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a b s t r a c t

Matrix metalloproteinases (MMPs) not only play a relevant role in homeostatic processes but are also
involved in several pathological mechanisms associated with infectious diseases. As their clinical rele-
vance in Chagas disease has recently been highlighted, we studied the modulation of circulating MMPs
by Trypanosoma cruzi infection. We found that virulent parasites from Discrete Typing Units (DTU) VI
induced higher proMMP-2 and MMP-2 activity in blood, whereas both low (DTU I) and high virulence
parasites induced a significant decrease in proMMP-9 plasma activity. Moreover, trans-sialidase, a rele-
vant T. cruzi virulence factor, is involved in MMP-2 activity modulation both in vivo and in vitro. It
removes a2,3-linked sialyl residues from cell surface glycoconjugates, which then triggers the PKC/MEK/
ERK signaling pathway. Additionally, bacterial sialidases specific for this sialyl residue linkage displayed
similar MMP modulation profiles and triggered the same signaling pathways. This novel pathogenic
mechanism, dependent on sialic acid removal by the neuraminidase activity of trans-sialidase, can be
exploited by different pathogens expressing sialidases with similar specificity. Thus, here we present a
new pathogen strategy through the regulation of the MMP network.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Chagas disease is a chronic disabling infection endemic to Latin
America caused by the protozoan Trypanosoma cruzi. There is an
estimated 6million infected people and an alarming 50,000 deaths/
year with 65e100 million people at risk for infection worldwide.
Migration of infected people to developed countries made this
regional issue into a global one because of congenital and blood
transmission [1].
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Once the acute phase is solved patients enter an asymptomatic
chronic phase that, after 20e30 years, leads to clinical manifesta-
tions such as cardiomyopathy and/or megaviscera in 30e40% of
cases. Cardiac parasite persistence induces an inflammatory and
fibrotic process that causes intense tissue remodeling, generating
cardiomegalia and functional alterations, which can then lead to
death [1]. However, the mechanisms involved in this complex
scenario remain to be completely understood.

Matrix Metalloproteinases (MMPs) are Zn2þ-dependent endo-
peptidases that degrade extracellular matrix proteins, playing an
important physiological role in immunomodulation events and in
tissue repair and remodeling [2]. They are usually secreted as
inactive pro-MMPs which are cleaved to form the active MMP.
During inflammatory processes they regulate leukocyte migration
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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through modulation of cytokine and chemokine gradients and
degrade physical barriers [2]. MMPs imbalance has been associated
with development of pathologies in chronic infectious diseases,
thus MMPs have been proposed as therapeutic targets [3,4]. Spe-
cifically, MMP-2 and MMP-9, also known as gelatinases, are
expressed in various cell-types and are involved in angiogenesis,
vascular disease, tumor progression, inflammation, etc. [2]. In
Chagas disease, circulating MMP-2 and -9 were proposed as bio-
markers for asymptomatic to cardiac form progression [5e7], and
alterations in their activity and expression during T. cruzi acute
experimental infection have also been observed [8e11].

Among the different parasite molecules described as T. cruzi
virulence factors, trans-sialidase (TS) plays several different roles in
pathogenesis and its activity is essential to parasite survival [12]. TS
belongs to a gene family of about 1430 members that are distrib-
uted in eight groups [13]. One of them contains genes encoding
active enzyme (aTS), characterized by a Tyr342 residue crucial for
enzyme activity [14], and other genes encoding the enzymatically
inactive proteins (iTS) containing a Tyr342His mutation instead. As
T. cruzi is unable to synthetize sialic acids (SA), aTS allows it to
circumvent this limitation by transferring a2,3-linked SA from host
donor sialoconjugates to acceptor terminal b-galactopyranoses
mainly found in mucin-type proteins on the parasite membrane
[15]. This enzyme is also able to transfer the sialyl residue between
host macromolecules [12]. Hence, TS plays a central role in T. cruzi
pathogenesis through the modification of the surface sialylation
pattern, either by sialylation (trans-sialidase activity) or the asso-
ciated desialylation processes (sialidase activity) [12,13]. Moreover,
we have recently demostrated that the iTS isoform is also involved
in parasite-induced pathogenesis, probably by adhesion mecha-
nisms [16].

