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A B S T R A C T

Accurate identification of aquatic organisms and their numerical abundance calculation using echo detection
techniques remains a great challenge for marine researchers. A software architecture for echo data processing is
presented in this article. Within it, it is discussed how to obtain energetic, morphometric and bathymetric fish
school descriptors to accurately identify different fish-species. To accomplish this task it was necessary to have a
development platform that allowed reading echo data from a particular echosounder, to detect fish aggregations
and then to calculate fish school descriptors that would be used for fish-species identification, in an automatic
way. This article also describes thoroughly the digital processing algorithms for this automatic detection and
classification, as well as the automatic process required for surface and bottom line detection, which is necessary
to determine the exploration range. These algorithms are implemented within the ECOPAMPA software, which is
the first Argentinean system for marine species identification. Finally, a comparative result over experimental data
of ECOPAMPA against EchoviewTM Software Pty Ltd (formerly Myriax Software Pty Ltd), is carefully examined.
1. Introduction

Since hydroacoustics can provide a continuous high resolution
sampling of a large volumes of water over a short period of time,
compared to other sampling technologies such as electromagnetics and
optics, it is currently the most efficient tool to remotely study the
aquatic environment (Simmonds and MacLennan, 2006). Today it is
possible to generate a great amount of data during an acoustic survey,
usually several GBytes per day. For this reason the extraction of useful
information is delayed for a post-processing analysis stage. In addition,
it is necessary to design new tools to speed up the scrutinizing process
of these acoustic data. During a regular fish stock assessment it is
possible to detect hundreds or thousands of fish schools. Therefore
automatic detection of echotraces becomes a very valuable request. In
a recent past, a profuse literature has been published describing the
results of applying image processing to recognize fish schools silhou-
ette's automatically, allowing the assessment of interesting information
about size, shape, structure and position in the water column of the
aggregations (Coetzee, 2000; Diner, 2001; Lefort et al., 2012; Scalabrin
and Mass�e, 1993).
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The ECOPAMPA, presented in this article, is a software tool to scru-
tinize synthetic echograms packed into different proprietary formats
(Blondel, 2009; Blondel and Murton, 1997). ECOPAMPA has been pro-
moted by the “National Institute for Fishery Research and Development”
(INIDEP) and designed at INTELYMEC – CIFICEN Research Group, Fac-
ulty of Engineering at Universidad Nacional del Centro de la Provincia de
Buenos Aires (UNCPBA). This software incorporates innovative algo-
rithms for automatic detection of the sea bottom, surface and fish schools
echo data based on Digital Image Processing (DIP). This suite of tools has
been designed to extract and export fish school descriptors into a data-
base for further analysis. Besides, this software allows classifying fish
schools using Artificial Neural Network (ANN) (Cabreira et al., 2009).

This article is organized as follows: in Section 2 we describe materials
and utilized methods. In Section 3 we detail in the methods for automatic
detection of fish schools, surface and bottom lines, extraction of de-
scriptors and classification for fish-species identification. In Section 4, we
show experimental results, and compare them against those obtained
using EchoviewTM Software Pty Ltd (formerly Myriax Software Pty Ltd).
Finally, in Section 5 we discuss and conclude on expected perspectives
from this work.
anuary 2021
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2. Material and methods

The proposed architecture for ECOPAMPA software is shown in
Figure 1. This approach consists of a group of sequential procedures
based on Digital Image Processing (DIP), including image segmentation,
morphological operations, edge detection, image representation, Binary
Large Object (BLOB) analysis and classification with ANN (Gonzalez and
Woods, 2001; Haykin, 2009; Pratt, 2001; Qiusheng et al., 2014; Russ,
Figure 1. Flowchart of proposed architecture fo
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2000). As seen in Figure 1, these sequential procedures are applied to
files containing acoustic data recorded by a digital echosounder. These
data within each file are arranged as a set of telegrams with detailed
survey information, such as echosounder settings, acquisition date and
time, vessel location (latitude and longitude) and scatter recordings,
among others.

