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Malnutrition is associated with a state of secondary immunodeficiency, which is

characterized by a worsening of the immune response against infectious agents.

Despite important advances in vaccines and antibiotic therapies, the respiratory

infections are among the leading causes of increased morbidity and mortality, especially

in immunosuppressed hosts. In this review, we examine the interactions between

immunobiotics-postbiotics and the immune cell populations of the respiratory mucosa. In

addition, we discuss how this cross talk affects the maintenance of a normal generation

of immune cells, that is crucial for the establishment of protective innate and adaptive

immune responses. Particular attention will be given to the alterations in the development

of phagocytic cells, T and B lymphocytes in bone marrow, spleen and thymus in

immunosuppression state by protein deprivation. Furthermore, we describe our research

that demonstrated that the effectiveness of immunobiotics nasal administration in

accelerating the recovery of the respiratory immune response in malnourished hosts.

Finally, we propose the peptidoglycan from the immunobiotic Lactobacillus rhamnosus

CRL1505 as the key cellular component for the effects on mucosal immunity, which are

unique and cannot be extrapolated to other L. rhamnosus or probiotic strains. In this

way, we provide the scientific bases for its application as a mucosal adjuvant in health

plans, mainly aimed to improve the immune response of immunocompromised hosts.

The search for safe vaccine adjuvants that increase their effectiveness at the mucosal

level is a problem of great scientific relevance today.
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INTRODUCTION

Malnutrition is a serious condition characterized by inadequate
intake of both energy and macronutrients (carbohydrates,
proteins, fats) as well as to micronutrient (minerals and vitamins)
deficiency (1). For the WHO, malnutrition consists of both
undernutrition and overweight and obesity, as well as diet-
related non-communicable diseases (2). However, the European
Society of Clinical Nutrition andMetabolism guidelines consider
malnutrition and undernutrition as synonyms and define them
as nutritional disorders (3). Given the lack of a global consensus
on diagnostic criteria, along with new evidence supporting the
influence of disease and inflammation on malnutrition, the
Global Leadership Initiative on Malnutrition (GLIM) involved
most nutrition societies in an effort to standardize the diagnosis
of malnutrition in clinical settings (1, 3). GLIM proposes a three-
step assessment: first, patients must be identified using a validated
screening tool; second, malnutrition requires the presence of
at least one phenotypic criterion and one etiological criterion;
and finally, the severity is based on the threshold levels of
the phenotypic criteria. Regarding the etiology, GLIM classified
malnutrition caused by a chronic disease, distinguishing presence
or absence of inflammation, by an acute inflammatory disease or
by starvation (for socioeconomic or environmental causes that
imply food shortages or hunger) (1, 3). While the number of
overweight children around the world has remained stagnant
for over a decade, 144 million children under the age of 5 were
stunted and 47 million suffered from wasting in 2019 (4, 5).
Furthermore, undernutrition is associated with 45% of deaths
among children younger than 5 years old. This occurs mainly in
low- and middle-income countries (4).

Before the Covid-19 pandemic, almost 690 million people
were victims of chronic hunger. During 2020, the number of
vulnerable children suffering from malnutrition was greater due
to the deterioration in their diet quality and the repercussions
of measures to contain the pandemic (6). The first measures
used to prevent the COVID-19 transmission disrupted food
systems, health and nutrition services, devastating livelihoods
and threatening food security. Faced with this situation, UNICEF,
the Food and Agricultural Organization, the World Food
Program and the World Health Organization, issued a call to
action, warning about the pandemic’s potential to worsen the
pre-existing crisis of malnutrition and tip an additional 6.7
million children over the edge to become wasted during the first
year (7).

The nutritional status affects all aspects of health, including
normal growth and development, and immune response against
diseases. Undernutrition is characterized by a cellular imbalance
between nutrient/energy supply and the demands of the body’s
cells, leading to impaired immune system function among
other alterations (Figure 1) (8). Recent research has emphasized
a preponderant role of the nutritional status of the host in
his/her resistance to infection and as a mediator of its effects
(9, 10). Malnutrition, especially in children and the elderly,
induces a higher risk of dying from common infections, and
increases their frequency and severity, delaying recovery (7).
The interaction between malnutrition and infection can create

a life-threatening cycle of disease exacerbation and deteriorating
nutritional status (Figure 1).