Shedding TS into the bloodstream allows T. cruzi to exert its
manipulation systemically on different host cells, such as thymo-
cytes [17], lymphocytes [18,19], platelets [20], etc. We have also
shown the differential expression of aTS and gene distribution
among the different T. cruzi Discrete Typing Units (DTUs, DTU I-VI,
as defined by genetic markers) [21,22]. Highly virulent parasite
strains, included in DTU-II and VI express and shed higher amounts
of aTS, inducing the worst thymus and spleen damage [17,21,23],
whereas low-virulence DTU-I strains, induced minor alterations
which are barely detectable in vivo [21,22].

Here we analyze the circulating MMP profiles in acute and
chronic models of T. cruzi infection to better understand Chagas
disease pathology development. We found that virulent parasite
strains expressing high TS activity increased MMP-2 presence in
the bloodstream. Therefore, we studied the modulation of sys-
temically induced MMPs by T. cruzi through its shed TS. We show
for the first time that TS activity is involved in MMP-2 modulation
through an a2,3-linked SA specific desialylation, an effect also
caused by sialidases from other pathogens, which points to a
widespread pathogenic mechanism.
2. Material & methods

2.1. Ethics statement

The study was carried out in accordance with the Basel Decla-
ration. Protocol (Nº 10/2017) was approved by the Committee for
Experimental Animal Care and Use of the Universidad Nacional de
San Martín (UNSAM), following the recommendations of the Guide
for the Care and Use of Laboratory Animals of the National Institute of
Health (NIH).
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2.2. Parasites

Bloodstream trypomastigotes from the T. cruzi RA, Tulahuen and
Cvd strains and the Tulahuen-derived clone Q501/3, all high viru-
lent parasites included in DTU-VI, were used as acute model of
infection. Whereas the Ac and CA-I strains and CA-I-derived clone
K-98, all low virulent parasites included in DTU-I, were used as
chronic model of infection [21]. Parasites were maintained by serial
passages in mice. For in vitro assays, culture-derived parasites from
Cvd strain and the clone Q501/3 were obtained from Vero cells.
Briefly, infected cells were maintained in Dulbecco's Modified Eagle
Medium (DMEM) (Gibco) with 3.7 g L�1 NaHCO3 and supplemented
with 10% FBS (Gibco) at 37 �C and 5% CO2 atmosphere. Seven days pi
(post-infection), trypomastigotes were harvested from superna-
tants and washed with 5% BSA in PBS for the in vitro assay.

2.3. Recombinant trans-Sialidase

His-tagged aTS [24] and iTS [14] were expressed in Escherichia
coli BL21-DE3 and purified to homogeneity by immobilized metal
affinity chromatography through Ni2þ-charged Hi-Trap chelating
columns (GE Healthcare) followed by ion-exchange chromatog-
raphy (Mono Q; GE Healthcare) by an FPLC system (AKTA, Phar-
macia), followed by passage through a polymyxin column (Pierce)
for endotoxin depletion as described previously [17]. Finally, TS
activity was confirmed by SA transfer from a2,3 sialyllactose to D-
glucose-[14C]-lactose as described elsewhere [25].

2.4. Mice experimental design

Male 6 to 8 weeks-old BALB/c mice were infected with 50 (RA,
Cvd or Q501/3), 500 (Tulahuen) or 5 � 104 (Ac, CA-I and K98)
bloodstream trypomastigotes by intraperitoneal route. Normal
mouse serum (3% in PBS) was administered to mice of the non-
infected control group (NI). Parasitemia was determined by
counting in Neubauer chamber. Plasma samples from NI and
infected mice were obtained at different times post-infection (pi)
and frozen-stored at �80 �C for further analysis. Circulating trans-
sialidase activity was evaluated is plasma samples from infected
mice, as control of our assays [21]. Alternatively, mice were inoc-
ulated with 1 mg of recombinant aTS, iTS or BSA (Sigma) as control
and 6 h post-administrations plasma samples were taken. At least
six animals per group were used [25].

