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Sialic acid, as component of cell surface glycoconjugates, plays a crucial role in recognition 

events. Efficient synthetic methods are necessary for the supply of sialosides in enough 

quantities for biochemical and immunological studies. Enzymatic glycosylations obviate the 

steps of protection and deprotection of the constituent monosaccharides required in a 

chemical synthesis. Sialyl transferases with CMP-Neu5Ac as activated donor were used for the 

construction of α2-3 or α2-6 linkages to terminal galactose or N-acetylgalactosamine units. 

Trans-sialidases may transfer sialic acid from a sialyl glycoside to a suitable acceptor and 

specifically construct a Siaα2-3Galp linkage. The trans-sialidase of Trypanosoma cruzi (TcTS), 

which fulfills an important role in the pathogenicity of the parasite, is the most studied one. 

The recombinant enzyme was used for the sialylation of β-galactosyl oligosaccharides. One of 

the main advantages of trans-sialylation is that it circumvents the use of the high energy 

nucleotide. Easily available glycoproteins with a high content of sialic acid as fetuin and bovine 

κ-casein-derived glycomacropeptide (GMP) have been used as donor substrates. Here we 

review the trans-sialidase from various microorganism and describe their application for the 

synthesis of sialooligosaccharides.

1 Introduction
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Sialic acid is a crucial family of monosaccharide component of glycoproteins and 

glycolipids usually located at the surface of cells. They were named neuraminic acids 

for their presence in brain neurons (1). The most abundant member of this family of 

about 50 molecules with a common non-2-ulo-pyranosonic structure in mammals is N-

acetylneuraminic acid (Neu5Ac or NANA) (Fig. 1). Derivatives formed by O-acetylation 

are part of this family, being the 9-O-acetyl-N-acetylneuraminic acid the most frequent 

one. Acetylation of O-4 or of the exocyclic O-9 hydroxyl group takes place either to 

provoke or to prevent the interaction with cell receptors (2,3). Another frequent 

modification is the hydroxylation of the N-acetyl group, giving rise to N-

glycolylneuraminic acid (Neu5Gc) which, although it is common in the animal kingdom, 

the corresponding hydroxylase activity is absent in humans (4). Neu5Gc behaves as an 

exoantigen when incorporated with a meat diet (5). Sialic acids are usually linked α2-3 

or α2-6 to galactopyranose units in β configuration (β-D-Galp). 
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Figure 1Family of naturally occurring sialic acids. Adapted from (3)

The electronegative charge provided by the carboxyl group of sialic acids in external 

location may be responsible for cell-cell repulsions, cation binding and masking the 

antigenicity of the glycoconjugate. A classic example of the last process is the 

desialylation of serum glycoproteins which uncovers the next galactose in the glycan 

and allows its uptake by hepatocytes (6). Opposite to masking, sialic acid may be 

recognized by microbial lectins including viruses in pathological processes. The role of 

sialic acid in the infection was recently reviewed (7).
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It is known that influenza viruses link to host sialic acid (SA) during the infection 

process. Most corona viruses (CoVs) recognize 9-O-acetyl-SAs (Fig. 1), but switched to 

recognize the 4-O-acetyl-SA form during evolution of CoVs (8). Although the 

glycobiology related to the recently emerged SARS-CoV-2, the agent of the current 

Covid 19 pandemic, was yet not fully elucidated, recent publications show that the 

viral spike S protein recognizing sialic acid contribute to host tropism (8). This first 

adhesion facilitates later steps in virus spreading. A diagnostic test based on the 

interaction of the spike glycoprotein with Neu5NAc was proposed (9). Understanding 

the protein-carbohydrate interactions in Covid-19 infection may help to the design of 

inhibitors for therapeutic treatment. The spike protein is heavily glycosylated, mainly 

in N-glycosylation sites, and recently, O-linked glycans were also described. Sialic acid 

decorates both types of glycans (10). Virus glycoproteins undergo N- and O-

glycosylation using the glycosylation machinery of the host cells and, therefore, the 

structures vary with the cell type where viral replication takes place (11). The 

sialoglycans at the surface of the partners interacting during infection are a matter of 

study for the developing of inhibitors. The synthetic glycans are a necessary tool for 

these studies, as the natural glycans would not be available in enough quantities. 