As a first step, several acoustic data files are uploaded to recover
observations collected in sampling missions. They were obtained by
r image processing in ECOPAMPA software.
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INIDEP along several surveys carried out for fish stock assessment over
an area above 1.000.000 km2, between latitudes 35ºS and 56ºS, and from
the coastal zone to the continental slope. The echo data that include
backscattering strength Sv, were obtained using several SIMRAD (EK500
system) digital echosounders (Simrad AS, 2001, 1996), each one on
board of different fishing vessels, and saved by means of a Bergen Echo
Integrator (BEI) software (Foote et al., 1991; Korneliussen, 1993, 2004)
in two formats, BEI file sets (*.ping) and raw data files (*.dgx files). Once
the acoustic files were obtained, in a second step, an echo strength trans-
formation (see Figure 1) is performed. This process transforms an echo
data sequence (stored in a matrix) into digital images or synthetic echo-
grams for visualization and for the processing described in next Section 3.
Visualization will be explained at the end of this section. From the syn-
thetic echogram, we define the echo signal strengthf ðpÞ, as a function of
the echo depth p, for a fixed echosounder position. On survey campaign
navigation, successive echo data are stored along the track. Conse-
quently, it is possible to define a two-dimensional function f ðd;pÞ, where
d stands for distance (traveled by the vessel) between consecutive echo
data samples. The variables d (distance along the track in centimeters,
represented by an integer), p (echo depth in centimeters, represented by
an integer) and f (echo strength, represented in dB) at each point ðd; pÞ
are in this way discretized to be processed as follows.

From f ðd; pÞ the digital image is represented as a two-dimensional
intensity function Iðx; yÞ, where x and y are the spatial discrete co-
ordinates in the plane defined along the survey track downwards. The
intensity level I at each point ðx; yÞ gets discrete values in the range [0,
255] and represents a pixel color (Gonzalez and Woods, 2001). Thus,
digital echo data f ðd; pÞ are linearly transformed into a digital image
Iðx; yÞ mapping from echo intensity (in decibels - dB) values, to pixel
intensities at different positions and depths. This mapping process can be
either binary or multiple. On one hand, it is binary when the intensity is
separated into two different value ranges, below and beyond a single
threshold (see Section 3.A). On the other hand, it is multiple when the
intensity is divided into nþ 1 value ranges, using n thresholds.

In this work, binary transformation is used during echo data pro-
cessing for contours determination. In other words, a single threshold
was used for surface line, bottom line and fish schools contour detections.
Conversely, multiple transformations are used to generate a digital image
for visualization. In particular, to obtain the synthetic echogram for final
identification and classification, we divided the echo signal strength
f ðd; pÞ into twelve color categories, from grey corresponding to the
weakest signal to brown equivalent to the strongest (see Figure 2). The
Figure 2. Processing of a typical Anchovy school echogram: (a) raw synthetic echo
school contour detection in blue.
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scale is logarithmic with a 3 dB step between each color, with a color
scale range of 36 dB, mapping from the weakest to the strongest echo
signal (Simrad AS, 2001, 1996).

3. Digital echo data processing

This software architecture of Figure 1, was employed to on-line
analyze echo data for the detection of the study objects. Surface line,
bottom line and fish schools were automatically recognized, and dis-
played into the echogram, as will be described in Section 3.A and Section
3.B. Finally, a detailed digital image was produced, like the one in
Figure 2 showing a typical echogram for an anchovy school (Engraulis
anchoita). Figure 2 (a) plots an example of synthetic echogram before
applying any object recognition process. This echogram was acquired
with a SIMRAD EK500 echosounder. Figure 2 (b) shows the recognition
results for surface line, bottom line and fish school contour. The detected
objects contours are outlined in blue color.

3.1. Surface and bottom line detection

The shapes found in the echograms are highly irregular in general.
Then, effective and robust detection processes are required to achieve
reasonable classification performance. Water surface, sometimes referred
as first echo line, and sea bottom, also referred as second echo line, are
needed to determine the range to explore and then to detect the fish
schools. In addition, efficient detection processes lead to computational
time optimization. Therefore, accurate surface and bottom line detection
constitutes a fundamental task for fish school descriptors assessment
required for precise fish-species identification. Surface and bottom line
detection (as presented in Figure 1) requires similar DIP chains (binary
thresholding, opening, substraction and chain code), some of them with
different parameter settings. Even though they are standard image pro-
cessing procedures, they are briefly described in what follows for clarity.