2.5. Evaluation of T. cruzi gelatinolytic activity by zymography
assay

Purified bloodstream trypomastigotes, 107 mL�1 of Tulahuen
strain or 107 mL�1 of K98 clone, were incubated during 5 h at 37 �C.
After centrifugation supernatants were electrophoresed and
zymography assaywas performed at the same conditions described
below.

2.6. In vitro assay

HT1080 cells were maintained in DMEM with 3.7 g L�1 NaHCO3

and supplemented with 10% FBS (Gibco) at 37 �C in a humidified
environment containing 5% CO2. Then, 5 � 104 cells per well (6
wells per treatment) were seeded in 24-well plates (Nunc). After
16 h, cells were infected with 5 � 105 culture-derived trypomas-
tigotes of the Cvd strain or the clone Q501/3 for 16 h and washed.
Mediawere replaced 48 hours pi with FBS freemedia and 24 h later
conditioned supernatants were collected (referred as superna-
tants), centrifuged and frozen-stored at �80 �C. Alternatively, cells
were treated with 1 mg mL�1 BSA, recombinant aTS, iTS or
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neuraminidases from Salmonella typhimurium (Neu Sal) (Biolabs) or
Clostridium perfringes (Neu Clost) (Sigma) and were processed as
the infected cells. Three independent experiments were performed
for each strain and neuraminidases. aTS activity was confirmed in
the presence of 10 mmol L�1 Lactitol (Sigma), a2,3-sialyllactose or
a2,6-sialyllactose (Carbosynth) as previously described [17]. For
signalling inhibition assays, cells were preincubated with
10 mmol L�1 of Chelerythrine (LC Laboratories), U0126 or PP2 (Cell
Signalling).

2.7. Gelatin zymography

To evaluate gelatinase activity in plasma samples, zymography
was performed as described previously [26]. Briefly, protein con-
centration was determined by Bradford (BioRad) and equal
amounts of total protein were mixed with loading buffer without a
reducing agent and electrophoresed through a 7.5% polyacrylamide
gel copolymerized with gelatin 1% (Sigma). An aliquot of superna-
tant of HT1080 cells stimulated with Phorbol Mirystate Acetate
(PMA, 1 mmol L�1) (Sigma) was used as reference for proMMP-9,
MMP-9, proMMP-2 and MMP-2 band position. Gels were
immersed in rinsing buffer (50 mmol L�1 Tris-HCl, pH 7.5) with
2.5% Triton X-100 (PanReac) for 1 h, washed three times with
rinsing buffer and incubated for 48 h in activation buffer
(50 mmol L�1 Tris-HCl, 150 mmol L�1 NaCl, 10 mmol L�1 CaCl2, pH
7.5) at 37 �C. Gels were stained with Coomassie brilliant blue
(Sigma). Gelatinolytic activities were detected as pale bands against
the dark blue background. Band intensities were quantified using
ImageJ software and expressed as Arbitrary Units (AU). During
electrophoresis, Sodium dodecyl sulfate (SDS) caused latent MMPs
to become active and the gelatinolytic activity distinguished on the
basis of their molecular weight [27]. To confirm the gelatinolytic
proteinase activities either 1,10-phenanthroline (1 mmol L�1,
Sigma), Ethylenediaminetetraacetic (EDTA) (10mmol L�1, Sigma) or
Phenylmethyl Sulfonyl Fluoride (PMSF) (1 mmol L�1, USB) was
added to the incubation buffer (Supp. Fig. 1) [28,29].