Chemical synthesis is usually a cumbersome process, since the polyhydroxylated 

nature of monosaccharides requires the use of protection of the non-participating 

groups in the glycosylation steps and the consequent deprotection to afford the 

glycan. This problem may be overcome by enzymatic syntheses which are usually very 

specific for the construction of glycosidic linkages.

Enzymes involved in the biology of glycosides may be categorized as hydrolases or 

transferases (Fig. 2) (12). Hydrolases that catalyze the removal of a glycosidically linked 

sialic acid are sialidases, also called neuraminidases, and can be found in viruses, 

bacteria, fungi, protozoa (13) and vertebrates, including mammals (14). 

Sialyltransferases, also present in microorganisms and mammals, synthesize sialosides 

mainly α2-3 and α2-6 linked to galactose or N-acetylgalactosamine (15–18). Some of 

these enzymes are multifunctional and are able to construct both types of linkages and 

also to hydrolyze them (19). Less frequently, other linkages may be found, for instance, 

sialic acid α2-8 linked to another sialic acid was described in glycoproteins (20–24). 
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Also sialic acid α2-9 linked to sialic acid was identified in glycoconjugates (25–27). In 

bacteria, the well-known colominic acid is a polysialic acid with repeating Neu5Acα2-

8Neu5Ac units (28,29).

Other rear linkages of sialic acid have been detected and extensively reviewed (30). 

Bacterial sialyltransferases have been used for the synthesis of sialooligosacharides 

using the activated nucleotide CMP-Neu5Ac as the donor (31). Also, multistep 

enzymatic cascades using in situ formation of the CMP-sialic acid donor have been 

reported (32). Reverse sialylation was described using a mammalian sialyl transferase 

(ST3Gal-II) and 5’-CMP, which is sialylated in situ by a sialoglycoconjugate donor. The 

CMP-Neu5Ac obtained, is then used to sialylate another acceptor using the same 

enzyme or other sialyltransferases such as ST6Gal-I and ST6GalNAc-I (33).
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Figure 2 Hydrolase vs. transferase activity in glycosidic enzymes. Adapted from (12)

In the present article we will mainly refer to trans-sialylation, a process used by 

microorganisms for the incorporation of sialic acid from a sialylated donor, without the 

need of the activated nucleotide. The use of the trans-sialidase from Trypanosoma 

cruzi (TcTS), the most studied trans-sialidase to date, for the synthesis of biologically 

important sialooligosaccharides will be described. 

2 Trans-sialylation

2.1 Trans-sialidases in trypanosomatids.

Trans-sialidases were intensively studied in Trypanosoma cruzi because they are 

related to the infectivity of the protozoan, which is the cause of Chagas disease, the 

American trypanosomiasis (34–36). T. cruzi shows a very complex genetic diversity and 
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its strains have been grouped into six lineages or DTUs (Discrete Typing Units) (37–39). 

Accordingly, TcTS is a family expressed by around 1400–1700 genes, depending on the 

T. cruzi strain, even though many of them express proteins lacking enzymatic activity 

(40–43). The sole replacement of Tyr 342 by Hys produces inactive mutants (iTcTS) 

which, however, act as lectins binding to the glycotope Siaα2-3βGalp (44). The 

structural similarity with the reactive TS is evidenced by its recognition by a 

neutralizing antibody against the enzymatic pocket (45). iTcTS genes were only 

identified in strains belonging to the lineage classified as DTU II and to the hybrid DTUs 

TcV and TcVI (46). TcTS expression depends on the parasite´s phylogenetic group and 

increases in the trypomastigote stage (47). This is in agreement with its role in 

infection and the observation that the invasion of mammal cells depends on their 

content of sialic acid (36,48). During infection TcTS transfers sialic acid from the host 

sialoglycoconjugates to the terminal β-linked galactose residues in mucins of the 

parasite (Fig. 3) and this process is crucial for the infectivity of bloodstream 

trypomastigotes (49). The reaction is specific and results in the functional unit, sialic 

acidα2-3βGalp (34,35,41,50). The specificity of TcTS was studied using convenient 

oligosaccharides and gangliosides as substrates (51). The authors concluded that the 

donors must carry Neu5Acα2-3Gal and not the Neu5Acα2-6Gal terminal unit, whereas 

the acceptor galactose in the glycan must be β-linked.

O

O

HO HO

O

OH

O

HOOC

OH

OH

HO

OH

NHAc

TcTS
O

OHHO

HO
OH

Glycan

Glycan
Host

Glycoconjugates

Mucins from
parasite surface

Figure 3 TcTS transfers sialic acid from host glycoconjugates to the T. cruzi mucins. Adapted from (52).