Despite important advances in vaccines and antibiotic
therapies, the respiratory infections are among the leading causes
of increased morbidity and mortality in immunosuppressed
hosts. A clear example is observed in the alarming growth of
epidemiological data of the current pandemic by SARS-CoV-2,
where the lack of availability of vaccines or effective treatments
has the world scientific community on edge. Thus, a healthy
immune system is the most important weapon against this
and other infections. Several clinical and animal model studies
have demonstrated the ability of immunobiotics to beneficially
modulate respiratory immunity (11–14). In this sense, our
research group has shown that the mucosal administration (oral
or nasal) of some inmunobiotic strains or their postbiotics (cell
wall and peptidoglycan) can beneficially modulate respiratory
immunity, improving the immune response against bacterial and
viral infections in immunocompetent and immunocompromised
hosts (15–20). In this way, we consider that immunobiotic
bacteria can be used in therapies aimed at modulating the
immunity of the respiratory mucosa, especially in populations
at risk.

In this review, we examine the interactions between
immunobiotics or postbiotics and the immune cell populations
of the respiratory mucosa. In addition, we discuss how this cross
talk affects the maintenance of a normal generation of immune
cells which is crucial for the establishment of protective innate
and adaptive immune responses. Furthermore, we describe the
result that demonstrated the effectiveness of immunobiotics or
their postbiotics nasal administration in accelerating the recovery
of the respiratory immune response in malnourished hosts.

PROTEIN-MALNUTRITION IMPAIRS THE
RESPIRATORY INNATE IMMUNE
RESPONSE AGAINST PNEUMOCOCCAL
INFECTION

There is a growing appreciation of malnutrition as a set of
overlapping comorbidities that are not well-known (21–23).
Understanding the pathogenesis of undernutrition across the
spectrum is essential to support current international goals
with novel therapeutic approaches to improve nutrition, health,
and well-being (7). Lack of protein is known to affect people
more significantly at a very young age or much later in life.
Older malnourished people are at risk of prolonged hospital
stays, infections, impaired respiratory function, and death (24–
26). Malnourished children by protein deprivation die mainly
from common infections (23, 27), implying that mortality is
related to underlying immunodeficiency, even in mild forms
of undernutrition (28). Our approach is directed to childhood
malnutrition that affects the development and performance
of the immune system. Protein-deprived immune dysfunction
involves innate and adaptive immunity and is therefore a key
factor in the vicious cycle that leads to clinical malnutrition
(Figure 1). In the last decades, high number of investigations
about failures in innate and adaptive immunity in malnourished
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FIGURE 1 | Simple view of immune system as a shield. (A) An adequate nutritional state, a balanced microbiota and a correct immunization guarantee the

strengthening of our immune defenses. (B) Protein-energy malnutrition is associated with immune dysfunction and an increase of susceptibility to infectious diseases.

In turn, immune responses to infectious diseases enhance nutrient requirements, reduce appetite, and impede the absorption of nutrients creating and perpetuating a

vicious cycle (Figure created with Biorender.com).

children (23, 27) as well as in experimental models (16,
29) have been systematically published. Such alterations affect
the ability to respond especially against bacterial and viral
respiratory pathogens. Respiratory infections are among the
leading causes of morbidity and mortality in children, and
are caused by both asymptomatically residing bacteria with
pathogenic potential, and pathogenic bacterial species, such as
Streptococcus pneumoniae (30, 31). This respiratory pathogen
colonizes the nasopharynx asymptomatically in healthy humans
with higher colonization rates in children. However, it causes
otitis media in 50% of cases and is the most common cause of
bacterial pneumonia in humans (32). S. pneumoniae can also
induce invasive septicemia and meningitis with high mortality
rates. In developed countries, rates of pneumococcal disease
have dropped considerably in recent years due to vaccination.
Nevertheless, it continues to be an important cause of morbidity
and mortality seen globally in immunosuppressed patients and
particularly causing about 810,000 deaths in children under 5
years of age (30, 31). Currently, COVID-19 co-infections are
associated with a higher number of fatal cases compared to
those with COVID-19 alone (33, 34). An adequate innate and
adaptive immune response is essential to eradicate S. penumoniae
from the host (16, 18). Several factors could be involved in the
impairment of innate immune response against S. pneumoniae in
protein-deprived malnourished hosts.