2.8. Western blot

Equal amounts of plasma protein were electrophoresed through
a 7.5% polyacrylamide gel under reducing conditions, and trans-
ferred with 25 mol L�1 Trizma base; 92 mmol L�1 glycine, 20% v/v
methanol, pH 8.3 onto polyvinylidene fluoride membranes (GE).
Membranes were blocked with 20 mmol L�1 TriseHCl,
150 mmol L�1 NaCl, pH 7.4, non-fat milk 5%, incubated with anti-
MMP-2 antibody (Santa Cruz Biotechnology), incubated with rab-
bit Horseradish peroxidase (HRP)-IgGs anti-goat antibodies (Dako.)
They were revealed using Supersignal CL-HRP Substrate System
(Pierce), chemiluminescence was recorded with the ImageQuant
equipment (GE), bands were quantified using ImageJ software.

2.9. Statistics

Differences between experimental groups were analyzed by
one-way ANOVA in conjunctionwith Tukey's test. Differences were
considered statistically significant when p < 0.05. Data obtained
from MMP-2, MMP-9 and its latent forms activity quantification
were normalized to 1 (with 1 being the band intensity of the
reference) and expressed as means ± SEM.

For the in vivo infection procedures, data obtained at day 15 pi
from the infection with highly virulence strains were compared
against data obtained for NI mice and for low-virulence strains at
each time point (i.e. RA infection at day 15 pi vs. Ac infection at day
15 pi, RA infection at day 15 pi vs. Ac infection at day 30 pi, etc).
Repeated measures ANOVA and Dunett's multiple comparisons
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were performed to compare data from each strain of low-virulence
treatment against data from NI mice. For graphical simplification,
grouped statistics are shown. Tests were performed using Graph-
Pad Prism version 7.00 for Windows, GraphPad Software, La Jolla,
California USA.

3. Results

3.1. Trypanosoma cruzi strains induce alterations in plasmatic
MMPs activity

To analyze the expression of MMPs during T. cruzi infection, we
used acute and chronic T. cruzi infection models established in our
laboratory [21]. Highly virulent strains (HVS) RA, Tulahuen, Cvd,
and clone Q501/3 (all fromDTU-VI) induce lethally acute infections,
whereas low-virulence strains (LVS) CA-I, Ac and clone K-98 (all
from DTU-I), induce chronic infections (Fig. 1). In the acute model
the plasma samples were obtained at day 15 pi, while in the chronic
model were taken either at 15 dpi, during the parasitemia peak (30
dpi) and after 60 and 90 dpi. The active and proMMP-2 forms
showed increased activity in mice infected with HVS strains
compared to non-infected mice, no significant differences were
observed when infecting with LVS (Fig. 2 A, B). On the other hand,
proMMP-9 activity was significantly reduced during the acute
phase of both murine models (at 15 and 30 dpi) (Fig. 2C),
(Supplementary Fig. 2).

We have analyzed by zymography the presence of metal-
lopeptidase secreted by T. cruzi trypomastigotes, in supernatants of
shedding of Tulahuen and K98 strains. No degradative bands were
observed (Supplementary Fig 3).

Plasma samples from HVS infected mice, obtained at 15 dpi, and
from LVS infected mice obtained at 30 dpi, were also analyzed by
Western blot. Samples frommice infected with HVS showed higher
reactivity with anti-MMP2 antibody, respect to samples from mice
infected with LVS and the control group (Supplementary Fig. 4A).
An expected 62 KDa higher reactivity bands were observed in
samples from mice infected with HVS (Supplementary Fig. 4B).

3.2. trans-Sialidase activity increases plasmatic proMMP-2 in vivo

To understand the mechanisms involved in MMP activity
modulation by T. cruzi, and considering that HVS express and shed
higher amounts of the virulence factor TS [21], we evaluated TS
activity as a possible MMPs modulator. In this study TS activity in
plasma from infected mice, were similar to those communicated by
Risso et al., [21].

In Supplementary Table 1 TS activity values obtained are shown.
Naive mice were administered the active (aTS) or inactive (iTS)

recombinant protein or BSA, and blood samples were taken 6 h
later. Remarkably, proMMP-2 plasma activity from mice receiving
aTS was significantly higher than inmice treated with iTS or control
(Fig. 3A, Supplementary Fig. 5). MMP-2 and MMP-9 activity were
similar between aTS, iTS and control mice (Fig. 3B and C).