Unlike common sialidases, TcTS has two subsites for interaction with the substrates, a 

subsite for the terminal β-galactopyranosyl unit of the acceptor and another one for 

the sialic acid donor. Trans-sialylation occurs via a ping-pong mechanism, which starts 

with formation of a stable intermediate through a covalent bond of sialic acid with 

Tyr342 of the enzyme, followed by attack of the sialic acid to the hydroxyl group at C3 

of a βGalp in the acceptor (Fig. 4) (53).
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Figure 4 Proposed ping-pong mechanism for TcTS activity. Based on (54).

The reaction with different substrates was studied by NMR which showed that the 

binding of the acceptor to the catalytic side does not take place unless the sialic acid 

donor is present (55). In the case of TcTS, sialyl transfer is more efficient than 

hydrolysis, however, when a suitable βGalp-linked acceptor is absent this enzyme 

behaves as a hydrolase and sialic acid is released (56). Computational simulations 

suggest that protein flexibility has a role in the transferase/sialidase activity of TcTS 

(57). Excellent reviews on the structure and function of TcTS have been published 

(36,42,57–60) as well as reviews on T. cruzi trans-sialidase (TcTS) as a synthetic tool 

(61,62). 

TcTS is anchored to the surface of the parasite by a glycosylinositolphospholipid (GPI) 

(63). An N-terminal signal peptide and a C-terminal peptide indicative of the GPI 

surface localization may be recognized in all the members of the TS family. Although 

the lipid of the GPI anchor is cleaved in vitro by treatment of TcTS with PI-PLC, 

microscopical and biochemical studies showed that TcTS is mostly released to the 

milieu in microvesicles, still linked to the GPI anchor, and not by the action of an 

endogenous PI-PLC (64,65). Extracellular vesicles (EVs) of trypomastigotes carry more 

trans-sialidase and show higher adhesion than epimastigote EVs (66). Aside the GPI 

revealing peptide sequences, a repetitive antigenic sequence was early identified in 

the soluble TS and called SAPA (shed acute phase antigen) because it is recognized by 
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sera of patients in the acute phase of the disease (67). SAPA is not present in the TS of 

epimastigotes (eTcTS), the insect forms of the parasite, and it is not involved in the 

enzymatic activity. Mice infected with Trypanosoma cruzi produce antibodies against 

the enzymatic domain of TS that inhibit its activity (68). Immunological events caused 

in Chagas disease by trans-sialylation have been described (64,69–72) and reviewed 

(73). Campetella and coworkers included an interesting discussion about the humoral 

response to SAPA in the acute phase of the disease and the detection of neutralizing 

antibodies in chronic patients (36).

Trans-sialidase and sialidase activities have been investigated in other 

trypanosomatids. Another health threat is T. brucei, the agent of the African 

trypanosomiasis, known as sleeping sickness in humans and transmitted by the tse tse 

fly. The TS activity was found in the procyclic stage of the parasite, present in the 

insect vector, but, unlike TcTS, was not detected in lysates of blood trypomastigotes. 

The sialic acid acceptor is the glycoprotein procyclin which is characterized by a 

sialylated GPI anchor (74). Studies of mutants showed that the catalytic site of TcTS 

and TbTS are similar but not identical (75). Trans-sialidases have been described in 

another african trypanosome, T. congolense, the agent of the disease known as nagana 

which affects animals (76–78). Trans-sialidase activity was also detected in T. vivax 

which infects cattle in African and South American countries (79).

T. dionisii, although genetically related to T. cruzi is non-pathogenic to humans (80), 

however, in vitro, metacyclic trypomastigote (MT) forms are able to invade 

mammalian cells. Its trans-sialidase activity is significantly lower when compared with 

the same forms of T. cruzi. Since it is known that TcTS mediates the escape of 

trypomastigotes from the parasitophorous vacuole to multiply as amastigotes in the 

cytoplasm, the intracellular retention of T. dionisii and subsequent differentiation into 

amastigotes within the vacuoles was attributed to the reduced trans-sialidase activity 

(81).