Alveolar macrophages are the first cells to be activated by
pulmonary infection and their response is especially important
in S. pneumoniae infection (18). Protein deprivation reduces the
number of the two main populations of alveolar macrophages
at steady state, the lung-resident alveolar macrophages with
self-renewal capacity, and those derived from monocytes. Faced
with a bacterial load that exceeds the ability of alveolar
macrophages to phagocytize, they can coordinate a pro-
inflammatory and antimicrobial local environment by recruiting
additional phagocytes critical for bacterial clearance (35).

However, protein-deprived malnourished mice have difficulty
eradicating a lung pathogen because, on the one hand, their
alveolar macrophages produce low levels of mediators necessary
for recruitment, such as TNF-α, IL-1β and IL-6 at the local and
systemic level. On the other hand, the populations of neutrophils,
monocytes, macrophages, and dendritic cells (DC) are impaired
bymalnutrition (36–38). In addition, protein deprivation reduces
the effectiveness of alveolar macrophages to coordinate an
anti-inflammatory environment to facilitate lung tissue repair,
preventing the resolution of inflammation and causing excessive
tissue damage (19, 39, 40). Namely, IL-10 production during
pneumococcal infection, a critical anti-inflammatory cytokine
necessary to control excessive lung inflammation, is reduced by
protein deprivation (19, 38, 40).

It is known that neutrophils are key cells during a
respiratory infection (41) and malnutrition impairs steady-state
and emergency granulopoiesis in mice (29, 38). Consequently,
protein-deprived malnourished mice suffer from leukopenia
and neutropenia, especially during pneumococcal infection,
and show a reduced capacity to recruit neutrophils into
infected lungs (19, 38), A reduced expression of CXCL12 is
observed in bone marrow during a pneumococcal infection
in malnourished mice by protein deprivation, possibly as a
mechanism for the preservation of hematopoietic stem cells
(29, 42). At the same time, the lack of increase in GM-
CSF and IL-1 in bone marrow is responsible for a defective
emergency granulopoiesis against the infectious challenge by
not expanding the multipotent progenitors and common
lymphoid and myeloid progenitors (29, 43, 44). In addition,
protein deprivation can influence following events in neutrophil
homeostasis such as their functionality. It was demonstrated
that the protein deprivation induces an impairment of the
myeloperoxidase activity and the phagocytic capacity of the cells
of the broncho-alveolar lavage and blood in mice (19, 44). This
impairment partly reflects the functional limitations of immature
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cells (44). Thus, malnutrition is responsible for the failure of
pneumococcal clearance from the lungs, and for an unproductive
inflammatory response.

IMMUNOBIOTICS AND POSTBIOTICS
ACCELERATE THE RESPIRATORY INNATE
IMMUNITY RECOVERY OF
MALNOURISHED HOSTS

There is recent evidence of the immunobiotics’ use as dietary
supplements to enhance immunity and resistance against
infection in protein-deprived malnourished hosts. Most of the
bibliography demonstrates the potential of oral administration
of immunobiotics to beneficially modulate respiratory immunity
by studies in animal models and clinical trials (16, 18,
29). In addition, nasal administration of immunobiotics has
been proposed to preferentially induce systemic immunity
and especially stimulate the tissue of the respiratory mucosa,
which provides an advantage in protection against respiratory
pathogens (18, 38, 45). The greater efficacy of the intranasal
probiotic compared to the oral route could be due to the stronger
stimulation of the immune cells of the airways in the nasal cavity
and the upper respiratory tract. However, intranasal delivery
of immunobiotics is poorly understood and warrants further
studies. Several nasal immunobiotic treatments are known,
mainly used to beneficially modulate the immune response in
models of respiratory infection, allergy and chronic obstructive
pulmonary disease, but very are not known in malnutrition
models (45).