3.3. T. cruzi infection modulates MMP-2 and MMP-9 activity in
human cells

Modulation of MMP-2 and MMP-9 activity by T. cruzi was
evaluated using HT1080 fibrosarcoma human cells that secrete
these MMPs [30]. They were infected either with the Cvd strain or
the Q501/3 clone parasites (both HVS), and secreted MMP gelati-
nolytic activity was measured at day 2 pi. Supernatants from
infected cells showed zymography patterns similar to those from
in vivo assays. Indeed, the enhancement of MMP-2, in both active
and pro-enzyme forms, together with the reduction of proMMP-9



Fig. 1. Parasitemia (A, C) and survival (B, D) of highly virulent strains (A, B) and low-virulence strains (C, D).
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activity closelymimicked the in vivo findings (Fig. 4AeC). Moreover,
we observed no alterations in MMP-9 levels in culture supernatant
(Fig. 4D).
3.4. TS neuraminidase activity modulates MMP-2 in human cells

To evaluate TS activity as a possible MMP regulator in a human
cell model, we incubated cells with recombinant aTS, iTS or BSA
overnight. MMP-2 activity in supernatants from aTS-incubated
HT1080 cells was higher than those from cells treated with iTS or
BSA (Fig. 5A, D), supporting that TS catalysis is required for the
induction of MMP-2 activity. In order to discriminate which TS
activity (sialidase or trans-sialidase) was mediating the increase of
MMP-2 activity, HT1080 cells were co-incubated with aTS in pres-
ence of lactitol (a preferential SA acceptor that enhances TS-
neuraminidase activity on the cell surface), a2,3 sialyllactose
(a2,3SL, a molecule that acts as preferential donor of SA for TS
transfer activity) [17] or a2,6 sialyllactose as a control (a2,6SL, SA in
a configuration not recognized by TS). Supernatants from cells co-
incubated with aTS/lactitol or aTS/a2,6SL showed higher MMP-2
activity than supernatants from aTS/a2,3SL (Fig. 5B,
Supplementary Fig 6B). Thus, increasedMMP-2 activity is related to
aTS neuraminidase activity.

Several pathogens possess neuraminidases that contribute to
the establishment of the infection or to pathogenesis [31,32]. To
determine if a bacterial neuraminidase activity canmimic the effect
of T. cruzi sialidase activity on MMP modulation, we co-incubated
HT1080 cells with commercially available purified
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neuraminidases from Salmonella typhimurium (Neu Sal., cleaves SA
in a2,3 configuration) and Clostridum perfringens (Neu Clost.,
cleaves SA in a2,3, a2,6 and a2,8 configurations). In accordance
with our previous observations, Neu Sal and Neu Clost, resembled
the increased MMP-2 expression induced by aTS (Fig. 5C,
Supplementary Fig. 6A,C).

3.5. TS neuraminidase activity triggers PKC/MEK/ERK signaling
pathway

To elucidate the cell signaling mechanisms involved in aTS-
induced MMP-2 activity upregulation, HT1080 cells were co-
incubated with aTS, Neu Sal or Neu Clost, in presence or absence
of PP2 (SRC family inhibitor), Chelerythrine (Chel., PKC inhibitor) or
U0126 (MEK1/2 kinase inhibitor). While PP2 did not display sig-
nificant differences (Fig. 6A), MMP-2 activity upregulation was lost
when cells were treated with Chel or U0126 (Fig. 6 B, C), which
shows that the PKC/MEK/ERK pathway mediates this regulation.