The sialidase from T.rangeli (TrS), although with high identity with TcTS, lacks trans-

sialidase activity (82). Mutation of five aminoacids (TrS5) stablished some activity that 

increased after six mutations (TrS6). Conformational studies on these mutants, allowed 

the definition of the aminoacids relevant for trans-sialidase activity (83) and a mutant 

with 13 mutation was constructed (TrS13) (84). Nevertheless, the mutant showed 
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promiscuity with respect to the acceptor, since sialic acid could be transferred also to 

terminal glucose and to melibiose, Galα1-6Glc. Seven new variants were obtained by 

6-16 amino acid mutations and their trans-sialidase activity to sialylate lactose was 

studied. The variants with 15 or 16 mutations showed significant trans-sialidase 

activity (85).

Sialic acid was described as terminal unit of glycoconjugates from the insect stage 

promastigotes and the mammal amastigotes of several species of Leishmania, another 

genera belonging to the same family as Trypanosoma (86). At difference with T. cruzi, 

both, α2-3 and α2-6 linkages of sialic acid to galactose and the corresponding 

transferases have been characterized. Although Leishmania species may incorporate 

sialic acid from glycocojugates, the process is different from the trans-sialylation in T. 

cruzi and was not fully elucidated (7,87).

In an early paper, the trans-sialidase activities of several trypanosomatids were 

investigated (88). It was reported that whereas T cruzi and T. conorhini express mainly 

trans-sialidase activity, only sialidase activity was detected in Trypanosoma rangeli and 

Trypanosoma leeuwenhoeki. Both activities were shown by Trypanosoma lewisi and 

Endotrypanum species and none by Trypanoplasma borreli and Leishmania species.

2.2 Trans-sialylation with bacterial sialidases

Bacterial sialidases are less specific in their trans-sialidase activities and afford the 

sialylated product with lower yields. However, they have the advantage to be easy to 

express and accept cheap substrates. The Bacteroides fragilis sialidase catalyzed trans-

sialylation from colominic acid, a homopolimer with Neu5Acα2-8Neu5Ac repeating 

units, to lactose, affording both 3α and 6α-sialyllactosides with a total yield of only 

0.14% (89). The sialidases from Vibrio cholerae, Clostridium perfringens, Salmonella 

typhimurium, and Newcastle disease virus were used for sialylation of glycans with 

average yields of 10-30% (90) (Scheme 1). The new linkages were consistent with the 

hydrolase activities of the corresponding enzyme, thus, Vibrio cholera and Clostridium 

perfringens linked sialic acid α2-6 to galactose (91) whereas the other two bacteria 

showed preference for α2-3 formation (92,93). 
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Scheme 1 Trans-sialylation catalyzed by bacterial sialidases. Adapted from (91)

A truncated mutant of a sialyl transferase from Campylobacter jejuni, CstII 32I53S, 

showed multifunctionality, including GD3/GT3 oligosaccharide synthase, GD3 

oligosaccharide sialidase, and trans-sialidase activities (94). In addition to the α2,3 and 

α2,8-sialyltransferase activities reported before for the synthesis of GM3 and GD3-type 

oligosaccharides, respectively, the CstII Δ32I53S has α2,8-sialyltransferase activity as 

evidenced in the synthesis of the GT3 oligosaccharide or in the transfer of a sialic acid 

from a GD3 oligosaccharide to a different GM3 oligosaccharide. The enzyme showed 

sialidase or α2-8-trans-sialidase activity, depending on the pH of the reaction. The 

latter activity was observed also in the absence of CMP. It has been used for the 

synthesis of ganglioside oligosaccharides with flexible donor specificity that included 

non-natural sialic acids. A strict control of the pH and the reaction time was necessary 

to obtain good yields (94). In a previous work using a wild strain CstII, CMP was used as 

activator for the synthesis of α2,3-linked sialyllactoside with Neu5Ac pNPh  as donor 

(95).

Another recombinant truncated sialyl transferase was obtained from Photobacterium 

damsela with specific α2-6 trans-sialidase activity and was used for the synthesis of 

Neu5Acα2-6LacβMU in good yield using the p-nitrophenyl α-glycoside of sialic acid 

(Neu5AcαpNP) as donor and the methylumbelliferyl β-lactoside (LacβMU) as acceptor 

(96). The authors claim that this trans-sialidase activity is different from the reported 

reverse glycosyltransferase activity of some glycosyltransferases which requires the 

presence of CMP (33) and that kinetic studies showed that the reaction followed a 

ping-pong mechanism (96). However, the addition of the nucleotide resulted in a 

modest enhancement of activity. In fact, further work by Mehr and Withers (19) 
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proved that CMP is required for trans-sialidase activity of bacterial sialyltransferases 

from glycosyltransferase family 80 and that previous results by other laboratories 

could be due to impurification of the enzyme with traces of CMP. Only catalytic 

amounts of the nucleotide are needed to form CMPNeu5Ac for the trans-sialylation 

reaction. 

