ∈ [Bl, B). If affirmative, then B is long
and B, Br, Bl is a semiblock path. Suppose, from now on, that Br X−→ Bl. By traversing
[Bl, B) we can find the leftmost semiblock Ba and the rightmost semiblock Bb of P(φ1)
such that Ba −→ B and Bb −→ B (possibly Ba = Bb). Similarly, we can obtain the
leftmost semiblock Bc and the rightmost semiblock Bd of P(φ2) such that B −→ Bc and
B −→ Bd. Note that these semiblocks exist because ψ is a contig. If Fψr (Bb) 6= B, then
Bb is not an end semiblock of φ1, thus φ1 = φ2 and Bb −→ Bc; consequently, P(φ1) is
a semiblock path of P(ψ). Otherwise, Bb is the right end semiblock of φ1 and Bc is the
leftmost end semiblock of φ2 (perhaps φ1 = φ2). Then, the ordering obtained from P(φ1)
by inserting B between Ba and Bd (removing Bb if Ba 6= Bb and Bc if Bc 6= Bd) is a
semiblock path of ψ.

Using the path pointers, we can apply all the modifications required on P(φ1) and P(φ2) in
O(1) time. We conclude, therefore, that O(#[Bl, Br]) time suffices to transform P(φ1) and
P(φ2) into a semiblock path of ψ.

Finally, to update P(ψ) after remove(B̃), where ψ is the contig referenced by B̃, we have
to revert the process done in the previous lemma. After the completion of remove, we obtain
at most three contigs, namely φ1, φ2, and γ, where φ1 is referenced by L(B̃), φ2 is referenced
by R(B̃), and γ is referenced by B̃. The computation of P(γ) is trivial; to compute P(φ1) and
P(φ2) we apply the following lemma before invoking remove.

Lemma 4.3. Let B be a semiblock of a contig ψ. Given a semiblock pointer to B, it takes
O(#[Fl(B), Fr(B)]) time to transform P(ψ) into {P(φ1),P(φ2)}, where {φ1, φ2} is the family
of contigs of {ψ} \ {B}.

Proof. If B 6∈ P(ψ), then φ1 = φ2 and P(ψ) is a semiblock path of φ1. Suppose, then, that
B ∈ P(ψ) and consider the following alternatives.

Alternative 1: B is an end semiblock of ψ. Suppose B is a left end semiblock, as the other
case is analogous, and note that φ1 = φ2 and Bl = R(B) is the leftmost end semiblock of
φ1. Let P be the ordering obtained by replacing B with Bl in P(φ1). In O(1) time we
can obtain the first two semiblocks B2 and B3 that follow B in P(φ1). If Fr(Bl) 6= B3,

16

then P is a semiblock ordering of φ1; otherwise, the ordering obtained by removing B2
from P(φ1) is a semiblock ordering of φ1.

Alternative 2: B is not an end semiblock of ψ, thus B ∈ (Bl, Br) for Bl = Fl(B) and Br =
Fr(B). First we search if φ1 has a long semiblock. This happens only if |P(ψ)| = 3,
in which case φ1 = φ2, Br −→ Bl, and, thus, F 2

r (W) ∈ [Bl,W] for every W ∈ (B,Br].
Marking the position of every semiblock in [Bl, Br], we can check inO(1) time if (F φ1

r)2(W)
appears after Fl(W) in [Bl, Br] for some W ∈ (B,Br]. If affirmative, then W is long and
Fl(W), W , Fr(W) is a semiblock path of φ1; otherwise, φ1 has no long semiblocks. When
φ1 has no long semiblocks, we traverse [Bl, Br] to check if 1. Ba −→ R(B), 2. L(B) −→ Bb,
3. R(B) −→ Bb+1, and Ba−1 −→ L(B), where Ba−1, Ba, Bb, and Bb+1 are the semiblocks
of P(ψ) such that Ba−1 −→ Ba, Ba −→ B, B −→ Bb, and Bb −→ Bb+1 (unless L(Ba) = ⊥
or R(Bb) = ⊥ in which case Ba−1 = ⊥ and Bb+1 = ⊥, respectively). Replacing B with
R(B) if 1. and removing Bb if 3., or replacing B with L(B) if 2. and removing Ba if 4.,
we obtain a semiblock path of φ1 = φ2. If neither 1. nor 2. holds, then we transform
P(ψ) into the ordering P that is obtained by first replacing B with L(B), R(B) and then
removing Bb if 3. and Ba if 4. If L(B) −→ R(B) or P(ψ) is circular, then P is a semiblock
path of φ1 = φ2; otherwise, φ1 6= φ2, thus we split P into the suborderings that have L(B)
as rightmost and R(B) as leftmost to obtain semiblock paths of φ1 and φ2, respectively.

4.3 Round representations

To implement a round representation Φ we use a pair of doubly linked list {Φ̃, Φ̃−1} and a
connectivity structure (see below). For each φ ∈ Φ, a semiblock pointer associated to φ (resp.
φ−1) is kept in Φ̃ (resp. Φ̃−1). (The semiblock B̃ of φ plays the same role as the pointer to
the first node in a linked lists when implementing the abstract data type; that is, B̃ is used to
access φ.) Thus, both physical contigs φ and φ−1 are stored for each contig φ ∈ Φ. The reason
why φ−1 is kept is to avoid the cost of reversing φ. If B̃ ∈ Φ̃ ∪ Φ̃−1 is associated to φ, then
B ∈ P(φ); moreover, B is the left end semiblock of φ when φ is linear. Conversely, B keeps
a contig pointer to the position of B̃ inside Φ̃ ∪ Φ̃−1. The contig pointer is used, among other
things, to remove B̃ from Φ̃∪ Φ̃−1 when its associated contig is joined to some other contig. Of
course, this pointer has a null value when B is not referenced by a pointer in Φ̃∪ Φ̃−1. Finally,
each vertex v of a contig φ ∈ Φ keeps a reverse pointer to its incarnation in φ−1.

Recall that all the contigs of a round representation Φ are linear when |Φ| > 1; this invariant
must be satisfied by the data structure. Thus, we need some way to detect if an operation on a
linear contig φ yields a circular contig ψ. Actually, the only operation in which we are ignorant
about the linearity of ψ is when we compute the {v}-reception of 〈Bl, Br〉. As it is shown in [13],
the only possibility for ψ to be circular is when [Bl, Br) contains the right end semiblock of φ.
To detect this case, we need to know if two end semiblocks belong to the same contig. As it
was proved in [13], the connectivity problem is not solvable in O(1) time when both insertions
and removal of semiblocks are allowed. Thus, a connectivity data structure is kept to solve this
problem. Its interface provides the following operations:

create() returns an empty connectivity structure. Complexity: O(1) time.

add(B̃) adds B̃ to the connectivity structure. Complexity: O(ep+) time.

remove(B̃) removes B̃ from the connectivity structure. Complexity: O(ep−) time.

17

opposite(B̃) returns a pointer the other end semiblock of the contig that contains B if B is
an end semiblock, or ⊥ if B is not an end semiblock. Complexity: O(ep+) time.

There are three flavors of the structure according to the operations supported by the main
algorithm. In the incremental structure O(ep+) = O(1) and O(ep−) = O(n), in the decremental
structure O(ep+) = O(n) and O(ep−) = O(1), and in the fully dynamic structure O(ep+) =
O(ep−) = O(logn) [13, 30].

Let B1 and B2 be semiblocks of a round representation Φ that belong to the contigs φ1
and φ2 of Φ, respectively. To traverse the range [B1, B2] of {φ1, φ2}, we have to provide a
semiblock pointer B̃i to Bi associated to φi, for i ∈ {1, 2}. If, in turn, the semiblock pointer B̃1
is associated to φ−1

1 , we obtain the range [B1, B2] of {φ−1
1 , φ2}. Thus, to describe the effects of

an algorithm, we must specify the contig to which a pointer is associated. We say that B̃ has
type Φ when B̃ is associated to some contig φ ∈ Φ. Those pointers of type Φ are sometimes
referred to as Φ-pointers. Of course, every semiblock pointer has type either Φ of Φ−1. Each
semiblock pointer to B of type Φ−1 is called a reverse of B̃. We recall that there is no efficient
way to know the type of semiblock pointer and, in general, the type is not important in the
implementation. The purpose of this terminology is to aid in the specification of the different
operations.

To avoid dealing with the pointers of round representations, we implement several operations
that define an interface similar to the one used for contigs. As usual, we use capital Greek letters
for round representations, capital Roman letters for semiblocks, and tildes for pointers.

straight(Φ) returns true if Φ is straight. For the implementation we test if a pointer in Φ̃
references an end semiblock. Complexity: O(1) time.

newContig(Φ) adds to Φ a new contig whose only block is B = {v}, and returns ṽ. Requires
Φ to be straight. For the implementation, we add a new physical contig to both Φ̃ and
Φ̃−1. Complexity: O(1) time.

reversed(B̃) returns a reverse of B̃. For the implementation, we call semiblock(w̃) where w̃
is the reverse pointer of any v ∈ B. Complexity: O(1) time.

type(B̃) returns the type of B̃, i.e., a pointer to either Φ or Φ−1. Requires B to be an end
semiblock. Let φ be the contig referenced by B̃. For the implementation we access the
representation pointer of the physical semiblock referenced by either B̃ (if B is a left end
semiblock in φ) or a reverse of B̃ (if B is a right end semiblock in φ−1). Complexity: O(1)
time.

reverse(B̃) reverses the contig of Φ that contains B. Requires B to be an end semiblock.
Applying reversed if required, assume B is a left end semiblock of a contig φ. Moreover,
suppose, w.l.o.g., that B̃ ∈ Φ̃, as the other case is analogous. For the implementation,
we use the contig and round pointers of B to move B̃ from Φ̃ to Φ̃−1. Then, we use the
connectivity structure together with reversed to obtain a Φ−1-pointer W̃ to the right
end semiblock of φ. Finally, we move W̃ from Φ̃−1 to Φ̃. Complexity: O(ep+) time.

receptive(B̃l, B̃r) takes two Φ-pointers and returns true if 〈Bl, Br〉 is receptive in Φ. Let
φ1 and φ2 be the contigs referenced by B̃l and B̃r, respectively. For the implementation,
observe that 〈Bl, Br〉 is receptive if and only if 〈Bl, Br〉 is receptive in {φ1, φ2} and either
the {v}-reception ψ of 〈Bl, Br〉 is linear or φ1 = φ2 is the unique contig in Φ. Note that ψ
is linear if and only if [Bl, Br) has no right end semiblocks or W and R̂(W) lie in different
contigs, where W ∈ [Bl, Br) a right end semiblock. If W ∈ [Bl, Br) is an end semiblock,
then we can check if φ1 is the unique contig in Φ using the representation pointer of R̂(W).

18

To check if W and R̂(W) lie in different contigs, a query to the connectivity structure is
required. Complexity O(#[Bl, Br] + ep+) time.

reception(B̃l, B̃r) takes two Φ-pointers and updates Φ into the {v}-reception Ψ of 〈Bl, Br〉.
Requires 〈Bl, Br〉 to be receptive in Φ, and returns a pointer to v. For the implementation,
suppose φ1 and φ2 are the contigs referenced by B̃l and B̃r, respectively. The first step is
to apply reception(B̃l, B̃r) to transform φ1 and φ2 into a contig ψ that represents the
v-reception of {φ1, φ2}. Let Wl = Rψ({v}), and observe that Wl is a left end block of Φ if
and only Fl(Wl) = {v}. In this case, we access the contig pointer of Wl to remove it from
Φ̃. Similarly, if {v} is a left end semiblock of Ψ, then we add a semiblock pointer to {v} in
Φ and we update the contig pointer of {v}. Finally, we test if Φ̃ = ∅. This happens when
φ1 = φ2 is linear and ψ is circular, in which case {v} belongs to P(ψ). Thus, again, we
add a pointer to {v} in Φ̃. Once the update is completed, we apply the same procedure
to reversed(B̃r) and reversed(B̃l) to update Φ̃−1. Finally, we update the connectivity
structure. Complexity: O(#[Bl, Br] + ep+) time.

remove(Ψ, B̃) transforms Ψ into a round representation Φ of G(Ψ) \B. Requires B̃ to be of
type Ψ′ ∈ {Ψ,Ψ−1}. For the implementation, we first call remove(B̃) to transform the
contig ψ ∈ Ψ′ referenced by B̃ into two (possible equal) physical contigs φ1 and φ2, where
φ1 contains L̂(B). The next step depends on whether the contig pointer of B is null or
not. In the latter case, we have to replace B in Ψ̃′ with a pointer to a semiblock Wl in
P(φ2). Note that Wl must be a left end semiblock if φ2 is linear; such a case occurs only
whenWl = R(B) is a left end semiblock of φ2. In the former case, we check ifWl = Rψ(B)
is a left end semiblock. If affirmative, then there are two possibilities. If Ψ = {ψ} is not
straight, then we replace the unique pointer in Ψ̃ with a pointer to Wl. If negative, then
we insert Wl to Ψ̃. After completion, we apply the same transformations to Ψ̃−1 using a
reverse of B̃. Finally, we remove B from the connectivity structure. We remark that the
obtained round representation Φ is not necessarily equal to Ψ\{B} = (Ψ\{ψ})∪{φ1, φ2}.
The reason is that we are not aware of the type of B̃. Thus, if B̃ has type Ψ−1, then
when we decide to insert Rψ(B) to Ψ̃, we are actually computing Ψ \ {ψ} ∪ {φ1, φ

−1
2 }.

Complexity: O(#[Fl(B), Fr(B)] + ep−).

separate(B̃, W), separate(W, B̃), and compact(B̃) have the same effects as their contig
versions on the contig of Φ that contains B. For the implementation, we apply the
corresponding operations on φ and φ−1, where φ is the contig referenced by B̃. Also,
we take care of the contig and round pointers when B is an end semiblock. The details
are similar to those described for the previous operations. Complexity: O(|W |) time for
separate and O(min{|B|, |R(B)|} time for compact.

join(B̃1, B̃2) takes a Φ1-pointer B1 and a Φ2-pointer B2 and builds the round representation
Ψ = {ψ} such that ψ satisfies the same specifications as the contig version of join.
Requires B1 and B2 to be left co-end blocks and Φ1 6= Φ2. The differences between
this version of join and the one for contigs are the following. First, Φi could be a
disconnected co-contig for i ∈ {1, 2}. In this case, Φi has only two contigs, each of which
represents a clique. Second, the output Ψ is implemented as a round representation. To
compute join, we apply one, two, or three calls to the contig version of join, according
to whether Φ1 and Φ2 are disconnected or not. Since ψ is connected, it takes O(1) time
to restore all the pointers required by the data structure of Ψ. Finally, the connectivity
structure can be updated in O(min{ep+, ep−}) time as discussed in [30]. Time complexity:
O(u+ min{ep+, ep−}) time, where u is the number of universal semiblocks in Ψ.

19

split(B1, B2) has the same effects as its contig version, but it returns the co-contigs imple-
mented as round representations. Requires B1 and B2 to be left end blocks of the same
type. Note that Ψ has a unique contig {ψ}, thus generating the pointer of the output rep-
resentations is trivial. The connectivity structure can be updated in O(min{ep+, ep−})
time as well [30]. Complexity: O(u + min{ep+, ep−}) time, where u is the number of
universal semiblocks in Ψ.

4.4 The witnesses

From the point of view of the end user, the dynamic algorithm keeps a round block representation
Γ of the dynamic graph G(Γ). To work with Γ, users can iterate through the semiblock pointers
associated to contigs in Γ, while they execute the operations described in Section 4.1. However,
only those operations that do not modify the internal structure of contigs are available, e.g.,
vertices, L, Fl, etc. To update G(Γ), one of the following operations is applied.

create() returns an empty round block representation Γ. Complexity: O(1) time.

insert(Γ, N) transforms Γ into a round block representation Ψ of a graph H such that
H \{v} = G(Γ) for some vertex v 6∈ V (Γ) with N(v) = N . Returns the new vertex v. The
operation fails if H is not PCA and, in this case, a minimally forbidden of H is obtained
(see below). Complexity: O(|N |+ ep+) time.

remove(v) transforms Γ into a round block representation Φ of G(Γ) \ {v}, where Γ is the
round block representation containing v. Complexity: O(d(v) + ep−) time.

Our goal is not only to implement the above operations that deal with PCA graphs, but also
to provide a certifying algorithm for the recognition of PIG graphs. With respect to the positive
witness, the latter problem is solved by satisfying the straightness invariant that guarantees that
every contig of Γ is linear when G(Γ) is a PIG graph. Regarding the negative certificate, we
implement the following operation.

forbiddenPIG(Γ) returns a minimally forbidden witnessing that G(Γ) is not PIG (i.e., a struc-
ture that represents a graph of Theorem 2.2). Complexity: O(1) time.

When insert(Γ, N(v)) is executed and H is not PCA, for H \ {v} = G(Γ), the end user
obtains a negative witness. We say that a pair 〈Φ,N〉 is a forbidden of H (w.r.t. Γ) when:

• Φ is a round block representation of an induced subgraph of H,

• v is fully adjacent to every block in N and not adjacent to every block outside N , and

• H ′ = H[V (Φ) ∪ {v}] is not PCA.

If every subgraph of H ′ obtained by removing B ∈ B(Φ) is PCA, then 〈Φ,N〉 is a minimally
forbidden of H.

In case of failure, the output of insert is a minimally forbidden 〈Φ,N〉. To be useful to the
end user, 〈Φ,N〉 has to be as efficient as possible. The least a user can expect is that LΦ, RΦ,
FΦ
l , and FΦ

r take constant time. This allows the user to traverse the corresponding forbidden
graph in O(1) time per edge, and to take advantage of the PCA structure of G(Φ). Therefore,
Φ is implemented with a data structure that satisfies these time bounds. As a consequence,
finding a minimal B ⊆ B(Γ) such that H[B ∪ {v}] is not PCA is not enough. We also have to
find the near and far neighbors of Γ|B, and decide which vertices of B ∈ B survive when v is
both adjacent and co-adjacent to B. As it is expected due to the time bounds, Φ shares some of
the internal structure of Γ and, consequently, Φ must be discarded (or copied) before applying
further operations on Γ.