4. Discussion

MMPs are involved in numerous homeostatic and physiological
processes, such as cell migration, angiogenesis, immune response
and innate immunity [2]. Their dysregulation can lead to the
development of several pathologies [33], including those associated
with infectious diseases [34e36]. In sleeping sickness, for instance,
an increase inMMP-2 andMMP-9 favors leukocyte penetration into
brain parenchyma, and parasite load and inflammation intensity in



Fig. 2. Quantification of circulating MMPs in infected mice. (A) proMMP-2, (B) MMP-2 and (C) proMMP-9 gelatinolytic activity from non-infected mice (NI, white bars), mice
infected with low-virulence parasites (gray bars) and highly virulent parasites (black bars) at indicated dpi. ANOVA and Dunett's tests were used for multiple comparisons (highly
virulent strains vs low-virulence strains/NI, low-virulence strains vs NI, see Materials and Methods). * 0.0001 < p < 0.05 vs NI; # 0.0001 < p < 0.05 vs. low virulence strains.
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Fig. 3. Quantification of circulating MMPs after trans-sialidase treatment. (A) proMMP-2, (B) MMP-2 and (C) proMMP-9 gelatinolytic activity frommice treated with BSA, iTS or aTS.
Samples were collected at 6 h after treatment administration. **p < 0.01 vs BSA ##p < 0.01 vs iTS.
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canine leishmaniosis [37,38]. Furthermore, in helminth infections
(neurocysticercosis) differential expression of circulating MMP-9
enables discrimination of asymptomatic and symptomatic pa-
tients [39]. Thus, their role in infectious processes have placed them
as therapeutic targets [40].

Particularly in Chagas Disease, neutrophils and monocytes show
differential expression of MMP-2 and MMP-9 in the bloodstream
[41]. Also the relevance of infected cardiac macrophages in driving
to a profibrotic profile through MMP2/MMP9-mediated TGF-b
activation was highlighted [42]. The association between the clin-
ical form and the plasma activity of MMP-2 and MMP-9 suggests
both gelatinases could be markers for status and prognosis of
clinical evolution [5,43e46].

In this study, we tested T. cruzi strains that exhibit high or low
virulence, typified as DTU VI and I respectively, and found that they
modulate MMPs secretion differently. HVS increased plasmatic
MMP-2 activity, while all strains decreased proMMP-9 levels dur-
ing the acute phase, being HVS the major dimmers. Other authors
have also described alterations in MMP-2 and MMP-9 profiles
during the acute phase in different experimental models [10,11,47].

In our study we included, as control, the evaluation of metal-
lopeptidases secreted by trypomastigotes. Cuevas et al. have re-
ported that the Tcgp63-I, is expressed in the different parasite
stages, but a very low metalloprotease activity in epimastigotes
extracts was observed by zymography, using 250 � 106 parasites
[48]. In agreement, Rebello et al. also observed gp63 gelatinolytic
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activity in epimastigotes stage extracts [49]. It is important to note,
that the maximum number of circulating parasites of samples that
we analyzed, were 4� 106 mL�1 (Cvd strain) and 3,5� 106mL�1 (Ac
strain), (Fig. 1). In addition, the absence of gelatinolytic activity in
samples from shedding of trypomastigotes, let us propose that the
MMPs profile observed in circulation were induced in mice by
T. cruzi.

The evaluation by Western blot of circulating MMPs in infected
mice, showed the same MMP-2 prolife as the described by
zymography. During the acute phase, HVS induced higher MMP-2
level than LVS or that found in non-infected mice. Then during
the mice infection, a similar upregulation of MMP-2 fraction was
observed by different methods of analysis.

Both MMP-9 protein and activity are tightly regulated so they
are kept at physiological amounts [50]. Of interest, the formation of
MMP-9 complex with a2-macroglobulin, its main inhibitor in
plasma, and the binding of this complex to low density lipoprotein
receptor-related protein to be internalized, could be mentioned
[51,52]. Concerning T. cruzi infection, both a2-macroglobulin and
low density lipoprotein receptor are known to be increased by the
parasite [53,54]. Nogueira de Melo et al. [47] also observed a
decrease in proMMP-9 secretion without detection of its active in
supernatants of primary cell culture infected hepatocytes. In our
study, the decrease of proMMP-9 activity in infected mice plasma
might result from its higher activation, leading to an increase in
active MMP-9 which in turn might be sequestered by forming a