It is important to note that the administration of
viable microorganisms could imply a risk to the health of
immunosuppressed patients (46), consequently the use of
postbiotics could be an interesting alternative to stimulate
immunity (19, 47). In this sense, it is known that the host’s
response to an immunobiotic depends on the combination of the
different bacterial molecules that can interact with the various
receptors on the host cells (48). The cell wall, peptidoglycan,
exopolysaccharides or secreted metabolites are most commonly
molecules of immunobiotic bacteria that are associated with
immunomodulatory effects and their beneficial impact on
health (49–51). However, there is little literature about nasal
administration of postbiotics.

Keeping these concepts in mind, we will now describe
the most relevant findings of the beneficial effects of nasal
administration of immunobiotics and postbiotics on the
innate immune response in the context of malnutrition by
protein deprivation. The nasal administration of immunobiotics
Lactobacillus casei CRL431 or Lactobacillus rhamnosus CRL1505
during a mice repletion diet induces an increase in the number
and activity of phagocytic cells of the respiratory mucosa before
an infectious challenge (37, 40). In particular, L. rhamnosus
CRL1505 is able to normalize the number of monocytes and
alveolar macrophages in the lungs (37). CRL1505 strain is also
able to up-regulate the expression of the MHC II activation
marker in lung DCs and to improve CD11b+ DC population
specially (37). Even more, the peptidoglycan obtained from L.

rhamnosus CRL1505 (PG05) is able to increase the number and
activation of alveolarmacrophages isolated from bronchoalveolar
lavage. These is determined by an increase in the expression of
MHCII in CD11c+F4/80+ cells before an infectious challenge
(19, 20). In line with these findings, the mice renourished
with the nasally administered immunobiotic CRL1505 or its
PG05 normalize the number of neutrophils and increase the
positive peroxidase cells of peripheral blood (19, 20, 38). These
effects are related to the acceleration of the recovery of the
steady-state myelopoiesis affected by protein deprivation (38).
Renutrition treatments supplemented nasally with L. rhamnosus
CRL1505 and PG05 are effective in restoring bone marrow tissue
architecture, increasing proliferating bone marrow cells, Gr-1high

mature myeloid cells, and neutrophils. Although the mechanisms
are not known, it has been shown that peptidoglycan from
the microbiota can be found in the neutrophil fraction in the
bone marrow, and exert a physiological stimulation of steady-
state myelopoiesis (28, 41). Our findings reinforce the idea that
microbial products benefit the host by enhancing systemic innate
immune function.

The nasal administration of L. rhamnosus CRL1505 during
repletion diet induces increased resistance to infection by S.
pneumoniae in mice (38, 52). This immunomodulatory effect
is similar to that of PG05, the cellular wall or the non-
viable form of CRL1505 strain (19). When we performed
a comparative study the effect of PG05 and peptidoglycans
from L. plantarum CRL1506 (immunomodulatory strain),
and L. rhamnosus CRL534 (non-immunomodulatory strain),
we demonstrated that PG05 has unique immunomodulatory
properties that cannot be extended to peptidoglycans from
other strains (20). The increase in resistance to infection
was evidenced by the fast elimination of S. pneumoniae
from the lungs, the reduction of lung damage demonstrated
by the decrease in LDH activity and the concentration of
albumin in bronchoalveolar lavage, accompanied by preserved
histological characteristics of the lungs (19, 20, 36) (Figure 2).
Besides bacterial infections, nasal probiotics have also been
used for viral respiratory infections in mice caused by
Influenza virus (53–56), Respiratory Syncytial Virus (13) and
Pneumovirus (57).