20

5 An incremental and certified algorithm
This section is devoted to the implementation of insert (Section 4.4), whose aim is to insert
a vertex v ∈ V (H) into a round block representation Γ of G = H \ {v} in O(d(v) + ep+) time.
An algorithm for this problem was given in [30], and the method we present takes advantage
of the tools developed in [30]. However, the algorithm in [30] is unable to output a minimally
forbidden (or any witness whatsoever) when the insertion fails. The purpose of this section is
to complete the algorithm by providing the negative witness. To show that our algorithm is
correct, we prove of the Reception Theorem, following the same path as Deng et al. [8]. That
is, we show a minimally forbidden of H when no round representation of G is v-receptive.

Because of the O(d(v) + ep+) time bound, we face two major inconveniences. First, we
cannot traverse all the blocks of Γ. Thus, it is impossible to determine whether B −→ W (in
O(d(v)+ep+) time) when B andW are arbitrary blocks. This means that we need to infer some
of the adjacencies by making appropriate queries on Γ. For this reason, in this section we assume
that Γ, and every round representation obtained by transforming Γ, have been preprocessed as
in the next observation, even if we are not explicit about this fact. This allows us to answer
basic adjacencies queries as in Observation 5.2.
Observation 5.1 (see e.g. [30]). Let H be a graph and Φ be a round representation of H \ {v}
for some v ∈ V (H). Given N(v) as input, it is possible to preprocess the semiblocks of Φ in
O(d(v)) time so that determining whether v is (fully) adjacent to B can be answered in O(1)
time for any B ∈ B(Φ) when a semiblock pointer to B is given.
Observation 5.2. Let H be a graph, Φ be a round representation of H\{v} for some v ∈ V (H),
and Wl, Wr be (possibly equal) semiblocks of Φ. Given semiblock Φ-pointers to Wl,Wr, the
following problems can be solved in O(#[Wl,Wr]) time:
(a) obtain a Φ-pointer to the leftmost (resp. rightmost) semiblock of (Wl,Wr) co-adjacent to v.

(b) determine whether Wl −→ W and W −→ Wl (resp. W −→ Wr and Wr −→ W), when a
semiblock Φ-pointer to W ∈ [Wr, Fr(Wr)] (resp. W ∈ [Fl(Wl),Wl]) is given.
The second inconvenience that arises when we want to compute a minimally forbidden, is

that doing so requires a heavy amount of case by case analysis. The case by case analysis
is somehow inherent to these kinds of proofs, as we need to proceed differently according to
whether some edge exists or not (and the existence of such an edge may or may not imply the
existence of other edges). To alleviate this situation, we make use of adequate forbidden. We
say a family B of semiblocks of H is forbidden when H[B] is not PCA; B is adequate (with
respect to a round representation Φ) when all the adjacencies between the semiblocks in B can
be computed in O(d(v)) time when N(v) and Φ are given as input. Clearly, if B is an adequate
forbidden, then a minimally forbidden of H can be obtained in O(d(v)) time when B, N(v),
and Φ are given. To prove that B is an adequate forbidden family we still have to prove that
H ′ is not PCA. This task, however, can done by a computer (see Appendix A).

We divide our exposition in two major sections, according to whether G and H are co-
connected or not. In the remaining of this section, we always use v to denote the vertex being
inserted. So, for B ∈ B(Φ) we write +B and −B as shortcuts for B ∩ N(v) and B \ N(v),
respectively, and we write ±B to mean a nonempty semiblock in {+B,−B}. Also, we write v
as a shortcut for {v} when a semiblock of H is expected.

5.1 Both H and G are co-connected

Throughout this section we consider that both H and G = H \ {v} are co-connected. The
advantage of this case is that Ψ ∪ Ψ−1 = Γ ∪ Γ−1 for every pair of block co-contigs Ψ and Γ

21

representing G [16]. By (rec1), we obtain that H is PCA only if the blocks fully adjacent to v
are consecutive in some block co-contig representing G, say Γ. In this case, Γ (and Γ−1) can be
associated to at most two co-contigs that simultaneously satisfy (rec1) and (rec2). Therefore,
it suffices to consider only these O(1) co-contigs to prove the Reception Theorem. We first
show how to obtain a minimally forbidden when N(v) is consecutive in none of the block co-
contigs representing G. But, before dealing with the consecutiveness of N(v), we solve a rather
restricted case in which the input representation Γ contains some “bad” blocks. The existence of
such “bad” blocks is what makes it hard to test whether two blocks of Γ are adjacent. Without
this hurdle, we can answer more powerful adjacencies queries.

We say that a semiblock B of a co-contig Φ is good when v is not adjacent to B or v is fully
adjacent to all the semiblocks in either [Fl(B), B) or (B,Fr(B)]. If B is good and v is either
fully or not adjacent to B, then B is perfect, while B is bad when it is not good. It is not hard to
see that Φ satisfies (rec1) only if all its semiblocks are perfect. For such a co-contig Φ to exist,
all the blocks of Γ must be good. Lemma 5.6 shows how to obtain a minimally forbidden when
some block in Γ is bad. We consider two prior cases in Lemmas 5.4 and 5.5 whose common
parts appear in the next lemma.

Lemma 5.3. Let H be a graph with a vertex v, Γ be a block co-contig representing H \ {v},
and T1, T2, T3 be blocks of Γ such that T1 −→ T2 and T2 −→ T3. Given semiblock Γ-pointers to
T1, T2, and T3, a minimally forbidden of H can be obtained in O(d(v)) time when either of the
following conditions holds.

(a) v is co-adjacent to T1 and T3 and adjacent to every block in (T1, T3), and T1 X−→ T3.

(b) v is co-adjacent to T3 and to W ∈ [T1, T2], and T3 −→ T1

(c) v is co-adjacent to T1 and T3 and adjacent to every block in (T1, T3), T3 −→ Ur(T2), T1 −→
T3, Ul(T2) −→ T1, and Ur(T2) −→ Ul(T2) is obtainable in O(d(v)) time.

(d) v is co-adjacent to T1 and T3 and adjacent to every block in (T1, T3), T1 −→ T3, Fr(T1) =
Fr(T3), Ul(T1) −→ Fl(T1), and Fr(T1) −→ Ul(T1) is obtainable in O(d(v)) time.

Proof. We provide O(d(v)) time algorithms to find an adequate forbidden in each case.

(a) First, we query if T3 −→ T1 as in Observation 5.2 (b) with inputWl = T1,Wr = T2,W = T3;
if false, then {+T2, v, −T1, −T3} induces a K1,3 of H. Suppose, then, that T3 −→ T1. Let
a ≥ 1 be the minimum such that either U2a+1

l (T1) = U2a−1
l (T1) or T3 X−→ U2a

l (T1). It is
not hard to observe that such a value a always exists because the blocks not adjacent to W
form the range (Fr(W), Fl(W)) for every W ∈ B(Γ). Moreover (see Figure 6 (a)):

(i) Ul(T1) ∈ (T2, T3) and U2i+1
l (T1) ∈ [U2i−1

l (T1), T3) for every 2 ≤ i < a,
(ii) U2i

l (T1) ∈ (U2i−2
l (T1), T2] for every 1 ≤ i ≤ a.

Thus, by marking every block in [Ur(T3), Ul(T3)], the sequence Ul(T1), . . . , U2a+1
l (T1) can

be obtained in O(|(T1, T3)|) = O(d(v)) time.
If T3 X−→ U2a

l (T1), then, by (i) and (ii), it follows that {v, −T1, +Ul(T1), . . . , +U2a
l (T1),

−T3} induces a co-cycle in H, whose semiblocks are all adjacent to T2. Consequently, a
minimally forbidden can be obtained in O(|(T1, T3)|) = O(d(v)) time. Suppose, then, that
T3 −→ U2a

l (T1), thus U2a+1
l (T1) = U2a−1

l (T1) and U2a
l (T1) are the right co-end block of Γ.

By (i), the co-end blocks of Γ belong to (T1, T3). Since Γ is co-contig, we conclude that
T1 and T3 belong to the same co-contig range, thus v is fully adjacent to all the blocks

22

T3

T2

Ul(T1)

v

U2a−2
l (T1)

U2
l (T1)

T1

Ul(T3)
Ur(T3)

U3
l (T1)

U2a−1
l (T1)

U3
r (T1)

U2b+1
r (T1)

T3

U2b
r (T1)

v

Ur(T1)

U2
r (T1)

T1

(a) (b)

Figure 6: Adjacencies of G(Γ) in Lemma 5.3 (a). The blocks are drawn as they appear in the
circular ordering B(Γ). Dotted lines are used for continuity, while dashed lines means an edge
could be present or absent.

in the co-contig range that contains T2. Let b be the minimum such that T1, Ur(T1), . . . ,
U2b+1
r (T1), T3 induces a co-path (see Figure 6 (b)). This co-path can be found in O(d(v))

time because v is fully adjacent to U2i+1
r (T1) for every 0 ≤ i ≤ b. Moreover, since T2 −→ T3,

it follows that b ≥ 1.
If b > 1 or v is fully adjacent to U2

r (T1), then {v, −T1, ±U1
r (T1), . . . , ±U2b+1

r (T1), −T3}
is an adequate forbidden (as it contains an induced C2k (k ≥ 3) or H2). If b = 1 and v
is co-adjacent to U2

r (T1), then, as T1 −→ T2 and T2 −→ T3, it follows that T2, Ur(T1), T3,
U2
r (T1), T1, U3

r (T1) appear in this order, thus T2 is not adjacent to U2
r (T1). Hence, {v, +T2,

+Ur(T1), −T3, −U2
r (T1), −T1, +U3

r (T1)} induces an H2 of H (A.1).

Before dealing with (b), we consider two subcases that are also solved in O(d(v)) time.

(e) v is co-adjacent to T1, T2, and T3, and T3 −→ T1. By inspection, it can be observed that
B = {v, −T1, −T2, −T3, ±Ur(T1), ±Ur(T2), ±Ur(T3)} is a forbidden (A.2). Moreover, B is
adequate because we can determine all the adjacencies in O(1) time. Indeed, as Ur(Ti) ∈
(Ti+1, Ti−1), it follows that Ur(Ti) −→ Ti−1; since Ur(Ti) X−→ Ti, then Ur(Ti) X−→ Ti+1, while
the adjacencies between Ur(Ti) and Ur(Ti+1) are obtained in O(1) time by Observation 5.2
(b) (with input Wl = Fr(Ti+1), Wr = Ur(Ti+1), and W = Ur(Ti)).

(f) v is co-adjacent to T1 and T3 and T3 −→ T1. Let Wl be the rightmost block in [T1, T2] co-
adjacent to v, and Wr be the leftmost block in [T2, T3] co-adjacent to v. By Observation 5.2
(a), Wl and Wr can be obtained in O(d(v)) time. By Observation 5.2 (b), the query of
whether Wl −→ T3 can also be answered in O(d(v)) time. If affirmative, then we obtain
a minimally forbidden by invoking (e) with input T1,Wl, T3. Otherwise, we obtain that
Wl 6= T2 and, thus,Wr 6= T2. Again, by Observation 5.2 (b), O(d(v)) time suffices to find out
whether Wl −→Wr; if negative, then we obtain a minimally forbidden by invoking (a) with
input Wl, T2,Wr. When Wl −→ Wr, we query whether T3 −→ Wl using Observation 5.2
(b); if negative, then {+T2, v, −Wl, −T3} induces a K1,3, while if affirmative, thenWr 6= T3
and we can obtain a minimally forbidden by invoking (e) with input Wl,Wr, T3.

(b) LetW be the rightmost block in [T1, T2] that is co-adjacent to v. IfW = T1, then we obtain
a minimally forbidden by invoking (f). When W 6= T1, we query whether W −→ T3 and
T3 −→ W using Observation 5.2 (b). If W −→ T3, then we obtain a minimally forbidden
by invoking (f) with input T3, T1,W . If T3 −→ W , then we run (f) with input W,T2, T3.
Finally, if W X−→ T3 and T3 X−→W , then {+T2, v, −W , −T3} induces a K1,3.

(c) By Observation 5.2 (b), we can query in O(d(v)) whether Ur(T2) −→ T1 (resp. T3 −→
Ul(T2)); if so, then we obtain a forbidden using (b) with input T1, T3, Ur(T2) (resp. Ul(T2)).

23

Otherwise, it follows that Ul(T2) 6= Ur(T2) and, so, {v, −T1, +T2, −T3, ±Ul(T2), ±Ur(T2)}
is a forbidden (A.3). Moreover, it is adequate as the only unknown edge is Ur(T2) −→ Ul(T2)
and this edge can be queried in O(d(v)) time.

(d) As Γ is a block representation, it cannot contain indistinguishable blocks. Thus, Fl(T2) X−→
T3 and Fl(T1) X−→ T2 (hence Fl(T1) 6= Fl(T2) and Fl(T2) 6= T1). Observe that Fr(T1) −→
Fl(T1) if and only if Fr(T1) −→ Ul(T1) and F 2

r (T1) 6= Ul(T1). By hypothesis, we can query,
in O(d(v)) time, whether Fr(T1) −→ Ul(T1); hence, we can also find out if Fr(T1) −→ Fl(T1)
in O(d(v)) time. Two cases then follow.

Case 1: Fr(T1) −→ Fl(T1). We first check if v is co-adjacent to Fr(T1) or Fl(T1). If so, then
we find a forbidden by calling (b) with input T1 = Fl(T1), T2 = T1, and T3 = Fr(T1) (in
the former case) or T1 = T1, T2 = Fr(T1), T3 = Fl(T1) (in the latter case). Otherwise,
B = {v, −T1, +T2, −T3, +Ul(T1), +Fl(T1), ±Fl(T2)} is a forbidden (A.4).

Case 2: Fr(T1) X−→ Fl(T1). In this case, B = {±Ul(T1), ±Fl(T1), ±Fl(T2), −T1, +T2, −T3,
±Fr(T1)} is a forbidden (A.5).

Whichever the case, the forbidden B is adequate as it has at most two unknown edges,
namely Fr(T1) −→ Ul(T1) and Ul(T1) −→ Fl(T2). The former can be queried in O(d(v))
time by hypothesis. To find out if the latter edge exists, we observe that Ul(T1) −→ Fl(T2)
if and only if Fr(Ul(T1)) −→ T2. Since Ul(T1) −→ Fl(T1), then Fr(Ul(T1)) ∈ [Fl(T1), T1).
So, by Observation 5.2 (b) —with input Wl = T1, Wr = T2, W = Fr(Ul(T1))—, O(d(v))
time suffices to determine if Fr(Ul(T1)) −→ T2.

The next lemma describes how to find a forbidden when a long bad block B is given. Recall
that B is long when Fr(B) −→ Fl(B). How B was found, or why do we know that B is long
are irrelevant questions at this point.

Lemma 5.4. Let H be a graph with a vertex v, Γ be a block co-contig representing H \ {v},
and B ∈ B(Γ) be a long bad block. Given a semiblock Γ-pointer to B, a minimally forbidden of
H can be obtained in O(d(v)) time.

Proof. If v is co-adjacent to a block W in [F 2
l (B), Fr(B)], then a minimally forbidden can

be obtained by invoking Lemma 5.3 (b) with input T1 = Fl(B), T2 = B, T3 = W . Analo-
gously, a minimally forbidden is obtained in O(d(v)) time when v is co-adjacent to a block in
[Fl(B), F 2

r (B)]. Let Wl be the rightmost block in (F 2
r (B), B) that is co-adjacent to v, and Wr

be the leftmost block in (B,F 2
l (B)) that is co-adjacent to v. By Observation 5.2, Wl and Wr

are found in O(d(v)) time, while we can also query whether Wl −→ Wr in O(d(v)) time. If
Wl X−→ Wr, then we compute a minimally forbidden by invoking Lemma 5.3 (a). Using Ob-
servation 5.2 (a), we search for a block W ∈ (Fr(B), Fl(B)) co-adjacent to v. Moreover, when
such a block exists, we query whether W −→ Wl and Wr −→ W with Observation 5.2 (b).
When W −→ Wl and Wr −→ W , we find a forbidden by calling Lemma 5.3 (b), while when
W X−→ Wl (resp. Wr X−→ W), the family {+Fl(B), v, −Wl, −W} (resp. {+Fr(B), v, −Wr,
−W}) induces a K1,3. Therefore, we may suppose from now on that v is fully adjacent to every
block in [F 2

l (B), F 2
r (B)].

Note that, by hypothesis, Fr(B) −→ Ul(B) and Ur(B) =−→Ul(B). Hence, we can obtain a
minimally forbidden in O(d(v)) by invoking Lemma 5.3 (c) with input T1 = Wl, T2 = B, and
T3 = Wr when Fl(Wl) 6= Fl(B) and Fr(B) 6= Fr(Wl). Analogously, we obtain a minimally
forbidden in O(d(v)) time when Fr(Wl) = Fr(Wr), by calling Lemma 5.3 (d). By exchanging
the roles of Γ and Γ−1 if required, suppose Fr(B) = Fr(Wr) and, hence, Fr(Wl) 6= Fr(B).

24

Ur(B)

B′

U2
r (Bl) U3

r (Bl)

Ur(Bl)

U2i+1
r (Bl)Bl

U2i
r (Bl)

B′

v

U2
r (Bl) U3

r (Bl)

Ur(Bl)

Uk
r (Bl)Bl

Uk−1
r (Bl)

U2i−1
r (Bl)

B′

v

U2
r (Bl)

Ur(Bl)

WrBl

U2i
l (Bl)
Fl(B)

(a) (b) (c)

Figure 7: Co-paths of H in Lemma 5.4: (a) shows the position of the blocks in B(Γ), (b) depicts
Case 1 for k odd, and (c) shows Cases 2 and 3.

Recall that Fr(B) X−→Wl by definition. For the next step, we proceed according to whether
Ur(B) = Fl(Wl) or not. If Ur(B) 6= Fl(Wl), then {v, −Wl, +B, −Wr, +Fr(B), +Ur(B),
+Fl(B)} induces an H4 (A.6). When Ur(B) = Fl(Wl), we determine in O(1) time if Ur(B) is a
left co-end block by querying whether U3

r (B) = Ur(B). If Ur(B) is not a left co-end block, then
B′ = U2

r (B) ∈ (Wl, B) is a block such that Fr(B′) 6= Fr(Wr) = Fr(B) and Fl(B′) 6= Fl(Wl) =
Ur(B). In this case, we obtain a minimally forbidden by calling Lemma 5.3 (c) with input
T1 = Wl, T2 = B′, and T3 = Wr. (As Fr(B′) −→ Ur(B) and Fl(B′) ∈ (Ur(B), Fl(B)), we can
find out whether Fr(B′) −→ Fl(B′) by traversing (Ur(B), Fl(B)). Recall that v is adjacent to
every block in (Ur(B), Fl(B)), thus O(d(v)) time suffices to answer the query). We can suppose,
then, that B′ and Ur(B) are left co-end blocks.