3.1.1. Binary thresholding process
In the context of DIP, binary thresholding process is used to extract

study objects from background by selecting a threshold T (Gonzalez and
Woods, 2001; Pratt, 2001; Russ, 2000). In this work we used T ¼ 70dB,
as recommended by the experts from INIDEP. This fixed value has been
used across this study wherever significant signal has to be distinguished
from background. It has been used to identify bottom and surface lines as
well as fish schools contours. In this way, echo data intensities f ðd; pÞ,
gram; (b) processed synthetic echogram with surface line, bottom line and fish
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arranged in the Echo Data Matrix, are compared against this threshold
and separated in two intensity values 0 (below) and 1 (above), according
to Eq. (1).

gðd; pÞ¼
�
1 if f ðd; pÞ > T
0 if Iðd; pÞ � T

(1)

These intensities are used to make the following classification: the
group with intensity 1 is considered as object and the group with intensity
0 is considered as background. Note that the parameter p in Eq. (1) is
constraint to a certain range to detect the surface and it is constraint to
another range to detect the bottom. These ranges are predefined by
expert users, according to the case study. Applying Eq. (1) to the dxp
elements of the Echo Data Matrix yields the thresholded echo data image
gðd; pÞ; of the same size.

3.1.2. Opening process
In DIP the opening process consists of two binary morphological

sequential operations called Binary Erosion and Binary Dilatation (Gon-
zalez and Woods, 2001; Pratt, 2001; Russ, 2000). Both morphological
operations are defined in set theory (Heijmans Henk, 1994).

Binary Erosion operation “shrinks” or “thins” objects in binary image.
In order to control this shrinking process on a digital image A, a struc-
turing element B is necessary. The mathematical definition of erosion of
A byB, denoted A� B, is defined as:

A� B¼fZjðBÞZ \ Ac 6¼ ∅ g (2)

where A is the binary digital image in Z (set of integers), B is the struc-
turing element, Ac is the set of all values coordinates that do not belong to
set A, and∅ is the empty set. In other words, erosion of A by B is the set of
all structuring element origin locations where the translated B has no
overlap with the background of A.

Binary Dilatation operation “grows” or “thickens” objects in a binary
image. The manner and extent of thickening is also controlled by a
structuring element. The mathematical definition of dilatation of A by B,
denoted A� B, is defined as:

A�B¼fZjðbBÞZ \ A 6¼ ∅ g (3)

where A is the binary digital image in Z, B is the structuring element
and bB is the reflection of the structuring element B. Hence the dila-
tation of A by B is the set consisting of all the structuring element
origin locations where the reflected and translated B overlaps at least
some portion of A. The translation of the structuring element in erosion
and dilatation is known as the mechanics of spatial convolution
(Heijmans Henk, 1994).

The morphological opening operation of A byB, denotedA∘ B, is
simply an erosion operation of A byB, followed by a dilatation operation
of the result byB:

A ∘B ¼ ðA� BÞ � B (4)

Morphological opening removes completely regions of an object that
cannot contain the structuring element, smoothes object contours and
removes small irregularities.

Hence, if gðd; pÞ is the pixeled image, equivalent to A in Eq. (4), and B
is a structuring element, the opening operation leads to the digitalized
image hðd; pÞ. Generally, the structuring element consists of a digital
image of size 3x3 with all its values equal to 1.

3.1.3. Substraction process
In DIP the subtraction operation (Gonzalez and Woods, 2001;

Pratt, 2001; Russ, 2000) consist of subtract (pixel by pixel) two
digital images of the same size. This operation provides the edge or
contour of the objects under study. The substraction operation is
defined as:
4

sðd; pÞ¼ jgðd; pÞ� hðd; pÞj (5)
where gðd; pÞ is the thresholded echo data image and hðd; pÞ is the
resulting digitalized image after morphological opening process (see
Figure 1, boxes 5 and 9). As a result, the digital image sðd; pÞ is obtained
by applying substraction operation.