During the innate immune response against S. pneumoniae,
protein-deprived malnourished mice that received preventive
intranasal administration of the strain CRL1505 or PG05,
show an increase in leukocyte counts at the respiratory level,
accompanied by a recruitment of neutrophils at the alveolar
level (CD45+Gr1+ cells) (19, 38). Unlike the viable strain
that induces an increase in the number of leukocytes and
neutrophils in peripheral blood, PG05 does not modify these
parameters. However, the functionality of neutrophils has been
increased by the immunobiotics and the postbiotics (19, 38).
These findings could be related to the ability of these treatments
to enhance emergency myelopoiesis, since the CRL1505 strain
is capable of promoting the proliferation and differentiation
of myeloid progenitors and increasing growth factors such as
GM-CSF and G-CSF in bone marrow (38). In addition, the
preventive nasal treatments with immunobiotic can modulate
the CXCR4/CXCL12 signaling axis that regulates the exit of
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FIGURE 2 | Modulation of respiratory innate immunity by immunobiotic or postbiotic nasal treatments in malnourished host. Proposed mechanism for the distal

immunomodulation induced by the immunobiotic strain Lactobacillus rhamnosus CRL1505 or its peptidoglycan and the enhancement of the resistance against

Streptococcus pneumoniae infection through the improvement of the lung innate immune response and myelopoiesis (Figure created with Biorender.com).

myeloid cells during emergency myelopoiesis. Consequently,
preventive treatment with PG05 induces an increase in the
number of alveolar macrophages (CD11c+F4/80+MHCII+ cells)
and MHCII expression in both lung and spleen macrophages

(19, 20) (Figure 2).
Namely, immunobiotics can influence blood IL levels (18),

which is consistent with our findings that demonstrate the
ability of L. rhamnosus CRL1505 and its peptidoglycan to

normalize serum levels of TNF-α, IL-1β, and IL-6 in protein-

deprived malnourished mice during innate immune response
against S. pneumoniae. Furthermore, these preventive treatments
increase the serum levels of IL-10 and INF-γ (19, 38). Despite
the fact that the challenge with S. pneumoniae induces an

increase in the levels of pro-inflammatory cytokines and

chemokines at the pulmonary level, the supplementation of
the diet with L. rhamnosus or PG05 shows a low TNF-α/IL-

10 ratio. This modulation of the inflammatory response has

a direct relationship with recovery of lung histopathology (19,
20, 38). We speculate that other innate response cytokines

and chemokines, such as KC or MCP-1 (58, 59), produced by

pulmonary epithelial cells or alveolar macrophages, could be
involved in modulation of the inflammatory response. Moreover,

this cytokine balance induces by L. rhamnosus or its PG05 could
be responsible for the increase in the number of phagocytic
cells in the lung, but also in the activity of blood peroxidase
and the number of macrophages in the spleen. In this way,
new questions are opened about the mechanisms that underlie
the capacity of immunobiotics and postbiotics on myelopoiesis
in malnutrition.

PROTEIN-MALNUTRITION IMPAIRS THE
RESPIRATORY SPECIFIC IMMUNE
RESPONSE AGAINST PNEUMOCOCCAL
INFECTION

To achieve complete protection against pneumococcus, both
innate and adaptive immune mechanisms are necessary
(60). Pneumococcal exposure leads to the generation of
both T-cell and B-cell immune responses to polysaccharide
and protein antigens (61, 62). However, malnutrition affects
the lymphopoietic organs, altering the immune response.
It is widely accepted that nutritional deprivation leads to
lymphoid atrophy, as demonstrated in animal models (63, 64)
and clinical trials (65, 66). Cellular apoptosis plays a key
role in altering lymphopoiesis and atrophy of lymphoid
tissue, as thymus and spleen, during malnutrition by protein
deprivation (67). Furthermore, nutritional deficiencies increase
apoptosis in peripheral blood lymphocytes of malnourished
children (68).

The thymus is the main organ of thymopoiesis and a key
target organ in malnutrition. Taking into account that T cells
are a main component of the specific immune response, several
research have described the effect of protein deprivation on
the number and function of T cells. In clinical studies in
malnourished individuals, spoilage of T cell functionality (66),
decrease in the number of CD4 and CD8T cells in the blood
(69) and deterioration of thymic T cell production (65–67) was
observed. On the other hand, animals fed a protein-deficient diet
showed thymic atrophy, reduced number of thymic cells and
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lymphocytes (70), and decreased number of T cells (71, 72). Even
more, Barbieri et al. (70) demonstrated a reduced entry into the
thymus of CD4−CD8− double negative cells (DN) from bone
marrow in protein-deprived malnourished mice. In thymus,
malnutrition affects the four stages of maturation according to
the differential expression of CD44 and CD25: CD44+CD25−