Let Bl = Ur(Fr(B)) if v is co-adjacent to Ur(Fr(B)), and Bl = Wl otherwise. Since Γ is
a co-contig, Ur(B) and B′ are the only left co-end blocks. Consequently U0

r (Bl), . . . , Ukr (Bl)
induce a co-path for every k > 0 such that Ukr (Bl) 6∈ {B′, Ur(B)}. Moreover, the order of these
blocks in B(Γ) is as in Figure 7 (a). Let k be the minimum such that either:

(i) Ukl (Bl) is co-adjacent to v,

(ii) k is odd and Ukr (Bl) X−→ Fl(B), or

(iii) k is even and Ukl (Bl) X−→Wr,

and consider the following cases.

Case 1: (i) holds; see Figure 7 (b). Then, B = {v, −Bl, +Ur(Bl), . . . , +Uk−1
r (Bl), −Ukr (Bl)}

induces a co-cycle of length k + 2. Suppose k is even and note that Ur(Bl) ∈ [B′, Fr(B)].
Hence U2

r (Bl) ∈ [Fr(B), Ur(Fr(B))] ⊆ [Fr(B), Bl]. Moreover, U2
r (Bl) 6= Bl because oth-

erwise Bl would be a left co-end block different to B′ and Ur(B). Therefore, either
Fr(B) −→ U2

r (Bl) or U2
r (Bl) = Ur(Fr(B)) 6= Bl, which implies that v is fully adjacent to

U2
r (Bl). Consequently, k > 2 and B is a forbidden. When k is odd, B′ −→ U ir(Bl) for

every odd 1 ≤ i ≤ k, while, because of the minimality of k, U ir(Bl) −→ B′ for every even
1 ≤ i < k. Therefore, B ∪ {B′} is a forbidden.

Case 2: (ii) holds and (i) does not; see Figure 7 (c) with k = i − 1. Then, B = {v, −Bl,
+Ur(Bl), . . . , +Ukr (Bl)} induces an odd co-path. Moreover, by the minimality of k, we
obtain that Fl(B) is adjacent to every block in B\{Ukr (Bl)}, while B′ andWr are adjacent
to every block in B \ {v}. Hence, B ∪ {Fl(B),Wr, B

′} is a forbidden.

Case 3: (iii) holds and (i) does not; see Figure 7 (c) with k = i. This time, B = {v, −Bl,
−Wr, +Ur(Bl), . . . , +Ukr (Bl)} induces an odd co-cycle. As in case (i), B′ is adjacent

25

to every block of B \ {Ukr (Bl)}, while, by the minimality of k, Ukr (Bl) ∈ [Fl(B), B], thus
Ukr (Bl) −→ B′. Consequently, B ∪ {B′} is a forbidden.

To compute Ur(Bl), . . . , Ukr (Bl), we proceed as follows. First, we mark with 1 the blocks in
[Ur(B), Fl(B)) and with 2 the blocks in [B,Wr]. Then we traverse Ukr (Bl) for each k > 0 until
we find a block co-adjacent to v or a marked block. In the former case (i) holds for k, while in
the latter case (ii) or (iii) holds for k − 1 when Ukr (B) is marked with 1 or 2, respectively. We
conclude that O(d(v)) time is enough to find the forbidden.

The case in which B is a short bad block is solved next. Note that, a priori, Γ could contain
long bad blocks; yet, we have no evidence about the existence or non-existence of long bad
blocks.

Lemma 5.5. Let H be a graph with a vertex v, Γ be a block co-contig representing H \ {v},
and B ∈ B(Γ) be a short bad block. Given a semiblock Γ-pointer to B, a minimally forbidden
of H can be obtained in O(d(v)) time.

Proof. Let Wl be the rightmost block in [Fl(B), B) co-adjacent to v, and Wr be the leftmost
block in (B,Fr(B)] co-adjacent to B. We can find Wl and Wr and test whether Wl −→ Wr

with Observation 5.2. If Wl X−→Wr, we find a minimally forbidden as in Lemma 5.3 (a).
By hypothesis, Fr(B) X−→ Fl(B); hence, Fr(B) −→ Ul(B) if and only if F 2

r (B) = Ul(B).
Similarly, Ur(B) −→ Ul(B) if and only if Ur(B) 6= Ul(B) and either Fr(B) −→ Ul(B) or
Fl(Ul(B)) = Ur(B). We conclude, therefore, that O(1) time suffices to determine whether
Fr(B) −→ Ul(B) and whether Ur(B) −→ Ul(B). Therefore, by Lemma 5.3 (c), we can suppose
that Fr(B) = Fr(Wr). Otherwise, we obtain a minimally forbidden in O(d(v)) time. Similarly,
by Lemma 5.3 (d) we find a minimally forbidden if Fr(Wl) = Fr(B) and Fl(Wl) is not an end
block. Then, two cases remain:

Case 1: Fr(Wl) 6= Fr(B). Thus, Fr(B) 6= Wr and, as Γ has no pair of indistinguishable blocks,
Fl(B) X−→ Wr and, so, Fl(B) 6= Wl. Under this situation, {v, −Wl, +B, −Wr, ±Fl(B),
±Fr(B)} is an adequate forbidden (A.7).

Case 2: Fr(Wl) = Fr(B) and Fl(Wl) is an end block. Note that Fl(Wl) 6= Fl(B) and Fl(B) 6=
Wl because Γ has no indistinguishable blocks. If Fr(Wl) is not a right end block, then let
X = Ur(Bl) and note that Wr X−→ X. Otherwise, since Wl is not universal, it follows that
Γ has some other contig with a block X. Whichever the case, {v, ±Fl(Wl), ±Fl(B), −Wl,
+B, −Wr, ±X} is an adequate forbidden (A.8). We remark that X can be obtained in
O(1) time by using the representation and contig pointers of Fl(Wl).

We are now ready to deal with the existence of bad blocks, regardless of their type. The
main idea is to find a bad block B which can be used as input of either Lemma 5.4 or Lemma 5.5.
In order to apply either lemma, we need to find out whether B is short or long. However, we
do not know how to test, in O(d(v)) time, whether Fr(B) −→ Fl(B) when only B is given. The
solution to this problem is to take advantage of the dynamic nature of the algorithm. That
is, the answer to Fr(B) −→ Fl(B) was found when the last vertex of G was inserted and it is
implicitly encoded in the semiblock paths.

Lemma 5.6. Let H be a graph with a vertex v, and Γ be block co-contig representing H \ {v}.
Given N(v), it costs O(d(v)) time to test if Γ has bad blocks. Furthermore, if Γ has bad blocks,
then a minimally forbidden of H can be obtained within the same amount of time.

26

Proof. The algorithm has two main phases. In the first phase, all the bad blocks of Γ are
marked; in the second phase a minimally forbidden is obtained.

To find the bad blocks we first mark all the blocks of Γ that are fully adjacent to v in such
a way that B,W have the same mark if and only if B and W lie in the same contig, v is fully
adjacent to all the blocks in [B,W] (or [W,B]), and [B,W) (or [W,B)) has no right end blocks.
Then, a block B adjacent to v is bad if and only if B is not an end block and either:

• L(B) and R(B) are unmarked, or

• R(B) and Fr(B) have different marks, and L(B) and Fl(B) have different marks.

It is not hard to both steps can be achieved in O(d(v)) time (see e.g. [30]). After these steps
we can test if any block in Γ is bad in O(1) time.

Let T1, . . . , Tk be the blocks of P(γ) for any γ ∈ Γ. Recall that, by definition, Γ has a long
block if and only if k = 3 and P(γ) is circular. Hence, if k 6= 3 or P(γ) is linear, then we obtain
a minimally forbidden by invoking Lemma 5.5 with and any bad block as input. When k = 3
and T3 −→ T1, we first check if v is co-adjacent to T1, T2, and T3; if true, then we obtain the
minimally forbidden via Lemma 5.3 (b) with input T1, T2, T3. Suppose, then, that v is fully
adjacent to T2. If T2 is a bad block, then we obtain the forbidden with Lemma 5.4 using T2
as input. Otherwise, v is fully adjacent to all the blocks in either [T2, Fr(T2)] or [Fl(T2), T2].
Assume the former, as the proof for the latter is analogous.

LetWr andWl be the leftmost and rightmost blocks co-adjacent to v in (Fr(T2), T2), respec-
tively, and observe thatWl X−→Wr because T2 X−→Wr. We can both findWl andWr and query
if Wr −→ Wl in O(d(v)) time by Observation 5.2. If any B ∈ (Wl,Wr) is bad, then Wl −→ B
and B −→ Wr because v is fully adjacent to all the blocks in (Wl,Wr). When Wr X−→ Wl,
the family {v, +B, −Wl, −Wr} induces a K1,3, while when Wr −→ Wl we find a minimally
forbidden by calling Lemma 5.4 with input B. Whichever the case, O(d(v)) time is enough to
obtain a minimally forbidden when some block in (Wl,Wr) is bad.

For the final case, suppose no block in (Wl,Wr) is bad, thus the bad block B belongs to
(Wr,Wl). Note that either Fr(B) ∈ (Wl,Wr) or Fl(B) ∈ (Wl,Wr), we assume the former as
the other case is analogous. This means that Fr(B) is good, thus F 2

r (B) belongs to (Wl,Wr) as
well. Hence, we can check if F 2

r (B) −→ B as in Observation 5.2 (b) (with input Wl = Fr(B),
Wr = F 2

r (B), and W = B). Then we find the minimally forbidden calling Lemma 5.4 (if
affirmative) or Lemma 5.5 (if negative) with input B. We conclude, therefore, that a minimally
forbidden can be obtained in O(d(v)) time.

Having dealt with bad blocks, we now consider the case in which N(v) is not consecutive in
Γ. That is, we discuss how to find a forbidden when no co-contig representing G satisfies (rec1).
The core of the proof is given in the next lemma.

Lemma 5.7. Let H be a graph with a vertex v, and Γ be a block co-contig representing H \ {v}
with no bad blocks. If Bl 6= Br, and X are blocks of Γ such that:

• X 6∈ [Bl, Br] ∪ {L(Bl), R(Br)}, and v is adjacent to every block in [Bl, Br] ∪ {X},

• if L(Bl) 6= ⊥, then v is co-adjacent L(Bl); otherwise v is co-adjacent to Bl, and

• if R(Br) 6= ⊥, then v is co-adjacent R(Br); otherwise v is co-adjacent to Br,

then a (minimally) forbidden of H can be obtained in O(d(v)) time when semiblock Γ-pointers
to Bl and Br and a semiblock pointer X̃ to X are given.

27

Proof. The first step of the algorithm is to decide if X −→ L(Bl). Even though we are unaware
of the type of X̃, we can answer this query in O(d(v)) time by observing that, since Bl is good
and v is co-adjacent to Br or R(Br), then either L(Bl) = ⊥ or Fr(Bl) ∈ [Bl, Br]. In the former
case X X−→ L(Bl). In the latter case X −→ L(Bl) if and only if Fr(X) ∈ [L(Bl), Br], which
happens if and only if X̃ ∈ [L(Bl), Br] or X̃−1 ∈ [L(Bl), Br]. (Here X̃−1 is a reverse of X̃.) In
a similar way, we can test if R(Br) −→ X in O(d(v)) time. If X X−→ L(Bl) and R(Br) X−→ X,
then R(Br) X−→ L(Bl) and:

• {v, +Bl, +Br, +X} induces a K1,3 if Bl X−→ Br, and

• {v, +Bl, +Br, +X, −L(Bl), −R(Br)} induces an S3 if Bl −→ Br (A.9). We remark
that Bl is not the left end block in this case, thus L(Bl) 6= ⊥. Otherwise, Br is not the
right end block and, since Br is good and v is co-adjacent to Bl, it follows that v is fully
adjacent to (Br, Fr(Br)]. This is a contradiction because v is co-adjacent to R(Br). In a
similar way R(Br) 6= ⊥.

From now on suppose R(Br) −→ X, as the proof when L(Bl) −→ X is analogous. Hence, X
and Br lie in the same contig. Moreover, by applying reversed if required, we may assume
that X̃ is a Γ-pointer, thus we can invoke Observation 5.2 whenever it is required.

Let Xr = Fr(R(Br)), Wl = Bl if L(Bl) = ⊥, and Wl = L(Bl) otherwise. Since Br is good
and Br −→ R(Br), we observe that Wl X−→ Br. Similarly, since R(Br) −→ X and X is good,
we obtain that v is adjacent to Xr and, since Xr is good, it follows that Xr X−→Wl. By checking
if Fl(Xr) 6= R(Br), we can decide if Br −→ Xr; if negative, then {v,+Br,−R(Br),+Xr,−Wl}
induces a C∗4 . Suppose, then, that Br −→ Xr (hence Br −→ X), thus Fl(Br) X−→ R(Br)
because Γ has no indistinguishable blocks. Next we query if Fr(X) = Xr. If affirmative, then
Ul(X) −→ R(Br) because Γ has no indistinguishable semiblocks. So, Ul(X) ∈ (Fl(Bl), Br) is
adjacent to v, which implies that Wl X−→ Ul(X). Consequently, {v, +Ul(X), −R(Br), +X,
−Wl} induces a C∗4 . Finally, if Fr(X) 6= Xr, then {v, −Wl, +Fl(Br), +Br, −R(Br), +X,
+Fr(X)} is a forbidden (A.10) which is adequate by Observation 5.2.

We are now ready to find a minimally forbidden when N(v) is not consecutive in Γ. Before
doing so, it is convenient to state precisely what we mean by consecutive. We remark that the
definition holds for any round representation and not only for co-contigs. We say that N(v) is
consecutive in a round representation Φ when there exist two (possibly equal) semiblocks Ba
and Bb such that N(v) ⊆

⋃
[Ba, Bb]∪+Ba ∪+Bb. In such a case, 〈Ba, Bb〉 witnesses that N(v)

is consecutive in Φ. Clearly, if 〈Bl, Br〉 satisfies (rec1), then N(v) =
⋃

[Bl, Br] is consecutive in
Φ. However, consecutiveness is a slight generalization of condition (rec1) that allows v to be
co-adjacent to Ba and Bb. The next result applies Lemma 5.7 to find a minimally forbidden
when N(v) is not consecutive in any co-contig representing G(Γ).

Lemma 5.8. Let H be a graph with a non-isolated vertex v ∈ V (H), and Γ be block co-contig
representing H \{v} with no bad blocks. Given N(v), it takes O(d(v)+ep+) time to transform Γ
into a block co-contig Γ′ representing G(Γ) in which N(v) is consecutive. The algorithm outputs
Γ′-pointers to the blocks 〈Ba, Bb〉 witnessing that N(v) is consecutive in Γ′, or a minimally
forbidden of H when such a representation Γ′ does not exist.

Proof. As discussed in [13, 30], O(d(v)) time suffices to find a set {B̃i, W̃i | 1 ≤ i ≤ k} of
semiblock pointers such that:

(a) B̃i and W̃i are associated to the same contig γi,

(b) v is fully adjacent to every block in (Bi,Wi),

28

(c) [B1,W1], . . . , [Bk,Wk] is a partition of the blocks adjacent to v, and

(d) either Li(Bi) = ⊥ (resp. Ri(Wi) = ⊥) or v is co-adjacent to Li(Bi) (resp. Ri(Wi)).

We remark that the type of B̃i is unknown, as we are unaware of whether γi ∈ Γ or γi ∈ Γ−1.
In (b) and (c) above, [B1,W1] refers to the range in γi, that could be a range of Γ−1. For the
sake of notation, we write Li and Ri as shortcuts for Lγi and Rγi , as in (d) above.

When k = 1, 〈B1,W1〉 witnesses that N(v) is consecutive in Γ′, where Γ′ is the type of B̃1.
Suppose, then, that k ≥ 2. If either none of {Bi,Wi} (1 ≤ i ≤ k) are end blocks or Bi 6= Wi and
v is co-adjacent to the end blocks in {Bi,Wi}, then we obtain a minimally forbidden by invoking
Lemma 5.7 with input Bl = Bi, Br = Wi, and X = Bj for j 6= i. If k ≥ 3, then {v, +E1, +E2,
+E3} induces a K1,3, where Ei is the end block of {Bi,Wi}. Therefore, k = 2, Ei ∈ {Bi,Wi}
(i ∈ {1, 2}) is an end block, and v is fully adjacent to Ei if Bi 6= Wi. Exchanging the roles of γi
and γ−1

i if required, we may assume that E1 = W1 is a right end block and E2 = B2 is a left end
block. If B2 has the same type Γ′ as W1, then 〈B1,W2〉 witnesses that N(v) is consecutive in
Γ′; otherwise, 〈B1,W2〉 witnesses that N(v) is consecutive in (Γ′ \ {γ2}) ∪ {γ−1

2 }. As discussed
in Section 4.3, O(1) time is enough to query the types of W1 and B2, while replacing γ2 with
γ−1

2 costs O(ep+) time.

By definition, N(v) 6= ∅ is consecutive in a round block representation Γ when it has two
(possibly equal) blocks Ba and Bb such that N(v) =

⋃
(Ba, Bb)∪+Ba ∪+Bb. We can separate

Ba and Bb in pairs of consecutive indistinguishable semiblocks 〈−Ba,+Ba〉 and 〈+Bb,−Bb〉,
respectively, to obtain a new round representation of G. Of course, if either +Ba (resp. −Bb)
or −Ba (resp. +Bb) is empty, then nothing is separated out of Ba (resp. Bb). Similarly, if
Ba = Bb, then +Ba is separated to either the left or the right of −Ba. We refer to the round
representation so obtained as being v-associated to Γ. Observe that v is simultaneously adjacent
and co-adjacent to at most two blocks of Γ, namely Ba and Bb. Thus, no matter which pair
witnesses that N(v) is consecutive in Γ, only Ba and Bb could be separated. Moreover, both Ba
and Bb get separated only if v is co-adjacent to both Ba and Bb, in which case either Ba = Bb
or 〈Ba, Bb〉 is the only pair witnessing that N(v) is consecutive. We conclude, therefore, that
at most two round representations v-associated to Γ exist.