3.1.4. Chain code process
In DIP the image representation consists of generating the chain code

of exhaustive description of either surface or bottom edges. Chain codes
are one of the shape representations which are used to stand for an edge
by a connected sequence of straight line segments of specified length and
direction. This representation is based on 4-connectivity or 8-connectiv-
ity of the segments (Gonzalez and Woods, 2001). These numerical rep-
resentations are known by Moore neighborhood or Freeman code
(Freeman, 1961). A coding scheme for line structure must satisfy three
objectives: to preserve the information of interest; to permit compact
storage and convenient display; and to facilitate any further processing.

Therefore, the chain code process (with 8-connectivity in our case) is
applied to get mentioned edges, and then stored in the database shown in
Figure 1.

3.2. Fish schools detection

The software design to accurately detect fish schools consists of
applying processes chain in a similar way as for surface and bottom line
detection (see Section 3.A). Note that some processes applied in Section
3.A are reused.

3.2.1. Inferior surface and superior bottom process
This process calculates the inferior point on surface echo line and

superior point on bottom echo line. Both points delimit space to fish
schools range search, mainly to reduce computational effort. This process
is shown as a new stage in our proposed architecture (see Figure 1, box
11). Therefore, using these two points as echo data boundaries allows
defining a useful Region Of Interest (ROI) to apply the following
processes.

3.2.2. Binary thresholding process
This process, already described in Section 3.A, is applied to f ðd; pÞ

with parameterp varying in the ROI, generating again a thresholded echo
data image gðd;pÞ.

3.2.3. Opening process
This morphologic procedure is used to remove small fish schools ir-

regularities (detailed in Section 3.A), and hence leading to smooth fish
schools edges.

3.2.4. Binary Large Object (BLOB) analysis
The BLOB analysis (Qiusheng et al., 2014) is intended to extract ob-

jects from a binary digital image. BLOB refers in general to a group of
connected target pixels in a binary image. In this work we input BLOB
process with the digitalized image hðd; pÞ (opening process output) and
obtain an output list of fish schoolsb1; …; bk, where k represents the
number of fish schools detected in an echo data matrix.

There are three commonly used alternatives for applying BLOB
analysis: multi-scan algorithms (Suzuki et al., 2003), two-scan algorithms
(He et al, 2008, 2009; Wu et al., 2009) and one-scan algorithms (Chang
et al., 2004; Qiusheng et al., 2014; Zenzo et al., 1996). In this work we
use a BLOB analysis algorithm based on RLE (Run Length Encoding)
(Qiusheng et al., 2014) due to its evident computational efficiency. The
algorithm consists of three steps: (1) transform the image using the RLE;
(2) judge the connectivity between two adjacency runs and (3) organize
the runs using a number of RLE-linked lists, manage all the RLE-linked
lists with a single BLOB-linked list, and extract connected region
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features. After finishing these three steps, the following data relation-
ships can be constructed. First, a single BLOB-linked list which represents
all the connected regions in a binary image. Second, the runs of a con-
nected region are allocated to a unique data field which represents the
connected region. Finally, all the runs are organized by the RLE-linked
lists, and all the RLE-linked lists are regulated by a single BLOB-linked
list. This method reduces the time and computational resources as
detailed in (Qiusheng et al., 2014).

The area of a BLOB is defined as the total amount of pixels in the
BLOB. Hence, in order to recognize BLOBs as fish schools, BLOB's area
should be extracted and judged whether it falls within a given range ½Min;
Max� or not. BLOBs, whose area is out of range, will be ignored. The fish
schools can be then identified by the following expression:

BLOBStatus¼
�
SCHOOL; Min � Area � Max
ignored; otherwise

(6)

where Min and Max (minimum value and maximum value) are the
appropriated range area, which are selected by the user.

The center of target-connected region is returned as BLOBs location.
Center coordinates are calculated as the average X and Y for object
location inside binary image:

X¼ 1
m

Xm
i¼1

xi (7)

Y ¼ 1
m

Xm
i¼1

yi (8)

where m is the number of pixels in the BLOB, and xi and yiare their
respective coordinates.