Fig. 4. Quantification of MMPs in HT1080 infected cells. (A) proMMP-2, (B) MMP-2 (C) proMMP-9 and (D) MMP-9 gelatinolytic activity were evaluated in supernatant from
HT1080 cells infected with Cvd or Q501/3 parasites. Samples were collected at 2 dpi. *p < 0.05; **p < 0.01.
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complex with a2-macroglobulin [55]. The different levels of regu-
lation, might also be modulated by parasite molecules to benefit
the infection and its persistence in the host. In other models, such
as in Staphylococcus aureus infection, Staphylococcal Superantigen-
Like Protein 5, inhibits MMP-9 activity by binding to pro-MMP-9, in
human neutrophils [56]. It has also been described the ability of LPS
to modulate mRNA levels of MMP-9 in mice organs [57]. Besides,
enhanced MMP-9 circulating levels have been described in an
endotoxemia model [58]. Cytomegalovirus has also shown the
ability to reduce MMP-9 activity in human macrophages [59]. All
these evidence shows that the modulation of MMP-9 by T. cruzi
seems to be dependent of many factors including the interaction of
different parasite strains with a heterogenous and complex host
scenario. During the acute phase different alterations are observed
[60] and several cytokines are involved in assembling an effective
immune response, the pro-inflammatory environment induced
requires to be under a tight control to avoid host damage [61,62].
Interestingly, TNF-a, IFN-g and IL-1b are tightly linked to gelatinase
regulation at different levels, either enhancing or inhibiting their
expression or activation, and can also act in concert with them
[50,63e65]. The inflammatory process and the different tissues
affected may be involved in the MMPs alterations induced by
T. cruzi. Considering, our in vivo assays, we related the differential
modulation of MMPs activity to parasite virulence and to different
T. cruzi DTUs. This association could explain discrepancies between
MMP profile and clinical status, observed in some publications,
which used samples from different endemic areas where different
DTUs predominate because they were infected with different
parasite strains [66e68].
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To further analyze the molecules involved in MMPs modulation
and considering that the sialylation state of the cell surface has
been related to MMP-2 and MMP-9 expression/activity modulation
[69], we decided to explore if TS activity was involved. It is
important to note that HVS, that express/shed high amount of TS
activity, induced in vitro the same MMP profile observed in vivo.

TS contains a repetitive region responsible for extending the
permanence of the enzyme in the bloodstream [12] favoring the
generation of surface sialylation pattern disorders in host cells
[17,18,20,70]. Here, we found that aTS induced an increase in
plasmatic proMMP-2, resembling what is observed during HVS
T. cruzi infection. This might be associated with the mechanisms of
MMP-2 activation by MT1-MMP (MMP-14) [71], a glycoprotein
containing a2,3-linked SA necessary for cell surface MMP-2 acti-
vation [72,73]. Thus, we cannot discard MMP-14 as a potential TS
target. However, an increase in plasmatic proMMP-2 translates into
a broader MMP-2 pool. Although iTS is involved in immunopa-
thology and virulent parasite phenotype during experimental in-
fections [13,16,70], it had no effect onMMP activity induction either
in vivo or in vitro. Because both TS isoforms only differ in Tyr342His
and are produced and purified through the same protocols, iTS is
the best control to test the relevance of the enzymatic activity in all
assays involving aTS. Then, in addition to the thrombocytopenia
induced by bloodstream TS sialidase activity, it is also involved in
themodulation ofMMP-2. TS has to facemany proteins in the blood
or on the surface of cells, but it appears that the enzyme can use as
an acceptor (and probably as donors) of the sialyl residue a selected
group of glycoconjugates [74], showed that the enzyme preferen-
tially attacks some proteins on the surface of the target cell, but