Recall that, when v is not isolated, the co-connected graph H is PCA if and only if G =
H \ {v} admits a v-receptive round representation Φ. By the Reception Theorem (applied to
the component that contains v), Φ has a pair of semiblocks 〈Bl, Br〉 that satisfies (rec1)–(rec3).
Recall that 〈Bl, Br〉 satisfies (rec1) if and only if N(v) =

⋃
[Bl, Br], while 〈Bl, Br〉 satisfies

(rec2) when no pair of semiblocks in Φ \ {Bl, Br} are indistinguishable. It is not hard to see
that Φ satisfies (rec1) and (rec2) if and only if Φ is a round representation v-associated to Γ,
for some round block representation Γ of G. Indeed, by (rec2), Φ has at most two pair of
indistinguishable semiblocks, namely {L(Bl), Bl} and {Br, R(Br)}. By compacting L(Bl) ∪Bl
into Ba and Br ∪ R(Br) into Bb, we obtain a round block representation Γ that has Φ as its
v-associated representation. We record this fact for future reference.

Observation 5.9. Let H be a co-connected graph with a vertex non-isolated vertex v. A round
representation Φ of H \{v} satisfies (rec1) and (rec2) if and only if Φ is v-associated to a round
block representation of H \ {v}.

By definition, a round representations is just a family of contigs with no order. Consequently,
G admits only two round block representations in which N(v) is consecutive, namely Γ and
Γ−1. Therefore, the only round representations of G that satisfy (rec1) and (rec2) are those
v-associated with Γ and Γ−1. We show how to obtain a minimally forbidden when none of
the representations v-associated to Γ satisfies (rec3). Before doing so, we find it convenient to

29

recall that 〈Bl, Br〉 satisfies (rec3) when there exists Bm ∈ [Bl, Br] witnessing that 〈Bl, Br〉 is
receptive. Also, recall that Bm witnesses that 〈Bl, Br〉 is receptive when (see Figure 4):

(wita) Bm is an end semiblock, Bl =−→Bm, and Bm =−→Br, or

(witb) Bl
=−→Bm, Bm X−→ R(Br), L(Bl) X−→ R(Bm), and R̂(Bm) =−→Br.

Lemma 5.10. Let H be a graph with a non-universal vertex v ∈ V (H), Γ be a block co-contig
representing H \ {v} with no bad blocks, and 〈Ba, Bb〉 be a pair witnessing that N(v) 6= ∅ is
consecutive in Γ. Given semiblock Γ-pointers to Ba and Bb, it takes O(d(v)) time to transform
Γ into a co-contig Φ representing H \{v} that satisfies (rec1)–(rec3). The algorithm outputs the
semiblock Φ-pointers to a pair 〈Bl, Br〉 that satisfies (rec1)–(rec3), or a minimally forbidden of
H when such a representation Φ does not exist.

Proof. If Ba = Bb, then Ba is an end block because it is good. Thus, one of the representations
Φ v-associated to Γ has +Ba as an end semiblock and, so, +Ba satisfies (wita). Then, by
Observation 5.9, 〈+Ba,+Ba〉 satisfies (rec1)–(rec3) in Φ. Suppose, from now on, that Ba 6= Bb.
Let Φ be the co-contig v-associated to Γ such that N(v) =

⋃
[Bl, Br] for Bl = +Ba and

Br = +Bb. By Observation 5.9, Φ satisfies both (rec1) and (rec2). With the operations
discussed in Section 4.3, we can transform Γ into Φ and test if Φ satisfies (rec3) in O(d(v)) time.
If affirmative, then we return 〈Bl, Br〉. Suppose, then, that Φ does not satisfy (rec3).

Claim 1: Bl X−→ Br. If Bl −→ Br, then neither Bl nor Br is an end semiblock because Bm ∈
{Bl, Br} does not satisfy (wita). So, L(Bl) −→ Bl and Br −→ R(Br) and, since Bl and Br
are good, it follows that Bl = Fl(Br) and Br = Fr(Bl). Consequently, Bm = Ul(R(Br)) ∈
[Bl, Br), thus Bl =−→Bm and R(Bm) −→ Br. Moreover, since Bm X−→ R(Br) and Bm does
not satisfy (witb), it follows that L(Bl) −→ R(Bm) = Fl(R(Br)), a contradiction because
R(Bm) is good.

Claim 2: Fr(Bl) X−→ Br. Suppose Fr(Bl) −→ Br, thus Bl 6= Fr(Bl) and Fr(Bl) 6= Br. If
F 2
r (Bl) = Br, then Fr(Bm) witnesses that 〈Bl, Br〉 is receptive by (witb). Otherwise,
Fr(Bl) −→ R(Br), thus Bm = Ul(R(Br)) ∈ [Bl, Br). Consequently, Bl =−→Bm and, since
Bm X−→ R(Br) and R(Bm) =−→Br by definition, we obtain that L(Bl) −→ R(Bm). This is
a contradiction, because R(Bm) is good and R(Bm) −→ R(Br).

Claim 3: Ûr(Bl) X−→ Br. Otherwise, Bm = Fr(Bl) satisfies (witb). Just note that, by Claim 2,
Bm X−→ Br.

Let Bm = Ûr(Bl) and B′r = Ûr(Bm). By Claims 1–3, we observe that Bl, Fr(Bl), Bm,
Fr(Bm), B′r, and Br appear in this order in a traversal of [Bl, Br] where, possibly, Bl = Fr(Bl),
Bm = Fr(Bm), and B′r = Br. In O(d(v)) time we can check whether B′r −→ Bl; if negative,
then {v,Bl, Bm, B′r} induces a K1,3. Thus, we assume that B′r −→ Bl. Hence, B′r is not an
end block and, by Claim 3, B′r, R(Br), Bl are pairwise different and appear in this order in a
traversal of the contig that contains Bl and B′r.

Claim 4: if (Br, Bl) has some semiblock W that is indistinguishable to neither Bl nor B′r,
then a minimally forbidden can be obtained in O(d(v)) time. By (rec2), there are O(1)
blocks that are indistinguishable to either Bl or B′r, thus W can be obtained in O(1)
time. Clearly, v is not adjacent to W by (rec1). First we test if B′r −→ Fr(Bl) by
looking whether Fr(B′r) = Fr(Bl). If affirmative, then, since no pair of B′r, W , and Bl
are indistinguishable, it follows that Wa = Ul(W) −→ B′r and Wb = Ul(Bl) −→ W . Note
that, consequently, Bm, Wa, Wb, and B′r are pairwise different. Hence, {v, +Bl, +Bm,

30

+Wa, +Wb, +B′r, −W} induces an H4 (A.11). Suppose, then, that B′r X−→ Fr(Bl), thus
Bl 6= Fr(Bl). Then we check whether W −→ Fr(Bl), i.e., whether Fr(W) = Fr(Bl). If
affirmative, then, as before, Wb = Ul(Bl) −→ W is different to Bm and B′r. Then, {v,
+Bl, +Fr(Bl), +Bm, +Wb, +B′r, −W} is a forbidden (A.12). When W X−→ Fr(Bl), we
test ifWa = Fl(B′r) −→W by looking if Fl(W) = Wa. If false, then B′r 6= Wa and {v, +Bl,
+Fr(Bl), +Bm, +Wa, +B′r, −W} is a forbidden (A.13). Otherwise, since W and B′r are
not indistinguishable, we obtain that B′r X−→ Fr(W). Consequently, Fr(W) ∈ (Bl, Fr(Bl))
and {v, +Bl, +Fr(W), +Fr(Bl), +Bm, +B′r, −W} is a forbidden (A.14). Note that every
computed forbidden is adequate by Observation 5.2.

By Claim 4, we may assume that every semiblock in (Br, Bl) is indistinguishable to either
B′r or Bl. By (rec2), (Br, Bl) has at most two semiblocks, namely R(Br) and L(Bl), that are
indistinguishable to Bl and Br. Then, two cases remain.

Case 1: #(Br, Bl) = 2. In this case, {Bl, L(Bl)} and {Br, R(Br)} are both pairs of indistin-
guishable semiblocks and, since Bl y Br are not indistinguishable, then either Br X−→
Fr(Bl) or Fl(Br) X−→ Bl. Suppose the former, as the other case is analogous. Then
Bl 6= Fr(Bl) and {v, −L(Bl), +Bl, +Fr(Bl), +Bm, +Br, −R(Br)} is an adequate forbid-
den (A.15).

Case 2: #(Br, Bl) = 1. Applying Claims 1–4 to Φ−1, we observe that R(Br) is indistinguish-
able to either Br or B′l = Û2

l (Br). As (Br, Bl) ⊆ (B′r, B′l), we observe that either Br = B′r
is indistinguishable to R(Br) or Bl = B′l is indistinguishable to R(Br). Assume the for-
mer, as the other case is analogous. Now, if Ûr(Br) X−→ Fr(Bm), then Ûr(Br) 6= Bm and
{v, +Bl, +Ûr(Br), +Bm, +Fr(Bm), +Br, −R(Br)} is an adequate forbidden (possibly
Bm = Fr(Bm); A.16). Suppose, then, that Ûr(Br) −→ Fr(Bm) = L̂(Br), and let Ψ be the
co-contig that is obtained from Φ by exchanging the order between Br and R(Br). (For
the rest of the proof, whenever we write f without a superscript we mean fΦ.) Clearly,
Ψ represents H \ {v}, N(v) = [Br, Fr(Bm)] in Ψ, while Br and R(Br) are the only pos-
sible pair of indistinguishable semiblocks. That is, 〈Br, Fr(Bm)〉 satisfies (rec1)–(rec2)
for Ψ. Moreover, since Ûr(Br) −→ Fr(Bm), we obtain, by Claim 3 applied to Ψ, that
〈Br, Fr(Bm)〉 satisfies (rec3).

The main theorem of this section follows by combining Lemmas 5.6, 5.8, and 5.10 while
filling the missing cases.

Theorem 5.11. Let H be a graph with a non-universal vertex v ∈ V (H), and Γ be block co-
contig representing H \ {v}. Given Γ and N(v), it costs O(d(v) + ep+) time to determine if
H is PCA. Furthermore, within the same amount of time, Γ can be transformed into a block
co-contig representing H, unless a minimally forbidden of H is obtained.

Proof. First suppose v is isolated in H. In this case there are three possibilities. First, if Γ is
straight, then H is PCA and Γ∪{ψ} is a block co-contig representing H for any contig ψ whose
only vertex is v. Second, if Γ = {γ} is not straight and |P(γ)| ≥ 4, then P(γ) ∪ {v} induces a
cycle plus an isolated vertex. Thus, 〈P(γ), ∅〉 is a minimally forbidden of H. Finally, if Γ = {γ}
is not straight and P(γ) = B1, B2, B3, then we can obtain a minimally forbidden by invoking
Lemma 5.3 (b) with input B1, B2, B3.

Now suppose N(v) 6= ∅. To compute a co-contig representing H, we first apply Lemma 5.6
with input N(v) to verify that Γ has only good blocks. If negative, then we obtain a minimally

31

forbidden. Otherwise, we apply Lemma 5.8 with input N(v) to transform Γ into a block co-
contig Γ′ representing H \ {v} in which N(v) is consecutive. This time we obtain either a
minimally forbidden or a pair of blocks 〈Ba, Bb〉 witnessing that N(v) is consecutive in Γ′. In
the latter case, we apply Lemma 5.10 with input 〈Ba, Bb〉 to transform Γ′ into a co-contig Φ
representing H \ {v} that satisfies (rec1)–(rec3). By Lemma 3.2, we obtain either a minimally
forbidden or a pair 〈Bl, Br〉 that is v-receptive in {φ, φr}, where φ, φr ∈ Φ are the contigs that
contain Bl and Br, respectively. Finally, we check if 〈Bl, Br〉 is receptive in Φ and we proceed
as follows according to the answer.

Case 1: 〈Bl, Br〉 is receptive in Φ. We first transform Φ into the {v}-reception Ψ of 〈Bl, Br〉
in Φ. Then, we compact {v} if it is indistinguishable to either RΨ({v}) or LΨ({v}). As a
result, Ψ is a round block representation of H.

Case 2: 〈Bl, Br〉 is not receptive in Φ. As discussed in Section 4.3, the only case in which
〈Bl, Br〉 is receptive in {φ, φr} and not receptive in Φ is when φ = φr, (Bl, Br] contains
the left end semiblock Wl of φ, and Φ \ {φ} has some contig ρ. Moreover, the v-reception
{ψ} of {φ} is not straight in this case. Thus, H[V (ψ)∪{x}] is not PCA for every x ∈ V (ρ).
Then, we can obtain a minimally forbidden of H by trying to insert a vertex x ∈ V (ρ)
into {ψ}. Since x has no neighbors in V (ψ), this insertion trial costs O(1) time, while we
can find x ∈ V (ρ) in O(1) time by using the representation pointer of Wl.

As discussed in Section 4.3, O(d(v) + ep+) time suffices to test if 〈Bl, Br〉 is receptive in Φ
and to compute the {v}-reception of 〈Bl, Br〉 in Φ and {φ}. By Lemmas 5.6, 5.8, and 5.10, we
conclude that the whole algorithm costs O(d(v) + ep+) time.

5.2 H and G need not be co-connected

In this section we deal with the general case in which H and G = H \ {v} need not be co-
connected. In other words, G = G[N] +G[V1] + . . .+G[Vk] where:

• Vu contains the universal vertices of G in V (G) \N(v), for some 1 ≤ u ≤ k,

• For i 6= u, G[Vi] is a co-component with Vi \N(v) 6= ∅, and

• N = V (G) \ (V1 ∪ . . . ∪ Vk) contains only vertices in N(v).

We are taking a loose definition of G[•] and + here, as it could happen that Vu = ∅, N = ∅,
or k = 1; the missing details are obvious though. The algorithm in [30] builds a round block
representation of H in two phases. The first phase finds a block co-contig ψv of H[Wk ∪ {v}],
where Wj =

⋃j
i=1 Vi for every 0 ≤ j ≤ k. The second phase joins ψv and a round block

representation ΓN of H \V into a round block representation Ψ of H. Our certifying algorithm
mimics these two phases; the internal details are different, though.

The purpose of the first phase is to find a co-contig ψv of H[Wk ∪ {v}]. To fulfill its goal,
the algorithm in [30] computes all the round block representations of H[Wk] to see if N(v) is
consecutive in one of them. For those in which N(v) is consecutive, it checks if some of its
v-associated representations is v-receptive. The algorithm is correct by the Reception Theorem
and Observation 5.9, but it could require exponential time. A key observation in [30] is that H
is not PCA when k > 3, thus only O(1) round representations need to be examined, hence the
algorithm is efficient. The problem with this “brute force” strategy is that it makes it difficult
to find a negative certificate when H is not PCA. An alternative approach is to note that, as
H[Wk ∪ {v}] is co-connected, at most two of the generated representations, Φ and Φ−1, are
v-receptive. The idea is to characterize how does Φ look like so that a minimally forbidden can
be obtained when H[Wk] has no v-receptive representations.

32

Instead of dealing withH[Wk] = H[V1]+. . .+H[Vk] as a whole, we use an iterative approach.
Before the algorithm is executed, we have a round block representation Γ0 = Γ of G and we
build a new block co-contig Ψv of H[{v}]. After i iterations, we have transformed Γ into a
round block representation Γi of G \Wi and ψv into a block co-contig of H[Wi ∪ {v}]. To cope
with iteration i+ 1, we use Steps 1–3 below. In brief terms, this procedure works a follows:

Step 1 splits from Γi a block co-contig γi+1 having blocks co-adjacent to v. Let Vi+1 = V (γi+1).

Step 2 updates γi+1 into a block co-contig ψi+1 of H[Vi+1 ∪ {v}].

Step 3 joins ψi+1 and ψv to obtain a block co-contig of H[Wi+1 ∪ {v}].

Once the iterative process is completed, we have round block representations Γk of G \Wk and
ψv of H[Wk∪{v}]. We use Phase 2 below to combine these representations into a representation
of H. Of course, any of these steps can fail, and a minimally forbidden is provided if so.

5.2.1 Step 1: split γi+1 out of Γi

To split γi+1 out of Γi, we traverse B(Γi) until the first block B co-adjacent to v is found. If no
such block exists, then Phase 1 concludes and Phase 2 begins. Otherwise, we invoke Lemma 5.12
below to obtain the family E of co-end blocks of γi+1, where γi+1 is the co-contig of Γi that
contains B. If Lemma 5.12 outputs a minimally forbidden, then the algorithm halts; otherwise,
we check if B is a universal block. If affirmative, then we separate B into +B and −B, and
we update γi+1 to be the co-contig containing −B. The separation is done in O(|+B|) time, as
discussed in Section 4.3. Finally, we split γi+1 out of Γi. Note that the case E = ∅ is trivial, as
γi+1 = Γi and Γi+1 = ∅, while the split when E 6= ∅ costs O(1) time as discussed in Section 4.1.
Therefore, Step 1 costs O(d(v)) time.

Lemma 5.12. Let H be a graph with a vertex v, φ be a co-contig of a round representation Φ
of H \ {v}, and B ∈ B(φ) be co-adjacent to v. Given a Φ-pointer to B, it takes O(d(v)) time
to determine if G(Φ) is co-bipartite when H is PCA. The algorithm outputs either a minimally
forbidden of H or a set containing Φ-pointers to all the co-end semiblocks of φ.

Proof. The algorithm outputs ∅ when Φ is not robust, and {B̃} when B is universal. In the
remaining case, the algorithm tries to locate the left co-end semiblocks of φ. For this, it computes
the minimum i ≥ 0 such that:

1. Û ir(B) is a left co-end semiblock,

2. Û ir(B) = Û jr (B) for some j < i, or

3. i ≥ 5 and v is co-adjacent to Û i−5
r (B), Û i−4

r (B), Û i−2
r (B), and Û i−1

r (B).