3.2.5. Binary erosion process
Erosion process is applied to the list of images provided by the BLOB

analysis. This process, detailed in Section 3.A, aims to reduce the outline
of each fish school. Note that the erosion process is applied only to the
Table 1. The main fish school descriptors computation for the ECOPAMPA software.

Fish school descriptors Symbol

Energetic

Volume-backscattering strength Sv

Maximum volume-backscattering strength Svmax

Vertical roughness VR

Horizontal roughness HR

Skewness Skew

Kurtosis Kur

Morphometric

Length Lc

Height Hc

Perimeter Pc

Area Ac

Volume Vc

Fractal dimension FD

Elongation EL

Image compactness IC

Rectangularity Rec

Circularity Cir

Bathymetric

School depth Zc

Bottom depth Zf

Altitude index 1 ALT1

Altitude index 2 ALT2
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specific ROI of each fish school, reducing then the use of computational
resources. Hence, we applied Eq. (2) for the binary erosion process,
setting A as each image in the list provided by previous BLOB analysis b1;
…; bk and setting B as the structuring element (again with size 3x3 and
elements’ values equal to 1). We obtained as a result, the eroded image
list e1;…; ek.

3.2.6. Subtraction process
This process subtracts (pixel by pixel) two digital images of the same

size (as was detailed in Section 3.A). We applied Eq. (5) to subtract ei (the
erosion process output) from bi (the BLOB analysis output) to obtain a list
of digital images (schools)s1;…; sk.

3.2.7. Chain code process
chain code process (detailed in Section 3.A) has been also applied

to the images in the lists1;…; sk provided as an outcome of the sub-
straction process. This process scans echo data to generate a border
chain code for each fish school. Then, the resulting chain code and its
central position (assessed using Eqs. (7) and (8) on the corresponding
ROI) for each fish school are stored into a database. This chain code is
also used to display the edges of each fish school on the digital image
(all the steps described in the above paragraphs, are illustrated in
Figure 4 in the results section).

3.2.8. Extraction of fish school descriptors
This process consists of calculating different measurements using the

outline of each fish school detected together with its original echo data
and location in the water column. This method is closely related to BLOB
analysis and edge detection processes since accurate fish school contours
lead to precise descriptors assessment. Finally, fish school descriptors are
also stored in a database and used afterwards to precisely determine
associated species.

In Table 1 we show a quantitative list of fish school descriptors
determined using the ECOPAMPA software. These descriptors were
grouped into three main categories: energetic, bathymetric and
morphological. Morphological measurements length (L), area (A), height
Computations Units

� dB

� dB

� (7.7) and (7.8) of (Zar, 1984) dB

(7.13) and (7.15) of (Zar, 1984) dB

�
�

Lc ¼ ½L � 2Dtanðf =2Þ� m

Hc ¼ H� ct=2 m

Pc ¼ P� 2½ðL � LcÞþðH � HcÞ� m

Ac ¼ AðLcHcÞ=ðLHÞ m2

Vc ¼ LcðHc=2Þ2 m3

FD ¼ 2lnðPc =4Þ=lnðAcÞ �
EL ¼ Lc=Hc �
IC ¼ P2=ð4πAcÞ �
Rec ¼ ðLHÞ=A �
Cir ¼ P2=ðπAÞ �

� m

� m

ALT1 ¼ ðZc þHc =2Þ=Zf m

ALT2 ¼ Zf � ðZc þHc =2Þ m



Figure 3. Morphological and bathymetric descriptors calculated by the ECO-
PAMPA software.

Figure 4. Digital echo data processing using ECOPAMPA software: (a) digital echo da
(d) binary dilatation; (e) edge detection; (f) display of fish school detection (Villar e
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(H) and perimeter (P) were corrected for beam width effects as explained
in (Diner, 2001), considering the pixel resolution. In Table 1 we show
corrected descriptors (Lc, Ac, Hc and Pc) and their dependencies on raw
measurements. The remaining parameters in Table 1 are also defined in
(Diner, 2001).