The best tool to improve transglycosylation activity and/or diminish hydrolytic activity 

of sialidases is protein engineering. A screening of bacterial sialidases was performed, 

looking for the aminoacids that shape the aromatic sandwich proximal to the active 

site that is considered necessary for the trans-sialidase activity in T. cruzi. The 

candidate was the sialidase from Haemophilus parasuis, which after expression proved 

to be a trans-sialidase (97). A casein glycomacropeptide (GMP) was used as donor of 

sialic acid and lactose as acceptor. Surprisingly three sialylated products were detected 

by high performance anion exchange chromatography with pulse amperometric 

detection (HPAEC-PAD): the expected 3’SL, 6’SL and a third sialylated compound, 3SL, 

which would be the result of sialylation of the internal glucose. This is the only report 

on sialylation of an internal glucose by a TS. An endo-sialidase which specifically 

cleaves the Neu5Ac2-8Neu5Ac bond in polysialic acid is expressed by bacteriophages 

for E.coli. (98). A set of oligomeric trifluoromethylumbelliferyl sialosides were prepared 

using the transferase CstII from C. jejuni. The substrate should be at least trimeric, and 

the cleavage occurred between the aglycone and the sialic acids. In the case of the 

tetramer, however, two dimers could be obtained. Contrary to all other sialidases, this 

endo sialidase directly hydrolyzed the Neu5Ac2-8Neu5Ac bond by an inverting 

mechanism to produce the β-hemiketal product. 

3 Synthesis of sialooligosaccharides 

Trans-sialylation reactions are usually analyzed by HPAEC-PAD and the purification of 

the products is achieved by anion exchange column chromathography. The donors for 

sialic acid are 3´-sialyllactose (3’SL), or sialyl glycosides like methyl umbelliferyl-N-

acetyl-neuraminic acid (MUNANA) and p-nitrophenyl-N-acetylneuraminic acid 

(Neu5AcαpNP) with lower activities for the transfer reaction than 3′SL but with the 

advantage that the reactions are not reversible (61,99). Glycoproteins with an 

appropriate content of Neu5Acα2-3Galβ units, like fetuin containing 8.7% of sialic 
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acids at the non-reducing ends of its oligosaccharides (100), or the casein 

glycomacropeptide (GMP) with 4-7% sialic acid (101), may be used as donors. Fetuin is 

a commercially available glycoprotein with  a transfer rate to Galβ1-4GlcNAc similar to 

that of α2-3-sialyllactose (102). Fetuin and other glycoproteins have the advantage of 

simplifying the purification of the sialooligosaccharides by chromatographic 

techniques. A dialysis step was sometimes included. 

The first reports on trans-sialidase activity used a native enzyme obtained from culture 

derived trypomastigotes (TcTS) (48). Singh et al. reported unexpected results in a 

trans-sialylation study using Neu5AcαpNP as donor and a recombinant TcTS. The 

authors reported that methyl αGalp could be sialylated with a moderate yield and that 

Galpα1-6βGalp-OMe was sialylated in the internal galactose to give the branched 

trisaccharide in 89 % yield. They also found that Galpβ1-6βGalp-OMe as acceptor 

yielded a mixture of three products: the two possible monosialylated products in 88% 

isolated yield and a bisialylated minor product, but no details on the purification and 

characterization of these compounds were provided (103).

Giorgi et al., on the other hand, reported the sialylation of the branched trisaccharide, 

Galpα1-3(Galpβ1-6)Galp, obtained as the 6-aminohexyl β-glycoside (Scheme 2). In this 

case only one monosialylated compound was detected by HPAEC in agreement with 

the TcTS specificity. Purification by chromatography on a graphitized carbon column 

using a step gradient elution of acetonitrile/water afforded the sialylated derivative 

with a 36% yield (104).
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Buffer Tris-HCl pH
7.5, 30 mM NaCl

Scheme 2 Sialylation of the 6-aminohexyl β-glycoside of Galpα1-3(Galpβ1-6)Galp by TcTS. Adapted from (104)

Experiments with donors carrying deoxy or methoxy substituted sialic acids led to the 

conclusion that these modifications did not impair the reaction as long as the changes 

were at C-9 and not at C-4, C-7 or C-8 (51). Derivatives of MUNANA modified at C-9 

were also studied as donors in the TcTS reaction (105). 
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A polyacrylamide polymer conjugated to 3´SL was prepared using a GlcNAc-bearing 

polyacrylamide polymer. A βGalp residue was introduced in the first place by means of 

a bovine β-galactosyl transferase followed by sialylation with TcTS using Neu5AcαpNP 

as donor of sialic acid (106).