Observe that Û ir(B) ∈ B(φ) because B is not universal. Therefore: if 1. holds, then Û ir(B) and
Û i+1
r (B) are the left co-end semiblock of φ; if 2. holds, then G(Φ) is not co-bipartite because

Û jr (B), . . . , Û ir(B) induces a co-cycle of odd length; and if 3. holds (and 2. does not), then H
is not PCA because {v, −Û i−5

r (B), −Û i−4
r (B), −Û i−2

r (B), −Û i−1
r (B)} induces a C∗4 . Clearly,

i can be obtained in O(d(v)) time. Indeed, each semiblock is traversed O(1) times by 1. and
2., while at most 6d(v) blocks co-adjacent to v are visited by 3. (See [30] for a better bound.)
When 1. holds, the algorithm computes the right co-end semiblocks of φ by replacing Ûr with
Ûl in 1–3.

33

5.2.2 Step 2: update of γi+1 into ψi+1

There are two possibilities for Step 2, according to whether γi+1 has a unique (universal) block
or not. In the former case, {v} is a block of H[Vi+1 ∪ {v}] co-adjacent to the clique Vi+1, thus
computing the block co-contig ψi+1 in O(1) time is trivial. In the latter case, both H[Vi+1] and
H[Vi+1∪{vi}] are co-connected. Thus, we invoke Theorem 5.11, with input γi+1 and Vi+1∩N(v),
to transform γi+1 into a round block representation Ψi+1 of H[Vi+1 ∪ {v}]. By Lemma 5.13,
O(d(v)) time suffices to compute Vi+1 ∩N(v), thus Step 2 requires O(d(v) + ep+) time.

Lemma 5.13. Let H be a graph with a vertex v, φ be a co-contig of a round representation Φ of
H \ {v}, and Bl be a left co-end block of φ. Given N(v) and a semiblock pointer to Bl, it takes
O(d(v)) time to compute V (φ) ∩ N(v) when H is PCA. When H is not PCA, the algorithm
outputs either V (φ) ∩N(v) or a minimally forbidden of H.

Proof. For each B ∈ B(Φ) adjacent to v, we find a pointer E(B) to a left co-end semiblock
of the co-contig φB that contains B; initially, E(B) = ⊥. To compute E, we traverse each
w ∈ N(v) to process the semiblock B that contains w. If B is universal, then we set E(B) = B
and pass to the next vertex. Otherwise, we look for the minimum i ≥ 0 such that:

1. E(Û ir(B)) 6= ⊥,

2. Û ir(B) is a left co-end semiblock, or

3. i ≥ 4 and v is co-adjacent to Û i−4
r (B), Û i−3

r (B), Û i−1
r (B), and Û ir(B).

Since B is not universal, it follows that B and Û jr (B) belong to the same co-component for
every 0 ≤ j ≤ i. Hence, E(Û ir(B)) is a left co-end semiblock of φB if 1., while Û ir(B) is a left
co-end semiblock of φB if 2. Therefore: if 1., then we set E(Û jr (B)) = E(Û ir(B)) for every
0 ≤ j ≤ i; if 2., then we set E(Û jr (B)) = Û ir(B) for every 0 ≤ j ≤ i; and if 3., then we
output that H is not PCA because {v, −Û i−4

r (B), −Û i−3
r (B), −Û i−1

r (B), −Û ir(B)} induces a
C∗4 . The computation of E ends after all the vertices in N(v) have been considered. After E
is computed, the algorithm outputs V (φ) ∩ N(v) = {w ∈ N(v) | E(B(w)) ∈ {Bl, Ur(Bl)}},
where B(w) is the semiblock that contains w. Clearly, by 1. and 2., the algorithm traverses
each semiblock B adjacent to v only O(|B ∩ N(v)|) times, while, by 3., it traverses at most
5d(v) blocks co-adjacent to v.

5.2.3 Step 3: join of ψi+1 and ψv

Step 3 has to join ψv and ψi+1 into a block co-contig representing H[Wi+1∪{v}]. This is trivial
when i = 1 as we replace ψv with ψ1. When i > 1, at most one between H[Wi] and H[Vi+1] is
a clique. Thus, we can combine ψv and ψi+1 in O(1) time with the following lemma.

Lemma 5.14. Let H be a co-connected graph with a vertex v such that H \{v} is a PCA graph
isomorphic to H[V1] + H[V2] for some ∅ ⊂ V1 ⊂ V (H) and V2 = V (H) \ (V1 ∪ {v}), and let
Bi be the block that contains v in a block co-contig ψi representing H[Vi ∪ {v}], for i ∈ {1, 2}.
Suppose V1 is not a block of ψ1. Then, H is a PCA graph if and only if either:

(i) B1 and B2 are co-end blocks of ψ1 and ψ2,

(ii) V2 is a block of ψ2, ψ1 is robust, and Fr(R̂(B1)) = Ul(L̂(B1)) 6= ⊥, or

(iii) V2 is a block of ψ2 and V1 has exactly three non-adjacent blocks: {v, W2, W3}.

34

Consequently, O(1) time suffices to determine if H is PCA, when ψi-pointers to Bi are given.
The algorithm either transforms ψ1 and ψ2 into a block co-contig representing H or outputs a
minimally forbidden of H.

Proof. First we prove that H is a PCA graph when some of (i)–(iii) holds.

(i) holds. The proof is implicit in [30]. By reversing ψ1 and ψ2 if required, suppose B1 is a
right co-end block and B2 is a left co-end block. As discussed in Section 4.3, we can join ψ1
and ψ2 into a block co-contig ρ representing G(ρ) = G(ψ1)+G(ψ2) = H[V1∪{v}]+H[V2∪
{v}] in which B1 and B2 are consecutive. Clearly, B1 witnesses that 〈Fl(B1), Fr(B2)〉 is
receptive in ρ, thus the {w}-reception of 〈Fl(B1), Fr(B2)〉 is a block co-contig representing
a graph H ′ with three vertices v1 ∈ B1, v2 ∈ B2 and w such that: N(w) = NH(v) and
H ′ \ {v1, v2, w} = H \ {v}. Consequently, H = H ′ \ {v1, v2} is PCA.

(ii) holds. Let ρ be the co-contig that is obtained from ψ1 by a separation of B1 into 〈B1 \
{v}, {v}〉, and note that Bm = F ρr (R̂ρ({v})) witnesses that 〈R̂ρ({v}), L̂ρ({v})〉 is recep-
tive in ρ. Consequently, the V2-reception of 〈R̂ρ({v}), L̂ρ({v})〉 is a block co-contig that
represents H because v is the unique vertex not adjacent to V2.

(iii) holds. Trivial.

It is not hard to obtain the block co-contig ρ in O(1) time using the operations described in
Section 4.3 with some low-level manipulation of the contigs (i.e., avoiding reception); see [30].

Now suppose none of (i)–(iii) holds. To prove that H is not PCA we show an O(1) time
algorithm that computes a minimally forbidden of H. If B2 is not a co-end block, then V2 is not
a block, thus we may replace V1 and V2 without affecting the hypothesis of the lemma. Hence,
as (i) is false, we suppose B1 is not a co-end block. Through the proof we work only with ψ1
and two blocks of ψ2, called X and Y , which are not adjacent to B2 and X, respectively. Also,
Y 6= {v} unless V2 = X. Note that X and Y are obtainable in O(1) time.

The first step of the algorithm is to verify if ψ1 is robust. By Theorem 2.1, H[V1] is co-
bipartite because H \ {v} is not co-connected. Then, ψ1 \ {B1} is robust, thus either ψ1 is
robust or B1 = {v} is isolated in ψ1 and ψ1 \ {B1} has exactly two non-adjacent blocks W2,
W3. Therefore, we can decide if ψ1 is robust in O(1) time, obtaining pointers to W2 and W3
if negative. Moreover, Y 6= {v} because (iii) is false. Consequently, {B1, X,W2,W3, Y \ {v}}
contains either a K1,3 or a C∗4 . Such a minimally forbidden can be obtained in O(1) time. From
now on we assume ψ1 is robust, hence L̂, R̂, Ûl, and Ûr are well defined for ψ1. Moreover, as
B1 is not a co-end block, we obtain that Ûr(B1) X−→ L̂(B1) and R̂(B1) X−→ Ûl(B1).

The second step is to check if Ûl(B1) =−→L̂(B1) and if R̂(B1) =−→Ûr(B1). If Ûl(B1) 6= L̂(B1)
and Ûl(B1) X−→ L̂(B1), then L̂(B1) X−→ Fr(B1) because B1 and L̂(B1) are not indistinguishable.
So, Fr(B1) −→ Ûl(B1) because, otherwise, Ûl(B1), L̂(B1), Fr(B1) are pairwise non-adjacent
blocks, contradicting the fact that H[V1] is co-bipartite. Similarly, L̂(B1) −→ R̂(B1) because
Ûl(B1), L̂(B1), R̂(B1) cannot be pairwise non-adjacent. Hence, B1, R̂(B1), Fr(B1), Ur(B1)
are pairwise different and appear in this order in a traversal of [B1, Ûr(B1)]. The minimally
forbidden we generate depends on whether R̂(B1) −→ Ûr(B1) or not. In the affirmative case,
{B1, L̂(B1), R̂(B1), Fr(B1), Ûr(B1), Ûl(B1), X} induces an H4 (A.17). In the negative case
we observe that, as before, Fl(B1) X−→ R̂(B1) and Fr(B1) −→ Ûl(B1). This implies Fl(B1) −→
Fr(B1) because {Fl(B1), L̂(B1), R̂(B1), Fr(B1), Ûr(B1)} does not induce a C5, thus {B1,
L̂(B1), R̂(B1), Fr(B1), Fl(B1), Ûl(B1), X} induces an H5 (A.18). From now on, we assume
Ûl(B1) =−→L̂(B1) and, similarly, R̂(B1) =−→Ûr(B1). Hence, Ûl(B1) 6= Ûr(B1).

Note that Fr(R̂(B1)), Fl(L̂(B1)) are either equal or appear in this order in a traversal of
[B1, L̂(B1)]; otherwise, any block inside (Fl(L̂(B1)), Fr(R̂(B1))) would be indistinguishable to

35

U2p+1
r (Bi)

U2p+2
r (Bi)

U2p
r (Bi)

Bi U1
r (Bi)

U2q
r (Bi)

U2q−1
r (Bi)

Bi

U3
r (Bi)

U2
r (Bi)

U2q−2
r (Bi)

(a) (b)

Figure 8: Adjacencies of H[Vi] in Theorem 5.15. The blocks are drawn as they appear in the
circular ordering B(Φi). Note that U2q

r (Bi) = U2q−2
r (Bi) when H[Vi] is co-bipartite.

Fr(R̂(B1)). For the third step, the algorithm tests if (Fr(R̂(B1)), Fl(L̂(B1))) has some block
W . If affirmative, then L̂(B1) −→ R̂(B1) since, otherwise, W , L̂(B1), R̂(B1) are pairwise non-
adjacent. Consequently, L̂(B1), R̂(B1), Ûr(B1), and Ûl(B1) are all different. This implies that
Ûr(B1) −→ Ûl(B1) because no subset of {W, Ûl(B1), L̂(B1), R̂(B1), Ûr(B1)} induces an C3 or
C5. Consequently {B1, X, W , Ûl(B1), Ûr(B1), L̂(B1), R̂(B1)} induces an H2 (A.19).

Finally, note that Y 6= {v} when either Fr(R̂(B1)) = Fl(L̂(B1)) or Fr(R̂(B1)) = Ûl(L̂(B1)).
Indeed, in the former case Y 6= {v} because Fr(R̂(B1)) and X are not twins, while in the latter
case Y 6= {v} because (ii) is false. Consequently, B = {B1, Y \ {v}, X, Ûl(B1), L̂(B1), R̂(B1),
Ûr(B1)} is a forbidden (A.20) whose edges can be obtained in O(1) time. We remark that not
all the blocks in B are pairwise different.

5.2.4 Phase 2: join of Ψv and Γ

After the first phase is completed, we have a round block representation Γ of G \Wk and a
block co-contig ψv representing H[Wk ∪ {v}] for Wk =

⋃k
i=1 Vi. The goal of the second phase is

to find a round block representation of H. This is trivial when Wk = V (G), as ψv is the desired
representation. For the other case, we invoke Theorem 5.15 using v and w ∈ V (Γ) as input.

Theorem 5.15. Let H be a graph such that H = H[V1] +H[V2] for ∅ ⊂ V1, V2 ⊂ V (H), and Φi

be a round block representation of H[Vi], for i ∈ {1, 2}. Then, H is PCA if and only if H[V1]
and H[V2] are PCA and co-bipartite. Furthermore, if semiblock Φi-pointers to Bi ∈ B(Φi) are
given, then O(|N(Bi)|) time suffices to determine if H is PCA. The algorithm either transforms
Φ1 and Φ2 into a round block representation of H or outputs a minimally forbidden of H.

Proof. The fact that H is PCA if and only if H[V1] and H[V2] are co-bipartite PCA graphs
follows from Theorem 2.1.

The algorithm to detect if H is PCA is as follows. Let Bi be any block of Φi ({i, j} = {1, 2}),
and q be the minimum such that either U2q

r (Bi) X−→ Bi or U2q
r (Bi) = U2q−2

r (Bi). Note that,
since U2p

r (Bi) =−→Bi, the blocks Bi, U2p+1
r (Bi), U2p+2

r (Bi), U2p
r (Bi) appear in this order in B(Φi)

for every 0 ≤ p < q (see Figure 8 (a)). Consequently, the value q is well defined, and the blocks
of Φi appear as in Figure 8 (b). Therefore, if p is the maximum such that U2q

r (Bi) X−→ U2p
r (Bi),

then either p = q − 1 or B = {U2p
r (Bi), . . . , U2q

r (Bi)} induces an odd co-cycle. In the former
case, U2q

r (Bi) = U2q−2
r (Bi) is a co-end block, while, in the latter case, B ∪ {Bj} is a minimally

forbidden of H for every Bj ∈ B(Φj). Replacing i by j, we can find a minimally forbidden when
Φj has no co-end blocks. When both Φ1 and Φ2 have co-end blocks, we can join Φ1 and Φ2
into a round block representation of H as in Section 4.3.

To compute the sequence Bi, . . . , U2q
r (Bi) we proceed as follows. First, we mark all the

blocks in [Bi, Fr(Bi)]. Then, U2i
r (Bi) −→ Bi if and only if Fr(U2i

r (Bi)) is marked; thus, q is the

36

minimum value such that Fr(U2q
r (B)) is not marked. Then, to obtain the value p, first note

that p = 0 if q = 1. When q > 1, we traverse [Fl(Bi), Bi] while looking for Fr(U2q
r (Bi)); then

U2p+2
r (Bi) is the last block of the traversed sequence. Since Bi and Bj are adjacent to every

block in [Fl(Bi), Fr(Bi)], the cost of this algorithm is O(min{|N(Bi)|, |N(Bj)|}).

6 The certifying recognition algorithms
By Theorem 2.1, at most three iterations of Phase 1 in Section 5 can be completed without
finding a minimally forbidden. Hence, since each iteration of Phase 1 costs O(d(v) + ep+) time,
and Phase 2 costs O(d(v)) time, we obtain the main result of the previous section: there is
an O(d(v) + ep+) algorithm that transforms a round block representation Γ of H \ {v} into
a round block representation Ψ of H, unless a minimally forbidden is obtained. Note that
the algorithm ignores the straightness invariant of Γ, and it does not ensure the straightness
invariant for Ψ. The straightness invariant, instead, is required for the recognition of PIG
graphs. Fortunately, we can restore the straightness invariant in O(1) time with Corollary 6.4
below. Before describing this corollary, we define what a locally straight representation is.

Recall that a semiblock B of a round representation Φ is long when Fr(B) −→ Fl(B). When
no block of Φ is long, Φ is said to be a locally straight representation. A graph G is a proper Helly
circular-arc (PHCA) graph if it is isomorphic to G(Φ) for some locally straight representation
Φ. As it is shown in [24], G is a PHCA graph if and only if it admits a PCA model in which no
two nor three arcs cover the circle. The following results imply Corollary 6.4 below.

Theorem 6.1 ([24]). A PCA graph is a PHCA graph if and only if it contains no W4 or S3 as
induced subgraphs, where W4 is the graph obtained after inserting a universal vertex in C4.

Theorem 6.2 ([24]). If B is the universal block of a contig φ, then either 1. φ is linear,
2. Fr(L(B)) = B or 3. G(φ) is not PHCA. If 2., then Fr(B) witnesses that 〈R(B), L(B)〉 is
receptive in φ \ {B}, and its B-reception is a linear contig representing G(φ).

Lemma 6.3 ([24]). If a round representation Φ has three non-universal blocks B1, B2, B3 such
that B1 −→ B2, B2 −→ B3, and B3 −→ B1, then G(Φ) is not PHCA.

Corollary 6.4. Given a round block representation Ψ, it takes O(1) time to transform Ψ into
a round block representation Ψ′ of G(Ψ) that satisfies the straightness invariant. Moreover, Ψ′
is locally straight when G(Ψ) is PHCA.

Proof. By Theorems 2.2, 6.1, 6.2, and Lemma 6.3, the algorithm has nothing to do in the
following situations because either 1. Ψ is straight, 2. Ψ is locally straight and G(Ψ) has an
induced cycle, or 3. G(Ψ) is not PHCA:

• |Ψ| > 1,

• Ψ = {ψ} and |P(ψ)| > 3,

• Ψ = {ψ}, |P(ψ)| = 3 and no block of P(ψ) is universal, or

• Ψ = {ψ}, |P(ψ)| = 3, B ∈ P(ψ) is universal, and Fr(L(B)) 6= B.

Finally, if Ψ = {ψ}, |P(ψ)| = 3, B ∈ P(ψ) is universal, and Fr(L(B)) = B, the algorithm moves
B to the position that follows Fr(B) in a traversal of B(Ψ). The block representation Ψ′ so
obtained is straight by Theorem 6.2. Clearly, O(1) time is enough to test the above conditions
and to apply the required move using split and join (see Section 4.3).

37

The main theorems of this article then follow.

Theorem 6.5. Let H be a graph with a vertex v, and Γ be a round block representation of
H \ {v}. Given Γ and N(v), it takes O(d(v) + ep+) time to determine if H is a PCA graph.
The algorithm transforms Γ into a round block representation of H that satisfies the straightness
invariant, unless a minimally forbidden of H is obtained.