(DN1), CD44+CD25+ (DN2), CD44−CD25+ (DN3) and
CD44−CD25− (DN4) (70). Consequently, both CD4+CD8+

double positive (DP) CD3−/lowαβTCRlow thymocytes, more
abundant cells of the thymus that are derived from DN4
thymocytes, as well as CD4+ and CD8+ simple positive (SP)
CD3highTCRhigh immunocompetent T cells that leave the thymus
toward the periphery decrease significantly in protein-deprived
malnourished mice (70, 73). Although nutritional deprivation
induces a reduction in the number of T lymphocytes and
CD8+ cells in bone marrow, spleen and lung, an increase in
CD4+ T cells is observed in bone marrow. This increase is
accompanied by a decrease in CD4+ T cells in the spleen
and lung. It is possible that the bone marrow tries to restore
normal hematopoiesis in the face of hypoplasia-induced stress
present in protein malnutrition (63, 74, 75). In the protection
against S. pneumoniae, the induction andmaintenance of antigen
specific T cell responses is essential. However, malnourished
animals are unable to effectively increase the levels of certain
cytokines, such as IL-2, IL-4, INF-γ, or IL-10, in response to S.
pneumoniae at the respiratory or systemic level (20, 70).

As mentioned above, protein malnutrition induces a
significant reduction in the cellular compartments of the bone
marrow (17), and this has been shown to be negatively affected in
the B cell population (63). In adults, B cells are generated in the
bone marrow, reaching the stage of transitional B cells, which are
short-lived and functionally immature. These cells develop into
mature B cells in the spleen and recirculate between the lymph
nodes (76). In this sense, it is known that nutritional deprivation
impairs the populations of B cells in the bone marrow, observing
a reduction of the complete B cell compartment (B220+ cells) in
malnourished mice (36, 63). In parallel with the total decrease
of B cells, it is observed that the number of pro-B/pre-B
(B220intermIgM−) and immature B cells (B220intermIgM+)
is lower in the mice deprived of protein. This reduction in
immature B cells is accompanied by an increase in the percentage
of mature B cells (B220highIgM+) but not by changes in the
total number of mature B cells (63). Furthermore, malnutrition
reduces the number of spleen B cells as well as all subpopulations
of B cells, such as mature (CD19+B220HighCD24LowIgM+),
immature (CD19+B220LowCD24High IgM+), transitional
1 (IgD+IgMHighCD24High) and transitional 2
(IgD−IgMHighCD24High) B cells (36). These observations
suggest that nutritional deprivation of protein leads to impaired
development of B cells in the bone marrow and spleen.

Mature B cells play an important role in the specific immune
response by producing antibodies after being stimulated,
expanded and selected in the germinal centers in the presence
of the help of T cells (76). During pneumococcal infection
the number of spleen lymphocytes and total B cells increases
(CD19+B220+ cells). However, protein-deprived malnourished
mice show a much smaller increase than normal controls (36).

A detailed study of lung B cell subpopulations shows that
infection reduces the number of lung lymphocytes, without
affecting the number of CD19+B220+ cells. Also, mature B
cells decrease after infection, while immature B cells increase.
However, malnourished mice have fewer of these subpopulations
(36). The number and activity of B and T cells have been
reported to be related to the impairment of the humoral immune
response in malnourished children (77). It has been shown that
protein malnutrition markedly reduces bronchoalveolar lavage
and serum anti-pneumococcal antibodies (36). Furthermore, the
opsonophagocytic activity of IgG antibodies was significantly
reduced in malnourishedmice (36). These findings are associated
with the deterioration of the B cell population in the bone
marrow but without affecting its ability to produce antibodies
(36, 63).

IMMUNOBIOTICS AND POSTBIOTICS
ACCELERATE THE RESPIRATORY
SPECIFIC IMMUNITY RECOVERY OF
MALNOURISHED HOSTS

The recovery of T cells is important for host protection through
the production of cytokines that control and coordinate several
immune effector mechanisms and their ability to influence
antibody production by B cells.