A clone encoding the active N-terminal catalytic domain but lacking the highly 

immunogenic C-terminal SAPA was expressed in E.coli (107,108). Vetere and co-

workers used a recombinant sialidase obtained in E. coli carrying the plasmid 

pTS154cat for the synthesis of Neu5Acα2-3Galpβ1-4GlcNAc (3′-Sialyl-N-

acetyllactosamine) by a sequential enzymatic introduction of galactose from lactose 

and sialic acid from 3’-SL or MUNANA into GlcNAc. In this case, a higher yield (60%) 

was obtained with the MUNANA donor (109). The same strategy was used for the 

synthesis of NeuAcα2-3Galβ1-4Xylβ1-O-p-nitrophenyl, a trisaccharide derivative 

related to the biosynthesis of glycosaminoglycans. Starting from p-nitrophenyl-β-D-

xylopyranoside, the trisaccharide was prepared by the sequential action of a β-

galactosidase for the incorporation of galactose from lactose and the recombinant 

trans-sialidase using MUNANA as donor of sialic acid (110). Using the same donor but a 

specific β-galactosidase for the formation of the Galβ1-3GlcNAc unit, 3′-sialyl-lacto-N-

biose (Neu5Acα2-3Galpβ1-3GlcNAc) was obtained in 35% yield (111). 3´-Sialyl-N-

acetyllactosamine was synthesized on the surface of liposomes by a “one-pot” 

sequential enzymatic modification of a N-acetylglucolipid embedded in the bilayers 

using a galactosyl transferase with the UDP-Gal nucleotide and TcTS with 3′-

sialyllactose as sialic acid donor (112). The coated liposomes could be used for cell 

recognition studies. Also, vesicles displaying a perfluoroalkyl-tagged lactosyl epitope 

were sialylated and then recognized by the lectin Maackia amurensis leucoagglutinin 

(113).

A communication reported the preparation of 13C-enriched GM3, and sialyl Lewis X 

oligosaccharides using a recombinant TcTS expressed in E.coli with the plasmid pTS-

cat7 for the sialylation step (114). The same enzyme and pNP-Neu5Ac as donor were 

used for the sialylation of lactosides, lactosamide derivatives and Galβ1–

3GalNAcαSer/Thr with yields in the range 20-60% (115). Glycoconjugates containing 

Neu5Gc may be used for studies related to its antigenic properties in humans (116). 

The p-NP glycosides of N-acyl modified neuraminic acid donors, among them the N-
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glycolyl derivative, have been tested in the TcTS reaction showing that N-

glycolylneuraminic acid (Neu5Gc) is efficiently transferred by TcTs (117,118). The 

exocyclic chain of Neu5Ac is not fundamental in the recognition by the enzyme since 

the C-7 and C-8 analogues of Neu5AcαpNP obtained by periodate oxidation were 

donors for the acceptor methyl β-lactoside (119).

The synthesis of Neu5Acα2-3Galβ1-3GalNAc, a component of the Thomsen–

Friedenreich antigen was reported by Thiem et al. (120). Derivatives of Galβ1-3GalNAc 

modified at the galactose, the N-acetylgalactosamine or both residues were prepared 

to test their ability to act as acceptors with a recombinant TcTS. Mimetics of the sialyl 

Lewis X tetrasaccharide were prepared by sialylation of a β-galactopyranosyl azide 

followed by a click reaction with a fucosyl acetylene to afford the 1,4 diglycosylated 

1,2,3 triazole (Scheme 3). Also 1,3-diglycosylated indole derivatives were sialylated in 

the Galp unit. These sialylated mimetics were tested as competitive inhibitors for 

selectin binding (121).
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Scheme 3 Synthesis of a sialyl Lewis X tetrasaccharide mimetic. Adapted from (121).