Theorem 6.6. When a vertex v of a round block representation Ψ is given, O(d(v) + ep−)
time is enough to transform Ψ into a round block representation of G(Ψ) \ {v} that satisfies the
straightness invariant.

Proof. Let B be the block that contains v. If |B| > 1, then we remove v out of B; otherwise
we call remove(B) to transform Ψ into a round block representation Φ of H \ {v}. Afterwards,
we apply Corollary 6.4 on Φ to restore the straightness invariant.

Theorem 6.7. Given a round block representation Γ of a graph H that satisfies the straightness
invariant, it takes O(1) time to determine if H is PHCA. If H is not PHCA, then the algorithm
outputs Γ|B for a family of blocks B such that H[B] is isomorphic to either W4 or S3.

Proof. The algorithm answers yes when |Γ| > 1 or Γ = {γ} and |P(γ)| > 3. Conversely, if
Γ = {γ} and P(γ) = B1, B2, B3, then, by the straightness invariant, H is not PHCA. Moreover,
H[B] is not PHCA for B = {B1, B2, B3, Ur(B1), Ur(B2), Ur(B3)} [24]. As discussed in
Lemma 5.3, we can compute all the adjacencies of H[B] in O(1) time.

Theorem 6.8. Given a round block representation Γ of a graph H that satisfies the straightness
invariant, it takes O(1) time to determine if H is PIG. If H is not PIG, then the algorithm
outputs Γ|B for a family of blocks B such that H[B] is either a S3 or a Ck (k ≥ 4).

Proof. By the straightness invariant, all we need to do to test if H is PIG is to call straight
(Section 4.3). If H is not straight, then we test if H is PHCA. If negative, then we extract an
induced S3 or C4 from the output Γ|B. Otherwise, Γ = {γ} and P(γ) induces a Ck (k ≥ 4).

6.1 The authentication problems

As discussed in Section 1, we can conceive three types of checkers, namely static, dynamic,
and monitors. The static checker, which has the simplest implementation, authenticates the
witnesses against the static graph G. The dynamic checker, instead, test the witness obtained
after one operation is applied on a round block representation Φ. Although it is more efficient
than applying the static checker for each update, the dynamic checker requires some extra effort
as different tests are performed for the different updates. Finally, the monitor is a new layer
between the end user and the dynamic algorithm that checks the correct behavior of Φ and the
witnesses it generates. To do its work in the most efficient way, the monitor requires privileged
access to some operations that are restricted to the final user [2]. Thus, the implementation
of the monitor is not as simple as for the checkers, as it requires some knowledge about the
internal representation of Φ. In this section we briefly discuss the static and dynamic checkers,
and we skim through a possible design of a monitor.

6.1.1 The static checker

The static checker authenticates that a witness W is correct for a graph G. Of course, the
correctness depends on the recognition problem we are dealing with and on whether W is
positive or negative. Since we consider three problems, i.e., the recognition of PIG, PHCA, and
PCA graphs, the static checker has to solve six problems.

38

When G is claimed to be PCA, the witness is a round block representation Φ of G. To
authenticate Φ, the checker tests if:

• each φ ∈ Φ is a block contig,

• G(Φ) is isomorphic to G,

• every block of G corresponds to a block of Φ, and

• if required, Φ is (locally) straight.

On the other hand, if G is declared as not being a member of the class, then the negative
witness is a minimally forbidden 〈Φ,N〉, where N = ∅ when the problem is the recognition of
PIG or PHCA graphs. To authenticate that 〈Φ,N〉 is correct, the checker builds the graph F
represented by 〈Φ,N〉, and then it tests that F is isomorphic to an induced subgraph of G.

It is not hard to see that these problems can be solved in O(n + m) time. Moreover, the
implementation of the checker is simple as desired.

6.1.2 The dynamic checker

The static checker is optimal for the authentication of static graphs. However, its time com-
plexity is excessive when compared to the time required by an update of the round block
representation Γ. Thus, the static checker is not well suited for the dynamic algorithm. The
dynamic checker, instead, tries to authenticate the witness against Γ. Of course, the authenti-
cation depends on the applied update and the kind of witness obtained.

Suppose we want to authenticate a successful insertion. In this case, the input is N(v) and
a round block representation Γ. The output is the vertex v, and the witness is the round block
representation Ψ of G that satisfies the straightness invariant. Let B be the block of Ψ that
contains v. To authenticate Ψ, we check that:

(i) Ψ is a round block representation that satisfies the straightness invariant,

(ii) N(v) =
⋃

[Fl(B), Fr(B)],

(iii) G(Ψ) \ {v} is isomorphic to G(Γ), and

(iv) the vertices of G(Γ) appear in the same blocks in Ψ \ {{v}} and Γ.

There is a large asymmetry between the insert operation and its authentication. Whereas the
former deals mostly with N(v), the latter tests all the blocks of Ψ. There are three reasons
why the checker must look at the complete structure. First, because the dynamic algorithm
could modify O(n) far neighbors even when d(v) = O(1) (e.g., when the universal block B ∈ Γ
is separated into −B and +B). Second, and most important, because we cannot assure that a
buggy implementation of insert updates only the blocks it is supposed to. Third, because the
specification of insert requires G(Γ) to be isomorphic to G(Ψ) \ {v}, and no more guaranties
are provided.

It is not hard to see that (i) and (ii) can be implemented in O(n) time. For (iii) and (iv),
the checker works as follows. Let Φ = Ψ \ {{v}}. First, the checker looks for all the co-end
blocks in both Φ and Γ. Note that Φ needs not be a block representation. However, it is not
hard to consider the twin semiblocks of Φ as being part of the same block; we omit the details.
Also, observe that Φ is not actually computed; instead v is ignored in Ψ. In the second step,
the algorithm checks that the co-end blocks of Φ and Γ coincide. If not, the checker reports
that the implementation is buggy. When all the co-end blocks coincide, the checker traverses

39

each co-contig φ of Φ to test that the remaining blocks appear in the same order as in Γ (or its
reversal). If negative, then the checker outputs that the implementation is buggy; otherwise,
both (iii) and (iv) hold. The correctness of this algorithm follows from the fact that co-connected
PCA graphs admit exactly two round block representations, one the reverse of the other [16].
Note that the dynamic checker for the insertion runs in O(n) time. Its implementation, however,
is not as simple as the one for the static checker.

The authentication required for remove is similar and can be implemented in O(n) time
as well. Analogously, the authentication that Φ is either straight or locally straight, required
for forbiddenPIG and forbiddenPHCA, takes O(n) time. Finally, to verify a negative witness
〈Φ,N〉, the checker tests that Φ is indeed a representation induced from Γ, and that N contains
the neighbors of v in Φ. Both of these tests can be easily implemented in O(n) time.

6.1.3 The monitor

Although the dynamic checker is much faster than the static one, it is still too expensive when
compared to the update operations. Unfortunately, the dynamic checker is optimal when no
details about the implementation can be exploited. When we have access to the implementation
of the data structure, we can monitor each operation to ensure its correctness [2, 25]. Recall
that the dynamic algorithm deals with five data structures, namely contigs, semiblock paths,
round representations, connectivity structures, and witnesses. The idea is to implement these
data types in a way that we can trust all of them.

To make the above statement more precise, consider the separate operation of contigs.
Recall that separate(B̃, W) transforms the contig γ referenced by B̃ into the contig φ that
represents G(φ) by splitting B into two indistinguishable semiblocks B \W and W in such a
way that Rφ(W) = Rγ(B), Lφ(W) = B \W , and Lφ(B \W) = Lγ(B). To verify that separate
is correct, a checker must guarantee, among other things, that φ represents G(γ). There are
at least two inconveniences that the checker must confront. First, a buggy implementation
could fail to update Fr for some neighbor of B. Second, there could be O(n) semiblocks that
have B as its right far neighbor in Φ, and all of them should reference W in Γ. Thus, if the
data structure is unknown, then the checker must traverse O(n) semiblocks to authenticate
γ. However, the implementation spends O(1) time to simultaneously update all the right far
neighbors. In fact, the algorithm consists of swapping two self pointers [13, 30]. If we were
given access to the self pointers, then we could test that the swap is correct. A second and
more pragmatic approach is to consider that such a swap is correct by definition. The reason
is that proving the correctness of an implementation of swap is as simple, if not simpler, than
authenticating the output of swap. Moreover, if we cannot trust the implementation of swap,
then we cannot trust the implementation of the monitor either.

In a similar way as described for the update of far pointers, we may assume that a contig
φ provides other basic operations, which are accessible only to the monitor, that are correct by
definition. However, some operations are harder to implement and should be monitored. We
differentiate three types of errors that impact on the design of φ and its monitor.

(Improper) access errors arise when a portion of the data structure that should not be
accessed is modified. For instance, only the semiblocks in [Bl, Br] need to be updated in
reception(Bl, Br). We consider those modifications to semiblocks outside [Bl, Br] as
access errors. There are at least two basic methods for dealing with access errors. The
simplest one is to ignore the error; this strategy is appropriate if we can assure that the
error will be caught when the modified portion of the structure is accessed. The alternative
method is to use some kind of supervised memory that tracks all the updates of the data
structure. Then, the monitor can refuse those operations that access a restricted portion

40

of the memory. The first approach is used in [25] for ordered dictionaries. When the
monitor asks the dictionary to insert a pair (k, i), the dictionary could (erroneously)
erase an item (k′, i′). Such misbehavior is not detected by the monitor until it tries to
access (k′, i′). Thus, the monitor is not certifying the whole data structure for insert, but
only that the insertion takes place where it should. We remark that missing such an error
is not critical for dictionaries, because the elements that it holds are independent of each
other. For contigs, perhaps it is better to take actions immediately using the supervised
memory solution.

Memory errors occur when an uncontrolled memory location is accessed. To deal with un-
controlled memory locations, we can follow the same technique as in [25]. That is, each
semiblock B ∈ Φ keeps the position of a semiblock pointer B̃ in an array T of “trusted”
memory. This array is controlled by the monitor to ensure that each access to B is correct.
To authenticate the access to B, the monitor access its position of T and uses B̃ to control
that B was under the control of the data structure.

Logical errors happen when an operations does not behave as it is supposed to, but accessing
only the portions of the data structure to which they have access. Suppose, for instance,
that the monitor is asked to perform reception(Bl, Br) on φ. The monitor forwards
this operation to the data structure and it obtains the semiblock B that contains v on ψ.
When B is not an end semiblock, the monitor outputs that the implementation is buggy
if some of the following check fails.

• Fl(B) = Bl and Fr(B) = Br,
• Fψr (W) = B for every W ∈ [Bl, B) such that F φr (W) = Lψ(B),
• Fψr (W) = F φr (W) for every W ∈ [Bl, B) such that F φr (W) 6= Lψ(B),
• Fψl (W) = {v} for every W ∈ (B,Br] such that F φl (W) = Rψ({v}), and
• Fψl (W) = F φl (W) for every W ∈ (B,Br] such that F φl (W) 6= Rψ({v}).

The case in which B is an end semiblock is handled similarly.

Using the above techniques, we can authenticate all the operations on contigs. Then, the re-
maining data types should be monitored as well. Suppose we need to check that reception(Bl,
Br) works as specified for a round representation Φ. A priori, the only operation of contigs that
should be invoked is the trusted reception with inputs Bl and Br. Thus, any other update on
the contigs should be regarded as an access error. Following the supervised memory solution,
we may ask the monitor of contigs to track the updates that it performs. Then, the monitor
of Φ can observe that the only update on its contigs was the reception of Bl and Br. Since
this operation is under supervision, we many assume it is correct, thus we only need to check
the logical errors. In this case, that the obtained contig is not circular when |Ψ| > 1 for the
obtained round representation.

7 Conclusions
We designed a new dynamic algorithm for the recognition of PCA, PHCA, and PIG graphs that
allows vertex updates. The algorithm keeps a round block representation Φ of the input graph
G that can be regarded as being a positive witness. When the insertion of v into G = H \ {v}
fails, the algorithms exhibits a minimally forbidden induced subgraph F of H. To work as fast
as possible, the algorithm keeps a partial view of F \ {v} that contains all but O(d(v)) vertices
of F . The problem of finding a negative certificate when edges updates are allowed is left open.

41

The certifying algorithm is optimal when applied for the recognition of static graphs, as it
runs in O(d(v)) time per inserted vertex. The algorithm is almost optimal when both insertions
and removal are allowed, as it requires O(d(v) + logn) time per operation and the lower bound
in the cell probe model of computation with word-size b is Ω(d(v)+logn/(log logn+log b)) [13].

Regarding the authentication problem, we considered three possibilities, each one giving
rise to a different kind of checker. Static checkers test the result of the algorithm for a static
graph G. Its input is G together with either a round representation Φ or a graph F , and the
goal is to verify that Φ is a round block representation of G or that F is a minimally forbidden
induced subgraph of G. Dynamic checkers, instead, test that an operation on a round block
representation Φ is successful. Its input, then, is Φ plus the input of the operation and either
a round representation Ψ or a minimally forbidden F . The goal in this case is to verify that Ψ
is a round block representation of the graph H that should be obtained from G(Φ) when the
operation is applied or to test that F represents a minimally forbidden induced subgraph of H.
By definition, the problems associated to the static and dynamic checkers are static and require
Ω(n+m) and Ω(n) time in the worst case as either G or Φ have to be traversed, respectively.
Monitors, instead, are dynamic algorithms (i.e., data structures) that sit between the user and
the round block representation Φ of the dynamic graph G. When a monitor has access to some
privileged (query) operations on Φ, the time required for the authentication can be reduced.
In this article we skim through the process of designing a monitor for the algorithm which, we
believe, could be used to authenticate each operation in O(t) time, where t is the time required
by the operation itself. There is no proof of this fact, as the monitor is incomplete; yet, we
discussed some issues that can arise when such a monitor is developed.

References
[1] J. Bang-Jensen and G. Gutin. Digraphs. Springer Monographs in Mathematics. Springer-Verlag

London, Ltd., London, second edition, 2009. doi: 10.1007/978-1-84800-998-1.

[2] J. D. Bright and G. F. Sullivan. On-line error monitoring for several data structures. In Digest
of Papers: FTCS-25, The Twenty-Fifth International Symposium on Fault-Tolerant Computing,
Pasadena, California, USA, June 27-30, 1995, pp. 392–401. IEEE Computer Society, 1995. doi:
10.1109/FTCS.1995.466960.

[3] D. G. Corneil. A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs. Discrete
Appl. Math., 138(3):371–379, 2004. doi: 10.1016/j.dam.2003.07.001.

[4] D. G. Corneil, H. Kim, S. Natarajan, S. Olariu, and A. P. Sprague. Simple linear time recognition of
unit interval graphs. Inform. Process. Lett., 55(2):99–104, 1995. doi: 10.1016/0020-0190(95)00046-F.

[5] C. Crespelle. Fully dynamic representations of interval graphs. In Graph-theoretic concepts in
computer science, vol. 5911 of Lecture Notes in Comput. Sci., pp. 77–87. Springer, Berlin, 2010. doi:
10.1007/978-3-642-11409-0_7.

[6] C. Crespelle and C. Paul. Fully dynamic recognition algorithm and certificate for directed cographs.
Discrete Appl. Math., 154(12):1722–1741, 2006. doi: 10.1016/j.dam.2006.03.005.

[7] C. Crespelle and C. Paul. Fully dynamic algorithm for recognition and modular decomposition of
permutation graphs. Algorithmica, 58(2):405–432, 2010. doi: 10.1007/s00453-008-9273-0.

[8] X. Deng, P. Hell, and J. Huang. Linear-time representation algorithms for proper circular-arc
graphs and proper interval graphs. SIAM J. Comput., 25(2):390–403, 1996. doi: 10.1137/
S0097539792269095.

42

[9] E. Gioan and C. Paul. Split decomposition and graph-labelled trees: characterizations and fully
dynamic algorithms for totally decomposable graphs. Discrete Appl. Math., 160(6):708–733, 2012.
doi: 10.1016/j.dam.2011.05.007.

[10] M. C. Golumbic. Algorithmic graph theory and perfect graphs, vol. 57 of Annals of Discrete Mathe-
matics. Elsevier Science B.V., Amsterdam, second edition, 2004.

[11] P. Heggernes and F. Mancini. Dynamically maintaining split graphs. Discrete Appl. Math., 157(9):
2057–2069, 2009. doi: 10.1016/j.dam.2008.06.028.

[12] P. Hell and J. Huang. Certifying LexBFS recognition algorithms for proper interval graphs and
proper interval bigraphs. SIAM J. Discrete Math., 18(3):554–570 (electronic), 2004/05. doi: 10.
1137/S0895480103430259.

[13] P. Hell, R. Shamir, and R. Sharan. A fully dynamic algorithm for recognizing and represent-
ing proper interval graphs. SIAM J. Comput., 31(1):289–305 (electronic), 2001. doi: 10.1137/
S0097539700372216.

[14] C. M. Herrera de Figueiredo, J. Meidanis, and C. Picinin de Mello. A linear-time algorithm for proper
interval graph recognition. Inform. Process. Lett., 56(3):179–184, 1995. doi: 10.1016/0020-0190(95)
00133-W.

[15] W. L. Hsu and K.-H. Tsai. Linear time algorithms on circular-arc graphs. Inform. Process. Lett.,
40(3):123–129, 1991.

[16] J. Huang. On the structure of local tournaments. J. Combin. Theory Ser. B, 63(2):200–221, 1995.
doi: 10.1006/jctb.1995.1016.

[17] L. Ibarra. Fully dynamic algorithms for chordal graphs and split graphs. ACM Trans. Algorithms,
4(4):Art. 40, 20, 2008. doi: 10.1145/1383369.1383371.

[18] L. Ibarra. A fully dynamic graph algorithm for recognizing proper interval graphs. In WALCOM—
Algorithms and computation, vol. 5431 of Lecture Notes in Comput. Sci., pp. 190–201, Berlin, 2009.
Springer. doi: 10.1007/978-3-642-00202-1_17.

[19] L. Ibarra. A fully dynamic graph algorithm for recognizing interval graphs. Algorithmica, 58(3):
637–678, 2010. doi: 10.1007/s00453-009-9291-6.