The active thymopoiesis is characterized by high CD3
expression and increased frequency of DP T cells (78). In the
absence of infection, the renutrition treatments supplemented
nasally with L. rhamnosus CRL1505 and its PG05 to protein-
deprived malnourished animals is capable of activating
thymopoiesis by increasing the number of DP T cells (20, 70).
These treatments induce an increase in mature T cells, with a
more remarkable effect on the CD4 SP population. Consequently,
this nasal treatment increases the number of CD3+CD4+ cells in
spleen and lungs. Thus, the administration of lactobacilli during
a renutrition diet could induce an accelerated development of
CD4 SP T cells in the thymus and their migration to peripheral
tissues (20, 70).

As mentioned above, T cell mediated immune responses
are important in the defense against S. pneumoniae. The
supplementation of a renutrition diet with nasal administration
of L. rhamnosus CRL1505 and its PG05 promotes the increase
of DN T cells, at the expense of the maturation stages DN1 and
DN4 (CD25−DN thymocytes) (20, 70). Taking into account that
DN1 cells correspond to progenitors from bone marrow (73, 79)
and that immunobiotic treatments accelerate the recovery of
hematopoiesis in protein-deprived malnourished animals (44,
63), the increase in CD25− DN thymocytes is likely due to
the increased influx of T precursor from the bone marrow
to the thymus during pneumococcal infection. In addition to
promoting the development of CD4+ T cells in the thymus after
the pneumococcal challenge, the treatment with L. rhamnosus
CRL1505 managed to normalize the spleen and bone marrow
CD3+CD4+ population, and maintain the values of lung
CD3+CD4+ cells higher than the malnourished mice (70). This
effect of L. rhamnosus CRL1505 is similar to that induced by
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FIGURE 3 | Modulation of respiratory specific immunity by immunobiotic or postbiotic nasal treatments in malnourished host. Proposed mechanism for the distal

immunomodulation induced by the immunobiotic strain Lactobacillus rhamnosus CRL1505 or its peptidoglycan on the resistance against Streptococcus pneumoniae

infection, maturation and differentiation of T and B cells in bone marrow, spleen, thymus and lung (Figure created with Biorender.com).

PG05 (20), and could be key for protection against S. pneumoniae
infection (80) (Figure 3).

A pneumococcal infection triggers a Th2 response and
cytokines in the airway environment change dramatically.
During this response, the production of IL-4, IL-5, IL-6 and
IL-10 increases, which helps to stimulate B cells to proliferate
and mature into cells that produce anti-pneumococcal IgG, IgM
and IgA antibodies (81). B cell antibody class switching depends
essentially on the Th2 cells (82, 83). Nasal administration of
L. rhamnosus CRL1505 or its PG05 during renutrition induces
a positive regulation of the Th2-cytokine IL4 at the local
and systemic level (20, 70). This modulation is coherent with
the increase in anti-pneumococcal antibodies found after the
application of nasal treatments in malnourished mice. Barbieri
et al. (36) demonstrated the increase in anti-pneumococcal IgA
and IgG at the serum and respiratory levels due to immunobiotic
modulation, while Kolling et al. (20) showed the highest local and
systemic anti-pneumococcal antibody production (IgG, IgM and
IgA) by stimulation with specific postbiotics. These findings are
in agreement with previous reports (83, 84). IL-10 is known to
modulate the immune response induced after a pneumococcal
infection, limiting the inflammatory immune response and
stimulating antibody production in both children and mice (85,
86). In this sense, nasal administration of immunobiotics or
PG05 is responsible for increasing IL-10 levels in bronchoalveolar
lavage of malnourished mice after pneumococcal infection (20,
70). This increase is critical to reduce tissue damage and

neutrophil recruitment to the airways. Furthermore, only PG05
induces the production of IL-2, which is involved in the CD4+ T
cell response against pneumococcal antigens (87). On the other
hand, the role of the Th1-cytokine IFN-γ in protection against
pneumococcal infection is very complex. Low levels of IL-10
are known to be associated with high levels of INF-γ during
pneumococcal infection, leading to exacerbated inflammation
(86). This imbalance, which is characteristic of protein-deprived
malnutrition, is reversed in malnourished animals that received
nasal treatments during renutrition, and is associated with their
greater ability to eliminate the pathogen from the lungs (20,
36). Nasal administration of immunobiotics and postbiotics
represents a non-invasive means to modulate and enhance
T-cell-mediated immunity against respiratory pathogens in
immunosuppressed malnourished hosts. Further studies are
needed to elucidate the type of CD4+ T cells involved in
enhancing defense against pneumococcal infection.