In order to calculate energetic descriptors for detected fish schools,
the original Echo Data Matrix is also taken into account (see the infor-
mation flow to box 18 in Figure 1). Finally, for bathymetric descriptors
we locate fish school's center to place its position in the water column
(estimated using Eqs. (7) and (8)), with respect to surface and bottom
lines.

In the next Figure 3, we illustrate some of these morphological and
bathymetric descriptors calculated using the ECOPAMPA software, such
as, length (Lc), height (Hc), area (Ac), perimeter (Pc), school depth (Zc),
bottom depth (Zf ) and altitude index (ALT2).
3.3. Fish schools classification

The selection of descriptors and classification methods employed in
ECOPAMPA was based on a previous work (Cabreira et al., 2009). In that
work, three types of ANN models were tested: Self-Organizing Mapping
(SOM), Multilayer Perceptrons (MLP), and Radial Basis Network (RBN)
(Haykin, 2009; Kohonen, 2001). The fish school descriptors, presented in
the previous section, were used as inputs to these ANNs to classify five
types of species: 1. Argentine anchovy (Engraulis anchoita), which are
ta displayed as a synthetic echogram; (b) binary thresholding; (c) binary erosion;
t al., 2014).



Figure 5. Comparison of detection algorithms between EchoView™ and ECOPAMPA software.
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divided into two stocks: northern and southern stocks; 2. rough scad
(Trachurus lathami); 3. sprat (Sprattus fuegensis); 4. longtail hoki
(Macruronus magellanicus) and 5. blue whiting (Malacosteus australis).

The dataset used for training and testing of ANN contains 6400 re-
cords, one record per fish school, from the total of the six analyzed
species/stocks. There were 4100 records of Argentine anchovy (Engraulis
anchoita), which were divided between two stocks: 2999 and 1101 for
the northern and southern stocks respectively; 168 records of rough scad
(Trachurus lathami), 279 of sprat (Sprattus fuegensis), 1768 of longtail hoki
(Macruronus magellanicus), and 124 of blue whiting (Malacosteus aus-
tralis). The dataset was partitioned into two parts; one is used for training
and the remainder is used for testing the ANN. The best performance was
achieved with a partition of 70:30% for training vs. testing. Three
different trials were done: (a) all available fish school descriptors,
including temporal and geographical, were used as inputs; (b) all ener-
getic, morphometric, and bathymetric descriptors were used as inputs;
and (c) only selected energetic and morphometric descriptors were used
as input (the mean volume-backscattering strength Sv and school height
H). Each classification trial was done for the three types of ANNs (SOM,
MLP, and RBN). In each trial, the input vector was the same.

4. Experimental results

ECOPAMPA was implemented in C# using Visual Studio 2010. Data
structure within OpenCV 2.3 (Bradski and Kaehler, 2008) have been used
to optimize processing. The relational database system used was MySQL
version 5.5.16. Besides, in the Appendix we show pseudocode algorithms
for surface, bottom line and fish schools detection and classification.

A subset of available echograms has been used to test the developed
software. Figure 4 shows a synthetic echogram, shown as a digital
7

image in 12 colours, to which we applied the sequence of processes
detailed in Section 3. In Figure 4 (a) we can appreciate the synthetic
echogram of a typical anchovy school (Engraulis anchoita). The pro-
cessing chain leading to these images comprises: thresholding (Figure 4
(b)), opening, i.e. erosion (Figure 4 (c)) and dilatation (Figure 4 (d)),
object edge detection using subtraction process (Figure 4(e)) and final
exposure (Figure 4 (f)). In Figure 5 we show a comparison between
results obtained by means of EchoviewTM school detection (Anon, 1993,
1999; Barange, 1994; Nero and Magnuson, 1989; Scalabrin et al.,
1996; SonarData, 2005; Weill et al., 1993) and ECOPAMPA module.
Several echo data have been used to prove detection algorithms for
both software methodologies. Echo-records used in the analysis have
been previously corrected applying 20 log ðRÞ time varied gain pro-
cedure. A binary threshold (T) of � 70dB, as recommended by INIDEP
staff and the sonar-devices manufacturers themselves, has been used to
separate useful information from background noise. Since all the im-
ages have been collected on similar meteorological conditions, by
means of the same sonar-devices, the same T value has been proved
valid for all the images in this study. EchoViewTM software has been set
up to use “school detection” algorithm, with the same threshold. As can
be clearly appreciated in Figure 5 (a and c), despite the same threshold
(T) has been applied, there is a small deviation between the schools
detected by ECOPAMPA and EchoviewTM. The mentioned difference
comes from the digital image processing used in our approach, which
leads to a more accurate definition of schools. This methodological
difference impacts mainly in the resulting perimeter, as can be
appreciated in Table 2.