Recombinant active TcTS was also expressed in eukaryotic cells like the yeast Pichia 

pastoris (122). Also, cells of S. cerevisiae were engineered to express enzymatically 

active TcTS on their walls and the whole cells were used for in vitro sialylation of 

biantennary complex type oligosaccharides previously labeled with a fluorophore to 

facilitate monitoring the reaction (123). A T. rangeli sialidase with six aminoacid 

mutations, STr6, was expressed in P. pastoris at a higher yield (1 g/L) (124) than TcTS 

(5mg/L in the same expression host) (122).

3.1 Synthesis of sialyl galactooligosaccharides (SiaGOS), components of human milk

Sialooligosaccharides in human milk (HMOs) contribute to brain development and 

prevent bacterial and protozoan attachment to infant mucosal surfaces (125,126). 

About 150 species of HMOs have been identified in human milk (127). Colostrum, 

secreted by the mammary gland a few days before and after parturition, is a good 
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source of oligosaccharides (128). Sialyllactose may be obtained from bovine colostrum 

in about 500 mg/L (129) and has been used as donor for the synthesis of complex 

sialylated oligosaccharides (130–136). Since sialyl galactooligosaccharides (SiaGOS) are 

much less abundant in bovine milk there are several reports describing their enzymatic 

synthesis with the aim to enrich baby food. The TcTS expressed in E. coli was used for 

the sialylation of galactosyl lactoses with β1-3’, β1-4’ and β1-6’ linkages. Casein 

glycomacropeptide (GMP), a by-product of the cheese industry, used in this study as 

donor for the preparation of the sialylated oligosaccharides had a sialic acid content of 

3.6% from which 59 % was in α2-3 linkage. As expected, only the monosialylated 

derivative was obtained for the β1-3’-galactosyl lactose. In the case of Galβ1-6Galβ1-

4Glc, two monosialylated compounds corresponding to the sialylation of the external 

or the internal unit and the disialylated product were obtained. Galβ1-4Galβ1-4Glc, 

however, was only sialylated in the external galactose residue (Scheme 4) (137). The 

sialylated galactosyl lactose derivatives, although non-natural HMOs, may be used as 

functional options

A bovine blood plasma glycoprotein (BPG) containing 0.7% of Neu5Ac and Neu5Gc in 

similar proportions was used for sialylation of lactose and higher GOS. The products of 

lactose sialylation, Neu5Acα2−3lactose and Neu5Gcα2−3lactose, were separated by 

HPAEC and the yield of the sialylated trisaccharides corresponded to a sialic acid 

transfer of 55 and 50%, respectively, taking into consideration only the α2−3 linked 

Neu5Ac and Neu5Gc in BPG (138). 

3´SL and higher oligosaccharides were prepared using GMP as donor and a TcTS 

expressed in Pichia pastoris. The optimal donor:acceptor ratio that minimizes the 

hydrolase activity was determined to be 1:4 and the conversion yield, considering only 

the content of α2−3 linked Neu5Ac in GMP, was about 64% (101).
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Engineered trans-sialidases from T. rangeli, with multiple mutations, have also been 

used for the sialylation of GOS (124). A TrS13 mutant could sialylate GOS, in gram scale 

quantities, independently of their size, showing four times lower hydrolytic activity 

than the Tr6 mutant (124,139) (Figure 5). Tr15 and Tr16 were used to obtain 3’-SL 

directly from cow’s milk using GMP as donor and the milk lactose as acceptor. With the 

more efficient Tr15, concentrations of SL similar to those found in breast milk were 

obtained in a fast reaction (10 min) (140). The use of T. congolense TS for sialylation of 

GOS was patented (141).
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Figure 5 Sialylation of GOS by the T. rangeli trans-sialidase mutant Tr13. Adapted from (139).

The sialyltransferase from Pasteurella multocida can construct both, Siaα2-3Gal and 

Siaα2-6Gal motifs in a ratio which depends on the reaction conditions. The 

recombinant enzyme, expressed in E.coli, was able to catalyze the synthesis of both 3α 

and 6α-linked sialic acid in higher GOS using GMP as sialic acid donor (142).

3.2 Synthesis of sialyl oligosaccharides components of natural glycoproteins

Takahashi and coworkers described the sialylation of N-linked oligosaccharides from 

human fibrinogen and asialooligosaccharides from fetuin, derivatized as pyridyl 2-

amino glycosides, using native TcTS and 3’SL as donor. The sialooligosaccharides were 

separated by successive HPLC columns and characterized based on their elution times 

compared with reference compounds and using a three-dimensional mapping 

technique. Structure assignments were confirmed by digestion with specific 

exoglycosidases (143).