The humoral response against S. pneumoniae in the upper
respiratory tract results in the production of IgA that can
protect the host against pathogen colonization (88). In the
alveolar space, S. pneumoniae induces the differentiation and
expansion of plasma cells secreting IgG antibodies (89, 90).
IgG antibodies are opsonizing, allow complement fixation, and
enhance the microbicidal activity of macrophages. Humoral
immune activation in the lungs also induces the systemic
antibodies production to prevent the passage of S. pneumoniae
into the blood (91). As previously stated, protein-deprivation
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impairs the production of mucosal IgA and IgG (36, 92)
and opsonophagocitic activity of IgG antibodies in serum and
bronchoalveolar lavage (36). Nasal preventive treatment with
L. rhamnosus or its postbiotic induces an efficient humoral
immune response with serum and respiratory IgG and IgA levels
higher than malnutrition and well-nourished controls, as well
as a greater opsonophagocytic activity (20, 36). In addition,
the findings on improved antibody production are associated
with an increase in mature and immature lung and bone
marrow B cells and spleen mature B lymphocytes found in
animals receiving preventive nasal treatments (20, 36) (Figure 3).
Hence, the renutrition treatment supplemented nasally with L.
rhamnosus CRL1505 or PG05 is able to increase the number
and functionality of respiratory B cells. These treatments have
the ability to impact bronchus associated lymphoid tissue
and/or naso-pharynx-associated lymphoid tissue, and from there
accelerate the recovery of central lymphoid sites such as bone
marrow, thymus and spleen affected by malnutrition.

FINAL REFLECTIONS

To date, no other nasal treatments in immunocompromised
hosts are known to be as effective as those published by our
group. Most of the known immunobiotics that can improve
resistance to infection in immunocompromised hosts are
administered orally (93, 94). However, our experience indicates
that nasal administration is the optimal way to modulate the
local response against infection with respiratory pathogens. The
intestinal microbiotamaintains the immune defensemechanisms
in the respiratory tract, allowing efficient effector responses to
the challenge of pathogens. Immune cells are directly exposed to
bacterial products released in the intestine (41, 95). In addition to
this gut-lung axis, the lungmicrobiota contributes significantly to
airway tolerance and immune responses to respiratory infections
(96, 97). Knowing the microorganisms that colonize the lungs
in healthy and disease hosts, the metabolites they generate,

and the immune response they modulate is the objective of
current lines of research in the world (98). In this sense,
immunobiotics or postbiotics, administered nasally, could act
as intermediaries to modulate the immune responses triggered
by PAMPs of respiratory pathogens. In this way, they could
contribute to restoring and maintaining pulmonary homeostasis.
These hypotheses open an interesting topic for future research.

In conclusion, the renutrition treatment supplemented
nasally with L. rhamnosus CRL1505 or PG05 is able to
accelerate the improvement of the number and functionality
of respiratory myeloid, B and T cells. These treatments
have the ability to impact the respiratory mucosa-associated
lymphoid tissue, and from there accelerate the recovery of
bone marrow, thymus and spleen damaged by malnutrition.
Consequently, nasal supplementation with this immunobiotic
or postbiotic results in an increase in resistance to a
respiratory infectious challenge and an effective innate and
specific immune response against the pathogen. The properties
described for L. rhamnosus CRL1505 and its peptidoglycan,
a new bioactive agent, underpin the scientific basis for their
application as mucosal adjuvants in health plans, mainly aimed
at improving the immune response of immunocompromised
hosts. The search for new vaccine adjuvants that increase their
effectiveness at the mucosal level is a problem of great scientific
relevance today.
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