In Table 2 we show a list of quantified fish school descriptors used in
both software. The descriptors and assessments of EchoViewTM software
are detailed in (Lawson et al., 2001).



Table 2. Comparison of calculated fish school descriptors between Echoview™ and ECOPAMPA software using fish schools shown in Figure 5.

Fish School Descriptors (a) (b) (c)

ECOPAMPA Echoview ECOPAMPA Echoview ECOPAMPA Echoview

Energetic

Volume-backscattering strength (Sv) -37,529 -37,350 -37,259 -37,150 -35,481 -34.490

Maximum volume-backscattering strength (Svmax) -22,248 -22,247 -22,059 -22,059 -20,319 -20,319

Vertical roughness (VR) 0,00035 0,00035 0,00035 0,00035 0,00036 0,00036

Horizontal roughness (HR) 0,00135 0,00137 0,00035 0,00035 0,00179 0,00180

Skewness (Skew) 6,13104 6,07242 5,29112 5,16035 4,17147 4,16427

Kurtosis (Kur) 51,9423 52,6381 50,2412 49,9377 25,3253 26,4168

Morphometric

Length (Lc) 70,251 61,951 95,1758 95,091 64,803 58,170

Height (Hc) 17,3 18,850 32,7 33,650 30,5 26,050

Perimeter (Pc) 374,674 319,678 513,852 549,973 495,079 349,147

Area (Ac) 778,316 778,262 1610,21 1684,835 1196,05 1047,876

Volume (Vc) 5226,043 25364,9 15021,56

Fractal dimension (FD) 1,363 1,315158 1,359

Elongation (EL) 4,072 2,915033 2,128

Image compactness (IC) 15,445 13,54684 17,101

Rectangularity (Rec) 1,556 1,929872 1,649

Circularity (Cir) 54,370 50,78139 61,798

Bathymetric

School depth (Zc) 28,4 28,692 18,6 17,469 22,8 22,178

Bottom depth (Zf ) 46,95 48,54

Altitude index 1 (ALT1) 0,788485 0,719473

Altitude index 2 (ALT2) 9,93215 13,6175
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In terms of the quantitative assessment of the results shown in
Table 2, when the three samples were compared regarding the energetic
descriptors, they exhibit a small variation between EchoView and ECO-
PAMPA software. This is in the range of a minimum of 0% and a
maximum of 2% in average values.

Otherwise, when compared with the morphometric fish school de-
scriptors, these samples present a greater variation (6% and 21% mini-
mum and maximum values on average, respectively). These variations
are due to the application of different school detection algorithms.
Finally, when they were compared with the bathymetric fish school
descriptor, again a small variation in the range [0%, 6%] of average
values was observed. The computation of these values depends on the
calculation of the center point of the school. Keep in mind that the en-
ergy, morphometric and bathymetric descriptors that cannot be calcu-
lated with the EchoView software are shown without value in Table 2.

A global success percentage rate measurement, considering one per-
centage for each ANN and each trial, is summarized in Table 3. It is
important to note that the ANN gave the same classification output
regardless the input descriptors came from one software or the other.