[20] H. Kaplan and Y. Nussbaum. Certifying algorithms for recognizing proper circular-arc graphs and
unit circular-arc graphs. Discrete Appl. Math., 157(15):3216–3230, 2009. doi: 10.1016/j.dam.2009.
07.002.

[21] D. Kratsch, R. M. McConnell, K. Mehlhorn, and J. P. Spinrad. Certifying algorithms for recognizing
interval graphs and permutation graphs. SIAM J. Comput., 36(2):326–353 (electronic), 2006.

[22] C. G. Lekkerkerker and J. C. Boland. Representation of a finite graph by a set of intervals on the
real line. Fund. Math., 51:45–64, 1962/1963.

[23] M. C. Lin and J. L. Szwarcfiter. Characterizations and recognition of circular-arc graphs and
subclasses: a survey. Discrete Math., 309(18):5618–5635, 2009. doi: 10.1016/j.disc.2008.04.003.

[24] M. C. Lin, F. J. Soulignac, and J. L. Szwarcfiter. Normal Helly circular-arc graphs and its subclasses.
Discrete Appl. Math., 161(7-8):1037–1059, 2013. doi: 10.1016/j.dam.2012.11.005.

[25] R. M. McConnell, K. Mehlhorn, S. Näher, and P. Schweitzer. Certifying algorithms. Comput. Sci.
Rev., 5(2):119–161, 2011. doi: 10.1016/j.cosrev.2010.09.009.

[26] D. Meister. Recognition and computation of minimal triangulations for AT-free claw-free and co-
comparability graphs. Discrete Appl. Math., 146(3):193–218, 2005. doi: 10.1016/j.dam.2004.10.001.

43

[27] S. D. Nikolopoulos, L. Palios, and C. Papadopoulos. A fully dynamic algorithm for the recognition
of P4-sparse graphs. Theoret. Comput. Sci., 439:41–57, 2012. doi: 10.1016/j.tcs.2012.03.020.

[28] M. Pirlot and P. Vincke. Semiorders, vol. 36 of Theory and Decision Library. Series B: Mathematical
and Statistical Methods. Kluwer Academic Publishers Group, Dordrecht, 1997. doi: 10.1007/
978-94-015-8883-6.

[29] R. Shamir and R. Sharan. A fully dynamic algorithm for modular decomposition and recognition
of cographs. Discrete Appl. Math., 136(2-3):329–340, 2004. doi: 10.1016/S0166-218X(03)00448-7.

[30] F. J. Soulignac. Fully dynamic recognition of proper circular-arc graphs. Algorithmica, 71(4):
904–968, 2015. doi: 10.1007/s00453-013-9835-7.

[31] M. Tedder and D. Corneil. An optimal, edges-only fully dynamic algorithm for distance-hereditary
graphs. In STACS 2007, vol. 4393 of Lecture Notes in Comput. Sci., pp. 344–355. Springer, Berlin,
2007. doi: 10.1007/978-3-540-70918-3_30.

[32] A. Tucker. Structure theorems for some circular-arc graphs. Discrete Math., 7:167–195, 1974.

44

A Adequacy proofs
In this appendix we include the proofs that a family of
semiblocks B is an adequate forbidden. These proofs were
generated by a computer program, which explains why all
the sections have the same structure. Each section refer-
ences the lemma in which it is required. Then, a summary
of the current knowledge of H[B∪{v}] is depicted. By cur-
rent knowledge we mean that the edges that we actually
know that belong or could belong to H[B] are depicted.
Together with this graph, we describe four fields:

• B contains all the semiblocks in B in the order in
which they appear in the round representation.

• Fr shows the values of Fr but only for those semi-
blocks whose values of Fr cannot be deduced other-
wise. Also, this is depicted taking into account only
those edges that belong to H[B] using our current
knowledge.

• N(v) shows the semiblocks to which v is adjacent,
according to our current knowledge.

• Rest includes all the adjacencies that could be added
into H[B].

With this information, we can enumerate all the possible
subgraphs that B could induce in H. Of course, there is
only one such possibility for H[B] when Rest is empty;
in such a case, this summary is not depicted (see e.g.,
Section A.1).

After the summary, there is one subsection dealing
with each possibility for H[B], except for those that are
duplicated. Each subsection includes the case stating “If
〈case〉, then 〈forbidden subgraph〉”, where the forbidden
subgraph is highlighted in blue. There are two kinds of
duplicated possibilities: those in which H[B] is isomorphic
to a case already examined, and those that are included in
some other case. The former are ignored, while the latter
are described in a section entitled “Implied cases”.

A.1 Lemma 5.3 (a)
A.1.1
If ∅, then H2

U3
r (T1) T3

T2

v

Ur(T1)

U2
r (T1)T1

A.2 Lemma 5.3 (e)
B: T1, Ur(T3), T2, Ur(T1), T3, Ur(T2)

Fr: T1 −→ T2, T2 −→ T3, T3 −→ T1

N(v): ∅

Rest: Ur(T1) −→ Ur(T2), Ur(T2) −→ Ur(T3),
Ur(T3) −→ Ur(T1), (v, Ur(T3)), (v, Ur(T2)),
(v, Ur(T1))

T3
T2

v

Ur(T1)

T1 Ur(T2)

Ur(T3)

A.2.1
If ∅, then S∗

3

T3
T2

v

Ur(T1)

T1 Ur(T2)

Ur(T3)

A.2.2
If (v, Ur(T3)), then H1

T3
T2

v

Ur(T1)

T1 Ur(T2)

Ur(T3)

A.2.3
If Ur(T2) −→ Ur(T3), then C∗

4

T3
T2

v

Ur(T1)

T1 Ur(T2)

Ur(T3)

A.2.4
If (v, Ur(T3)), (v, Ur(T1)), then C∗

4

T3
T2

v

Ur(T1)

T1 Ur(T2)

Ur(T3)

45

A.2.5
If Ur(T2) −→ Ur(T3), (v, Ur(T3)), then K1,3

T3
T2

v

Ur(T1)

T1 Ur(T2)

Ur(T3)

A.2.6
If Ur(T1) −→ Ur(T2), (v, Ur(T3)), then C∗

4

T3
T2

v

Ur(T1)

T1 Ur(T2)

Ur(T3)

A.2.7
If (v, Ur(T3)), (v, Ur(T1)), (v, Ur(T2)), then K1,3

T3
T2

v

Ur(T1)

T1 Ur(T2)

Ur(T3)

A.2.8
If Ur(T3) −→ Ur(T1), (v, Ur(T3)), (v, Ur(T1)), then H3

T3
T2

v

Ur(T1)

T1 Ur(T2)

Ur(T3)

A.2.9
If Ur(T2) −→ Ur(T3), (v, Ur(T3)), (v, Ur(T1)),
(v, Ur(T2)), then C6

T3
T2

v

Ur(T1)

T1 Ur(T2)

Ur(T3)

A.2.10
If Ur(T2) −→ Ur(T3), Ur(T1) −→ Ur(T2), (v, Ur(T3)),
(v, Ur(T1)), (v, Ur(T2)), then W5

T3
T2

v

Ur(T1)

T1 Ur(T2)

Ur(T3)

A.2.11
If Ur(T2) −→ Ur(T3), Ur(T3) −→ Ur(T1),
Ur(T1) −→ Ur(T2), (v, Ur(T3)), (v, Ur(T1)), (v, Ur(T2)),
then H5

T3
T2

v

Ur(T1)

T1 Ur(T2)

Ur(T3)

A.2.12 Implied cases
By A.2.3, at least one of {(v, Ur(T3)), (v, Ur(T2))} must
belong to the graph when all of {Ur(T2) −→ Ur(T3)} are
present. Thus, the following cases are solved:

12. {Ur(T2) −→ Ur(T3), Ur(T1) −→ Ur(T2)},

13. {Ur(T2) −→ Ur(T3), Ur(T3) −→ Ur(T1),
Ur(T1) −→ Ur(T2)}

By A.2.5, at least one of {(v, Ur(T2))} must belong to
the graph when all of {Ur(T2) −→ Ur(T3), (v, Ur(T3))}
are present. Thus, the following cases are solved:

14. {Ur(T2) −→ Ur(T3), (v, Ur(T3)), (v, Ur(T1))},

15. {Ur(T2) −→ Ur(T3), Ur(T1) −→ Ur(T2),
(v, Ur(T3))},

16. {Ur(T2) −→ Ur(T3), Ur(T3) −→ Ur(T1),
(v, Ur(T3))},

17. {Ur(T2) −→ Ur(T3), Ur(T1) −→ Ur(T2),
(v, Ur(T3)), (v, Ur(T1))},

18. {Ur(T2) −→ Ur(T3), Ur(T3) −→ Ur(T1),
(v, Ur(T3)), (v, Ur(T1))},

19. {Ur(T2) −→ Ur(T3), Ur(T3) −→ Ur(T1),
Ur(T1) −→ Ur(T2), (v, Ur(T3))},

20. {Ur(T2) −→ Ur(T3), Ur(T3) −→ Ur(T1),
Ur(T1) −→ Ur(T2), (v, Ur(T3)), (v, Ur(T1))}

46

A.3 Lemma 5.3 (c)
B: Ul(T2), T1, T2, T3, Ur(T2)

Fr: T3 −→ Ur(T2), Ul(T2) −→ T1, T1 −→ T3

N(v): T2

Rest: Ur(T2) −→ Ul(T2), (v, Ur(T2)), (v, Ul(T2))

T3
T2

v

Ur(T2)

T1

Ul(T2)

A.3.1
If ∅, then H1

T3
T2

v

Ur(T2)

T1

Ul(T2)

A.3.2
If Ur(T2) −→ Ul(T2), then C∗

4

T3
T2

v

Ur(T2)

T1

Ul(T2)

A.3.3
If Ur(T2) −→ Ul(T2), (v, Ur(T2)), then K1,3

T3
T2

v

Ur(T2)

T1

Ul(T2)

A.3.4
If Ur(T2) −→ Ul(T2), (v, Ul(T2)), (v, Ur(T2)), then C6

T3
T2

v

Ur(T2)

T1

Ul(T2)

A.4 Lemma 5.3 (d)
B: Fl(T1), Fl(T2), T1, T2, T3, Fr(T1)

Fr: Fr(T1) −→ Fl(T1), Fl(T2) −→ T2, Fl(T1) −→ T1,
T1 −→ Fr(T1)

N(v): Fr(T1), Fl(T1), T2

Rest: (v, Fl(T2))

T3
T2

Fl(T1)

v

Fl(T2)

Fr(T1)

T1

A.4.1
If ∅, then K1,3

T3
T2

Fl(T1)

v

Fl(T2)

Fr(T1)

T1

A.4.2
If (v, Fl(T2)), then H5

T3
T2

Fl(T1)

v

Fl(T2)

Fr(T1)

T1

A.5 Lemma 5.3 (d)
B: Ul(T1), Fl(T1), Fl(T2), T1, T2, T3, Fr(T1)

Fr: Ul(T1) −→ Fl(T1), Fl(T2) −→ T2, Fl(T1) −→ T1,
T1 −→ Fr(T1)

N(v): T2

Rest: Fr(T1) −→ Ul(T1), Ul(T1) −→ Fl(T2),
(v, Ul(T1)), (v, Fr(T1)), (v, Fl(T1)), (v, Fl(T2))

T3
T2

Ul(T1)

Fl(T1)

v

Fl(T2)

Fr(T1)

T1

47

A.5.1
If ∅, then K1,3

T3
T2

Ul(T1)

Fl(T1)

v

Fl(T2)

Fr(T1)

T1

A.5.2
If (v, Fl(T2)), then H1

T3
T2

Ul(T1)

Fl(T1)

v

Fl(T2)

Fr(T1)

T1

A.5.3
If (v, Fl(T2)), (v, Ul(T1)), then C∗

4

T3
T2

Ul(T1)

Fl(T1)

v

Fl(T2)

Fr(T1)

T1

A.5.4
If (v, Fl(T2)), (v, Fl(T1)), then K1,3

T3
T2

Ul(T1)

Fl(T1)

v

Fl(T2)

Fr(T1)

T1

A.5.5
If Ul(T1) −→ Fl(T2), (v, Fl(T2)), then K1,3

T3
T2

Ul(T1)

Fl(T1)

v

Fl(T2)

Fr(T1)

T1

A.5.6
If (v, Fl(T2)), (v, Ul(T1)), (v, Fl(T1)), then H3

T3
T2

Ul(T1)

Fl(T1)

v

Fl(T2)

Fr(T1)

T1

A.5.7
If Ul(T1) −→ Fl(T2), (v, Fl(T2)), (v, Ul(T1)), then W5

T3
T2

Ul(T1)

Fl(T1)

v

Fl(T2)

Fr(T1)

T1

A.5.8
If Ul(T1) −→ Fl(T2), (v, Fl(T2)), (v, Ul(T1)), (v, Fl(T1)),
then H2

T3
T2

Ul(T1)

Fl(T1)

v

Fl(T2)

Fr(T1)

T1

A.5.9 Implied cases
By A.5.1, at least one of {(v, Fl(T2))} must belong to
the graph when all of {∅} are present. Thus, the
following cases are solved:

9. {(v, Fr(T1))},

10. {Fr(T1) −→ Ul(T1)},

11. {(v, Ul(T1))},

12. {(v, Fl(T1))},

13. {Ul(T1) −→ Fl(T2)},

14. {Fr(T1) −→ Ul(T1), (v, Fr(T1))},

15. {(v, Fr(T1)), (v, Ul(T1))},

16. {(v, Fr(T1)), (v, Fl(T1))},

17. {Ul(T1) −→ Fl(T2), (v, Fr(T1))},

18. {Fr(T1) −→ Ul(T1), (v, Ul(T1))},

19. {Fr(T1) −→ Ul(T1), (v, Fl(T1))},

20. {Fr(T1) −→ Ul(T1), Ul(T1) −→ Fl(T2)},

21. {(v, Ul(T1)), (v, Fl(T1))},

22. {Ul(T1) −→ Fl(T2), (v, Ul(T1))},

48

23. {Ul(T1) −→ Fl(T2), (v, Fl(T1))},

24. {Fr(T1) −→ Ul(T1), (v, Fr(T1)), (v, Ul(T1))},

25. {Fr(T1) −→ Ul(T1), (v, Fr(T1)), (v, Fl(T1))},

26. {Fr(T1) −→ Ul(T1), Ul(T1) −→ Fl(T2),
(v, Fr(T1))},

27. {(v, Fr(T1)), (v, Ul(T1)), (v, Fl(T1))},

28. {Ul(T1) −→ Fl(T2), (v, Fr(T1)), (v, Ul(T1))},

29. {Ul(T1) −→ Fl(T2), (v, Fr(T1)), (v, Fl(T1))},

30. {Fr(T1) −→ Ul(T1), (v, Ul(T1)), (v, Fl(T1))},

31. {Fr(T1) −→ Ul(T1), Ul(T1) −→ Fl(T2),
(v, Ul(T1))},

32. {Fr(T1) −→ Ul(T1), Ul(T1) −→ Fl(T2),
(v, Fl(T1))},

33. {Ul(T1) −→ Fl(T2), (v, Ul(T1)), (v, Fl(T1))},

34. {Fr(T1) −→ Ul(T1), (v, Ul(T1)), (v, Fr(T1)),
(v, Fl(T1))},

35. {Ul(T1) −→ Fl(T2), Fr(T1) −→ Ul(T1),
(v, Fr(T1)), (v, Fl(T1))},

36. {Ul(T1) −→ Fl(T2), (v, Ul(T1)), (v, Fr(T1)),
(v, Fl(T1))},

37. {Ul(T1) −→ Fl(T2), Fr(T1) −→ Ul(T1),
(v, Ul(T1)), (v, Fl(T1))},

38. {Ul(T1) −→ Fl(T2), Fr(T1) −→ Ul(T1),
(v, Ul(T1)), (v, Fr(T1)), (v, Fl(T1))}

By A.5.2, at least one of {Ul(T1) −→ Fl(T2), (v, Ul(T1)),
(v, Fl(T1))} must belong to the graph when all of
{(v, Fl(T2))} are present. Thus, the following cases are
solved:

39. {(v, Fl(T2)), (v, Fr(T1))},

40. {Fr(T1) −→ Ul(T1), (v, Fl(T2))},

41. {Fr(T1) −→ Ul(T1), (v, Fl(T2)), (v, Fr(T1))}

By A.5.3, at least one of {Ul(T1) −→ Fl(T2), (v, Fl(T1))}
must belong to the graph when all of {(v, Fl(T2)),
(v, Ul(T1))} are present. Thus, the following cases are
solved:

42. {(v, Fl(T2)), (v, Fr(T1)), (v, Ul(T1))},

43. {Fr(T1) −→ Ul(T1), (v, Fl(T2)), (v, Ul(T1))},

44. {Fr(T1) −→ Ul(T1), (v, Fl(T2)), (v, Ul(T1)),
(v, Fr(T1))}

By A.5.4, at least one of {(v, Ul(T1))} must belong to
the graph when all of {(v, Fl(T2)), (v, Fl(T1))} are
present. Thus, the following cases are solved:

45. {(v, Fl(T2)), (v, Fr(T1)), (v, Fl(T1))},

46. {Fr(T1) −→ Ul(T1), (v, Fl(T2)), (v, Fl(T1))},

47. {Ul(T1) −→ Fl(T2), (v, Fl(T2)), (v, Fl(T1))},

48. {Fr(T1) −→ Ul(T1), (v, Fl(T2)), (v, Fr(T1)),
(v, Fl(T1))},

49. {Ul(T1) −→ Fl(T2), (v, Fl(T2)), (v, Fr(T1)),
(v, Fl(T1))},

50. {Ul(T1) −→ Fl(T2), Fr(T1) −→ Ul(T1),
(v, Fl(T2)), (v, Fl(T1))},

51. {Ul(T1) −→ Fl(T2), Fr(T1) −→ Ul(T1),
(v, Fl(T2)), (v, Fr(T1)), (v, Fl(T1))}

By A.5.5, at least one of {(v, Ul(T1))} must belong to
the graph when all of {Ul(T1) −→ Fl(T2), (v, Fl(T2))}
are present. Thus, the following cases are solved:

52. {Ul(T1) −→ Fl(T2), (v, Fl(T2)), (v, Fr(T1))},

53. {Fr(T1) −→ Ul(T1), Ul(T1) −→ Fl(T2),
(v, Fl(T2))},

54. {Ul(T1) −→ Fl(T2), Fr(T1) −→ Ul(T1),
(v, Fl(T2)), (v, Fr(T1))}

By A.5.6, at least one of {Ul(T1) −→ Fl(T2)} must
belong to the graph when all of {(v, Fl(T2)), (v, Ul(T1)),
(v, Fl(T1))} are present. Thus, the following cases are
solved:

55. {(v, Fl(T2)), (v, Ul(T1)), (v, Fr(T1)), (v, Fl(T1))},

56. {Fr(T1) −→ Ul(T1), (v, Fl(T2)), (v, Ul(T1)),
(v, Fl(T1))},

57. {Fr(T1) −→ Ul(T1), (v, Fl(T2)), (v, Ul(T1)),
(v, Fr(T1)), (v, Fl(T1))}

By A.5.7, at least one of {(v, Fl(T1))} must belong to
the graph when all of {Ul(T1) −→ Fl(T2), (v, Fl(T2)),
(v, Ul(T1))} are present. Thus, the following cases are
solved:

58. {Ul(T1) −→ Fl(T2), (v, Fl(T2)), (v, Ul(T1)),
(v, Fr(T1))},

59. {Ul(T1) −→ Fl(T2), Fr(T1) −→ Ul(T1),
(v, Fl(T2)), (v, Ul(T1))}

By A.5.8, at least one of {∅} must belong to the graph
when all of {Ul(T1) −→ Fl(T2), (v, Fl(T2)), (v, Ul(T1)),
(v, Fl(T1))} are present. Thus, the following cases are
solved:

60. {Ul(T1) −→ Fl(T2), (v, Fl(T2)), (v, Ul(T1)),
(v, Fr(T1)), (v, Fl(T1))},

61. {Ul(T1) −→ Fl(T2), Fr(T1) −→ Ul(T1),
(v, Fl(T2)), (v, Ul(T1)), (v, Fl(T1))},

62. {Ul(T1) −→ Fl(T2), Fr(T1) −→ Ul(T1),
(v, Fl(T2)), (v, Ul(T1)), (v, Fr(T1)), (v, Fl(T1))}

A.6 Lemma 5.4
A.6.1
If ∅, then H4

49

Ur(B)Fl(B)

WrB
Wl

v

Fr(B)

A.7 Lemma 5.5
B: Fl(B), Wl, B, Wr, Fr(B)

Fr: B −→ Fr(B), Wl −→ Wr, Fl(B) −→ B

N(v): B

Rest: (v, Fl(B)), (v, Fr(B))

Fl(B)

Wr

B
Wl

v

Fr(B)

A.7.1
If ∅, then K1,3

Fl(B)

Wr

B
Wl

v

Fr(B)

A.7.2
If (v, Fl(B)), then K1,3

Fl(B)

Wr

B
Wl

v

Fr(B)

A.7.3
If (v, Fr(B)), (v, Fl(B)), then W5

Fl(B)

Wr

B
Wl

v

Fr(B)

A.8 Lemma 5.5
B: Fl(Wl), Fl(B), Wl, B, Wr, X

Fr: Fl(Wl) −→ Wl, Wl −→ Wr, Fl(B) −→ B

N(v): B

Rest: (v, Fl(Wl)), (v, X), (v, Fl(B))

Fl(B)
WrB

Wl

v

Fl(Wl) X

A.8.1
If ∅, then K1,3

Fl(B)
WrB

Wl

v

Fl(Wl) X

A.8.2
If (v, Fl(B)), then S∗

3

Fl(B)
WrB

Wl

v

Fl(Wl) X

A.8.3
If (v, Fl(Wl)), (v, Fl(B)), then C∗

4

Fl(B)
WrB

Wl

v

Fl(Wl) X

A.8.4
If (v, X), (v, Fl(B)), then H1

Fl(B)
WrB

Wl

v

Fl(Wl) X

50

A.8.5
If (v, X), (v, Fl(Wl)), (v, Fl(B)), then K1,3

Fl(B)
WrB

Wl

v

Fl(Wl) X

A.8.6 Implied cases
By A.8.1, at least one of {(v, Fl(B))} must belong to the
graph when all of {∅} are present. Thus, the following
cases are solved:

6. {(v, Fl(Wl))},
7. {(v, X)},
8. {(v, X), (v, Fl(Wl))}

A.9 Lemma 5.7
A.9.1
If ∅, then H1

R(Br)
Br

v

L(Bl)

Bl

X

A.10 Lemma 5.7
B: Wl, Fl(Br), Br, R(Br), X, Fr(X)
Fr: Br −→ X, X −→ Fr(X), Fl(Br) −→ Br

N(v): Fr(X), X, Fl(Br), Br
Rest: Fr(X) −→ Fl(Br), Fr(X) −→ Wl,

Wl −→ Fl(Br)

Fl(Br)
R(Br)Br

v

Wl Fr(X)

X

A.10.1
If ∅, then S∗

3

Fl(Br)
R(Br)Br

v

Wl Fr(X)

X

A.10.2
If Fr(X) −→ Wl, then H1

Fl(Br)
R(Br)Br

v

Wl Fr(X)

X

A.10.3
If Fr(X) −→ Fl(Br), Wl −→ Fl(Br), Fr(X) −→ Wl,
then H3

Fl(Br)
R(Br)Br

v

Wl Fr(X)

X

A.10.4
If Wl −→ Fl(Br), Fr(X) −→ Wl, then C∗

4

Fl(Br)
R(Br)Br

v

Wl Fr(X)

X

A.11 Lemma 5.10 (4)
A.11.1
If ∅, then H4

Wa

B′
r

v

W

Bm Bl

Wb

A.12 Lemma 5.10 (4)
B: Bm, Wb, Br, W , Bl, Fr(Bl)
Fr: Br −→ Bl, W −→ Fr(Bl), Wb −→ W , Bm −→ Wb

N(v): Br, Bl, Fr(Bl), Wb, Bm
Rest: Fr(Bl) −→ Bm, Fr(Bl) −→ Wb

B′
r

v

Bm

W

Fr(Bl)

BlWb

51

A.12.1
If ∅, then K1,3

B′
r

v

Bm

W

Fr(Bl)

BlWb

A.12.2
If Fr(Bl) −→ Bm, then W5

B′
r

v

Bm

W

Fr(Bl)

BlWb

A.12.3
If Fr(Bl) −→ Wb, Fr(Bl) −→ Bm, then H5

B′
r

v

Bm

W

Fr(Bl)

BlWb

A.13 Lemma 5.10 (4)
B: Bm, Wa, Br, W , Bl, Fr(Bl)

Fr: Br −→ Bl, Bm −→ Wa, Wa −→ Br, Bl −→ Fr(Bl)

N(v): Br, Wa, Fr(Bl), Bl, Bm
Rest: Fr(Bl) −→ Wa, Fr(Bl) −→ Bm

Wa

B′
r

v

Bm

W

Fr(Bl)

Bl

A.13.1
If ∅, then K1,3

Wa

B′
r

v

Bm

W

Fr(Bl)

Bl

A.13.2
If Fr(Bl) −→ Bm, Fr(Bl) −→ Wa, then H2

Wa

B′
r

v

Bm

W

Fr(Bl)

Bl

A.13.3
If Fr(Bl) −→ Bm, then W5

Wa

B′
r

v

Bm

W

Fr(Bl)

Bl

A.14 Lemma 5.10 (4)
B: Bm, Br, W , Bl, Fr(W), Fr(Bl)

Fr: Br −→ Bl, Bl −→ Fr(Bl), W −→ Fr(W)

N(v): Br, Fr(W), Bl, Fr(Bl), Bm
Rest: Fr(W) −→ Bm, Fr(Bl) −→ Bm

B′
r

v

Bm

W

Fr(Bl)

Bl

Fr(W)

A.14.1
If ∅, then K1,3

B′
r

v

Bm

W

Fr(Bl)

Bl

Fr(W)

A.14.2
If Fr(W) −→ Bm, Fr(Bl) −→ Bm, then H4

B′
r

v

Bm

W

Fr(Bl)

Bl

Fr(W)

52

A.14.3
If Fr(Bl) −→ Bm, then K1,3

B′
r

v

Bm

W

Fr(Bl)

Bl

Fr(W)

A.15 Lemma 5.10
B: Bm, Br, R(Br), L(Bl), Bl, Fr(Bl)

Fr: Br −→ Bl, L(Bl) −→ Fr(Bl)

N(v): Bl, Fr(Bl), Br, Bm
Rest: Fr(Bl) −→ Bm

R(Br)
Br

v

Bm

L(Bl)

Fr(Bl)

Bl

A.15.1
If ∅, then K1,3

R(Br)
Br

v

Bm

L(Bl)

Fr(Bl)

Bl

A.15.2
If Fr(Bl) −→ Bm, then H2

R(Br)
Br

v

Bm

L(Bl)

Fr(Bl)

Bl

A.16 Lemma 5.10
B: Bl, Ur(Br), Bm, L(Br), Br, R(Br)

Fr: Bl −→ Ur(Br), Br −→ Bl, Bm −→ L(Br)

N(v): L(Br), Br, Bl, Ur(Br), Bm
Rest: L(Br) −→ Bl, L(Br) −→ Br, Ur(Br) −→ Bm,

L(Br) −→ R(Br)

R(Br)

Br

v

L(Br)
Ur(Br)

Bm

Bl

A.16.1
If ∅, then K1,3

R(Br)

Br

v

L(Br)
Ur(Br)

Bm

Bl

A.16.2
If L(Br) −→ Bl, L(Br) −→ R(Br), L(Br) −→ Br, then
K1,3

R(Br)

Br

v

L(Br)
Ur(Br)

Bm

Bl

A.16.3
If L(Br) −→ Br, then K1,3

R(Br)

Br

v

L(Br)
Ur(Br)

Bm

Bl

A.16.4
If Ur(Br) −→ Bm, L(Br) −→ Bl, L(Br) −→ R(Br),
L(Br) −→ Br, then H4

R(Br)

Br

v

L(Br)
Ur(Br)

Bm

Bl

A.16.5
If Ur(Br) −→ Bm, L(Br) −→ Br, then W5

53

R(Br)

Br

v

L(Br)
Ur(Br)

Bm

Bl

A.16.6 Implied cases
By A.16.1, at least one of {L(Br) −→ Br} must belong
to the graph when all of {∅} are present. Thus, the
following cases are solved:

6. {Ur(Br) −→ Bm}

By A.16.3, at least one of {Ur(Br) −→ Bm} must belong
to the graph when all of {L(Br) −→ Br} are present.
Thus, the following cases are solved:

7. {L(Br) −→ R(Br), L(Br) −→ Br}

By A.16.5, at least one of {L(Br) −→ Bl} must belong to
the graph when all of {Ur(Br) −→ Bm, L(Br) −→ Br}
are present. Thus, the following cases are solved:

8. {Ur(Br) −→ Bm, L(Br) −→ R(Br),
L(Br) −→ Br}

A.17 Lemma 5.14
A.17.1
If ∅, then H4

X

B1

Fr(B1)
R̂(B1)

Ûr(B1)

L̂(B1)

Ûl(B1)

A.18 Lemma 5.14
A.18.1
If ∅, then H5

X

Fl(B1)
B1

Fr(B1)

R̂(B1)
L̂(B1)

Ûl(B1)

A.19 Lemma 5.14
A.19.1
If ∅, then H2

L(B1)
B1 R(B1)

Ul(B1) W

X

Ur(B1)

A.20 Lemma 5.14
B: Ûl(B1), L(B1), B1, R(B1), Ûr(B1), X

Fr: R(B1) −→ X, X −→ L(B1)

N(Y): L(B1), Ûl(B1), Ûr(B1), R(B1)

Rest: Ûr(B1) −→ Ûl(B1), B1 −→ R(B1),
L(B1) −→ B1, L(B1) −→ R(B1), (Y, B1)

L(B1)
B1 R(B1)

Y

Ûr(B1)

XÛl(B1)

A.20.1
If ∅, then C∗

4

L(B1)
B1 R(B1)

Y

Ûr(B1)

XÛl(B1)

A.20.2
If L(B1) −→ R(B1), B1 −→ R(B1), L(B1) −→ B1, then
K1,3

L(B1)
B1 R(B1)

Y

Ûr(B1)

XÛl(B1)

A.20.3
If (Y, B1), then K1,3

L(B1)
B1 R(B1)

Y

Ûr(B1)

XÛl(B1)

54

A.20.4
If L(B1) −→ B1, then K1,3

L(B1)
B1 R(B1)

Y

Ûr(B1)

XÛl(B1)

A.20.5
If L(B1) −→ R(B1), B1 −→ R(B1), L(B1) −→ B1,
(Y, B1), then K1,3

L(B1)
B1 R(B1)

Y

Ûr(B1)

XÛl(B1)

A.20.6
If L(B1) −→ B1, (Y, B1), then K1,3

L(B1)
B1 R(B1)

Y

Ûr(B1)

XÛl(B1)

A.20.7
If Ûr(B1) −→ Ûl(B1), L(B1) −→ R(B1), B1 −→ R(B1),
L(B1) −→ B1, (Y, B1), then H5

L(B1)
B1 R(B1)

Y

Ûr(B1)

XÛl(B1)

A.20.8
If B1 −→ R(B1), L(B1) −→ B1, (Y, B1), then K1,3

L(B1)
B1 R(B1)

Y

Ûr(B1)

XÛl(B1)

A.20.9
If Ûr(B1) −→ Ûl(B1), B1 −→ R(B1), L(B1) −→ B1,
(Y, B1), then W5

L(B1)
B1 R(B1)

Y

Ûr(B1)

XÛl(B1)

A.20.10 Implied cases
By A.20.1, at least one of {B1 −→ R(B1),
L(B1) −→ B1, L(B1) −→ R(B1), (Y, B1)} must belong
to the graph when all of {∅} are present. Thus, the
following cases are solved:

10. {Ûr(B1) −→ Ûl(B1)}

By A.20.2, at least one of {(Y, B1)} must belong to the
graph when all of {L(B1) −→ R(B1), B1 −→ R(B1),
L(B1) −→ B1} are present. Thus, the following cases are
solved:

11. {Ûr(B1) −→ Ûl(B1), L(B1) −→ R(B1),
B1 −→ R(B1), L(B1) −→ B1}

By A.20.3, at least one of {B1 −→ R(B1),
L(B1) −→ B1, L(B1) −→ R(B1)} must belong to the
graph when all of {(Y, B1)} are present. Thus, the
following cases are solved:

12. {Ûr(B1) −→ Ûl(B1), (Y, B1)}

By A.20.4, at least one of {(Y, B1)} must belong to the
graph when all of {L(B1) −→ B1} are present. Thus, the
following cases are solved:

13. {Ûr(B1) −→ Ûl(B1), L(B1) −→ B1},

14. {B1 −→ R(B1), L(B1) −→ B1},

15. {Ûr(B1) −→ Ûl(B1), B1 −→ R(B1),
L(B1) −→ B1}

By A.20.6, at least one of {B1 −→ R(B1)} must belong
to the graph when all of {L(B1) −→ B1, (Y, B1)} are
present. Thus, the following cases are solved:

16. {Ûr(B1) −→ Ûl(B1), L(B1) −→ B1, (Y, B1)}

55

	1 Introduction
	2 Preliminaries
	2.1 Orderings and ranges
	2.2 Contigs, round representations, and proper circular-arc graphs

	3 The Reception Theorem: a certification roadmap
	4 The data structure
	4.1 Contigs
	4.2 Semiblock paths
	4.3 Round representations
	4.4 The witnesses

	5 An incremental and certified algorithm
	5.1 Both H and G are co-connected
	5.2 H and G need not be co-connected
	5.2.1 Step 1: split gamma_{i+1} out of Gamma_i
	5.2.2 Step 2: update of gamma_{i+1} into psi_{i+1}
	5.2.3 Step 3: join of psi_{i+1} and psi_v
	5.2.4 Phase 2: join of Psi_v and Gamma

	6 The certifying recognition algorithms
	6.1 The authentication problems
	6.1.1 The static checker
	6.1.2 The dynamic checker
	6.1.3 The monitor

	7 Conclusions
	A Adequacy proofs
	A.1 Lemma 5.3 (a)
	A.1.1

	A.2 Lemma 5.3 (e)
	A.2.1
	A.2.2
	A.2.3
	A.2.4
	A.2.5
	A.2.6
	A.2.7
	A.2.8
	A.2.9
	A.2.10
	A.2.11
	A.2.12 Implied cases

	A.3 Lemma 5.3 (c)
	A.3.1
	A.3.2
	A.3.3
	A.3.4

	A.4 Lemma 5.3 (d)
	A.4.1
	A.4.2

	A.5 Lemma 5.3 (d)
	A.5.1
	A.5.2
	A.5.3
	A.5.4
	A.5.5
	A.5.6
	A.5.7
	A.5.8
	A.5.9 Implied cases

	A.6 Lemma 5.4
	A.6.1

	A.7 Lemma 5.5
	A.7.1
	A.7.2
	A.7.3

	A.8 Lemma 5.5
	A.8.1
	A.8.2
	A.8.3
	A.8.4
	A.8.5
	A.8.6 Implied cases

	A.9 Lemma 5.7
	A.9.1

	A.10 Lemma 5.7
	A.10.1
	A.10.2
	A.10.3
	A.10.4

	A.11 Lemma 5.10 (4)
	A.11.1

	A.12 Lemma 5.10 (4)
	A.12.1
	A.12.2
	A.12.3

	A.13 Lemma 5.10 (4)
	A.13.1
	A.13.2
	A.13.3

	A.14 Lemma 5.10 (4)
	A.14.1
	A.14.2
	A.14.3

	A.15 Lemma 5.10
	A.15.1
	A.15.2

	A.16 Lemma 5.10
	A.16.1
	A.16.2
	A.16.3
	A.16.4
	A.16.5
	A.16.6 Implied cases

	A.17 Lemma 5.14
	A.17.1

	A.18 Lemma 5.14
	A.18.1

	A.19 Lemma 5.14
	A.19.1

	A.20 Lemma 5.14
	A.20.1
	A.20.2
	A.20.3
	A.20.4
	A.20.5
	A.20.6
	A.20.7
	A.20.8
	A.20.9
	A.20.10 Implied cases