Fig. 5. Quantification of MMP-2 activity in supernatant of HT1080 cells treated with: (A) BSA, iTS or aTS (B) aTS in presence of a 2,3SL (a 2,3 sialyllactose), a 2,6SL (a 2,6 sialyllactose)
or Lac (Lactitol). (C) BSA, Neu Sal or Neu Clost. (D) representative zymogram obtained from supernatant of cells treated with BSA, iTS or aTS. Arrows indicate the latent (72 KDa) and
active (62 KDa) forms of MMP-2. *p < 0.05; **p < 0.01 vs. their respective controls; #p < 0.05 vs iTS; xxp < 0.01 vs aTS þ a 2,3SL.
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when the cell breaks, many others become available. Therefore, it
appears that the enzyme does not attack any sialylated protein
when it is in its real context (for example, not in a solution, but on
the surface of a cell), but has a preferential action that could be due
to size or exposure of the target glycoconjugated as suggested by
Mui�a et al., although no other specificity can be disregarded [74]. In
addition, TS is able to attack both Neu5Ac (N-acetylNeuraminic
acid) and Neu5Gc (N-glicolylneuraminic acid) residues, that are the
most abundant sialic acids present in mammals. Humans (and
other primates) are only able to synthesize Neu5Ac although they
can incorporate Neu5Gc from the diet [75].

As mentioned before, TS either acts as sialyl-transferase or as a
sialidase [12]. To establish which of these TS activities are associ-
ated with the induction of MMP-2 activity secretion in human cells,
we co-incubated cells with aTS and lactitol. This competitive sub-
strate leaves the hydrolase activity undisturbed, while preventing
SA transference to endogenous acceptors [17]. Lactitol failed to
block the increase of MMP-2 activity. Moreover, when cells were
incubated with aTS in the presence of a2,3-sialyllactose, a classical
SA donor in TS-catalyzed reactions, the increase in MMP-2 was not
89
observed, meaning that TS hydrolyzes SA from the donor instead of
from cell-surface molecules. Taken together, these results show
that cell surface desialylation by TS induces MMP-2 activity in
HT1080 cells (Fig. 5B). Further, bacterial neuraminidases with SA
a2,3 cleavage ability induced increased MMP-2 activity, suggesting
that this phenomenon might not be restricted to T. cruzi infection
only. Interestingly, while both bacterial neuraminidase and T. cruzi
sialidase activate only MMP-2, the mammalian sialidase Neu-3,
specific for SA a2,3 recognition observed in human prostate can-
cer models [69], is able to modulate both MMP-2 and MMP-9.

Neuraminidases are virulence factors from several bacteria, vi-
ruses and parasites, involved in the induction of diverse pathogenic
mechanisms associated to their life cycles, and present different
substrate specificity, SA at a2,3, a2,6, a2,8 [76e79]. In addition to
Salmonella sp and Clostridium sp., there are many bacteria such as
Streptococcus pneumoniae, Vibrio cholerae, Gardenerella vaginalis,
and virus such as Influenza [2,80e83] that express sialidases able to
remove a2,3 SA. Our findings show that neuraminidases regulate
MMPs, a mechanism that can apply to the wide diversity of
neuraminidase-expressing pathogens, which in turn can cause



Fig. 6. Quantification of MMP-2 activity in supernatant from HT1080 cells treated with: aTS, Neu Sal (Salmonella typhimurium neuraminidase), Neu Clost (Clostridium perfringens
neuraminidase) or BSA and pretreated or not with (A) PP2; (B) Chelerytrine or (C) U0126. *p < 0.05; **p < 0.01 vs BSA; #p < 0.01; ##p < 0.01 vs the correspondent
enzyme þ inhibitor.
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huge local or systemic disorders depending on their biological
context.

The sialylated/desialylated state of receptors has been linked to
cell signaling [84,85]. To elucidate the signaling mechanisms in TS-
induced MMP-2 upregulation, aTS and other neuraminidases were
evaluated in combination with inhibitors of different cell signaling
pathways regulating MMPs [86e88]. While Src inhibitor PP2, had
no effect, Chelerythrine and U0126, PKC andMEK1/MEK2 inhibitors
respectively, abolished the TS-mediated increase inMMP-2 activity,
supporting that the PKC/MEK/ERK pathway might be responsible
for this upregulation.
4.1. Conclusions

In this study we described a novel pathogenic mechanism of TS
neuraminidase activity: the upregulation of MMP-2. This new
strategy, that depends on sialic acid removal, can be shared by
different pathogens like bacteria and virus, revealing an important
point of regulation of MMPs network by pathogens.
90
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