As it may be seen in Table 3, the best performance was obtained using
all available fish school descriptors as input for the ANNs, in trial (a).
Table 3. Summary of the ANN performance in each conducted trial (Cabreira et al.,

Trial ANN Average

(a) FF 97.99

SOM 96.63

RBN 98.67

(b) FF 84.10

SOM 82.01

RBN 84.43

(c) FF 67.88

SOM 68.73

RBN 66.41
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Taking into account that most of the considered species inhabit non-
overlapping areas and that surveys targeting a particular species are al-
ways done in the same season, it is expected that a good proportion of the
successful species identification will be provided by the geographical and
temporal input rather than by the fish school characteristics themselves.
In order to investigate this further, and to classify species independently
of the geographical and seasonal information, a trial (b) was done
considering all energetic, morphometric, and bathymetric descriptors,
but intentionally excluding the geographic position, time, and date. That
improvement would allow a world-wide application of this tool. As ex-
pected, the overall performance decreased to some extent but it is still
satisfactory for classification purposes.

As a final challenge, it would be interesting to classify the schools
species even ignoring depth detection knowledge. This further relaxation
would allow to detect moving schools towards deeper or shallower wa-
ters due to climate change impacts or due to water temperature changes.
Hence, the trial (c) comprised only selected energetic and morphometric
descriptors as the input for the ANNs and resulted in a further decrease of
the overall performance. The average performance obtained for trials (a)
and (b) may be considered as satisfactory for the simultaneous identifi-
cation of six different kind of fish schools. In addition, training
2009).

Minimum Maximum

97.05 98.50

96.32 96.93

97.05 99.58

83.27 84.98

81.05 83.32

83.64 84.88

66.81 69.54

67.74 69.60

65.87 67.68
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geographically delocalized and season independent ANNs (trial b) also
enables us to improve school classification in overlapping species
regions.

Another conclusion from these trials is that most of the failures in
identifying a given species result from false identifications of other spe-
cies more frequently found in the input dataset, i.e. those having more
records in the database and thus, used the most for the ANNs training. In
our case, this is the Bonaerensis anchovy stock.

5. Conclusion

The ECOPAMPA software presented in this work constitutes a useful
and verified application that is aided to identify and to classify fish
schools of commercial interest. In this way, it is an important tool to
decide whether or not it is worth to fish at a certain place in a certain
time, in order to prevent overfishing, since ECOPAMPA is prepared and
able to operate on-line in real time. Therefore it contributes to elaborate
politics aimed to achieve sustainable fishing industry, as well as to the
monitoring and the evaluation of aquatic ecosystems. This software al-
lows users to easily display, explore and process acoustic data. Further-
more, resorting to key descriptors and classification methodologies with
artificial neural networks, it leads to automatic identification of different
fish-species and its population assessment. Hence, it constitutes a novel
assembly of image recognition, features assessment and category classi-
fication to make available a very useful support tool and pave the way to
human decision-making regarding the fishing industry.

This work is also a good demonstration for both image and acoustic
data processing to enhance image quality and to produce intelligible
pictures. Effectively, ECOPAMPA allows obtaining high quality images
from echosounders outputs. In this sense, the work presented here may
be seen as a general framework and architecture for real time processing
of acoustic data. Different combinations of processing algorithms, fish
school descriptors, and classification approaches also may be used for
new species recognition since the developed general framework will
remain the same. In this sense, it will be very easy to extend its appli-
cability to new seas and species just feeding the developed system with
new training data sets. In addition, and considering the huge amount of
acoustic data available after every campaign, the developed software is of
great value, mainly for the fishing industry and the ecosystems research
institutes, in the processing and the evaluation of terabytes of informa-
tion in real time.

A drawback found in EchoViewTM that could not be overcome for
ECOPAMPA is the need of empirically set the thresholds to discriminate
the target under study from the background. This is a critical point due to
the final classification may strongly depends on this decision of threshold
selection. However, once a first choice is done and validated, the
threshold value can remain fixed all along the campaign. In a near future
we are planning to work in an adaptive tuning of the threshold resorting
to machine learning techniques like reinforcement learning or deep
learning.

Another future work to be carried out is related to next vessel cam-
paigns to classify fish schools in the Argentinean Sea. It is expected that
with new echo data, a significant statistical number of classification and
sampling trials, the current ECOPAMPA performance could even be
improved. From the standpoint of future research, we will explore new
inputs to the ANN from multi-frequency analysis. In addition, we expect
to improve online classification applying deep learning paradigm and
integrating multiple convolutional neural networks (LeCun et al., 2015).
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