Trans-sialylation with fetuin as donor and a recombinant TcTS was the last step in the 

enzymatic preparation of Neu5Acα2-3Galβ1-4GlcNAcβ1-2Man α-linked to a peptide 

(Fig. 6). The tetrasaccharide is the most abundant O-mannosyl glycan in α-dystroglycan 

(α-DG), a glycoprotein found in muscle and brain tissue. A one pot enzymatic cascade 

synthesis was also described (144).
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Figure 6 Structure of the most abundant O-mannosyl glycan in α-Dystroglycan (α-DG).

The mucin oligosaccharides of Trypanosoma cruzi are the acceptors of sialic acid from 

the host sialoglycoconjugates, in a reaction catalyzed by TcTS, a crucial process for 

pathogenesis (35,41,145). In mucins, galactose could appear in the pyranose form or in 

both pyranose and furanose forms, depending on the strain (52). Galf is not present in 

any mammal glycan and only appear in some strains of the epimastigotes, one of the 

insect forms of T. cruzi (146). Since both constituents, βGalf and βGalp, may coexist in 

the same molecule, it was interesting to study their behavior in the TS reaction. The 

Galf-containing oligosaccharides have been chemically synthesized (132,133,147–151). 

The trisaccharide unit 2,3-di-O-(β-D-Galp)-β-D-Galp, with two βGalp for possible 

sialylation, is the external unit of the three largest oligosaccharides of T. cruzi mucins. 

Reaction of the benzyl glycoside of 2,3-di-O-(β-D-Galp)-β-D-Galp (1, Scheme 5) (152) 

with TcTS showed selective trans-sialylation from the donor 3′-sialyllactose to the less 

hindered (1-3)-linked βGalp. Sialylation of the more flexible alditol 2 was not selective 

and a mixture of compounds 3 and 4 was obtained (Scheme 6), suggesting that the 

open zig-zag conformation adopted by the alditol turned both galactoses almost 

equally accessible for TcTS recognition (130). Accordingly, the benzyl glycosides of the 

pentasaccharide and one of the hexasaccharides of the mucins, compounds 5 and 7 

respectively, were also selectively sialylated in the same residue to give 6 and 8, 

respectively (Scheme 7) (132,133). All the structures were confirmed by NMR 

spectroscopy. In the case of sialylation of the benzyl glycoside of the other 

hexasaccharide, with three terminal Galp units, two monosialylated compounds and 

a minor amount of a disialylated product were formed (Fig. 7) (132). A study on the 

comparative rates of sialylation of the synthetic oligosaccharides, showed that the 
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presence of Galf did not impair the reaction. Thus, the diminished virulence of the 

strains that contain Galf is not related to interference of sialylation by Galf (153).
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Scheme 5 Selective trans-sialylation of the β-benzyl glycoside of 2,3-di-O-(β-D-Galp)-β-D-Galp. Adapted from (130)
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Figure 7 Proposed structures for the sialyl derivatives obtained by trans-sialylation of the β-benzyl glycoside of a 
hexasaccharide from T. cruzi mucins. Adapted from (132).

Based on the aminoacid sequences in the T. cruzi mucins, the glycopeptide Thr-Thr-

[LacNAcThr]-Thr-Thr-Gly, was synthesized using a chemoenzymatic strategy and 

further sialylated by T. cruzi trans-sialidase using fetuin as donor (Scheme 8) (154).
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Scheme 8 Sialylation of Thr-Thr-[LacNAcThr]-Thr-Thr-Gly with TcTS. Based on (154)

Bacterial sialidases have also been used for the synthesis of natural oligosaccharides. 

The sialidase of S. typhimurium was used for the synthesis of the Lewis 

tetrasaccharides (Fig. 8) (92). Thiem and coworkers used the sialidases of Vibrio 

cholerae, Clostridium perfringens, Salmonella typhimurium, and Newcastle disease 

virus for the synthesis of several oligosaccharides, among them the epitopes of the T-

tumor antigens (Thomsen-Friedenreich). The reactions were regioselective according 

with the selectivity of the corresponding enzyme and the yields obtained were 

between 10-30% (90).
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Figure 8 Structures of the Lewis tetrasaccharides synthesized with S. typhimurium trans-sialidase. Adapted from (92)
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3.3 Sialylation of non-natural oligosaccharides

Cyclic pseudo-galactooligosaccharides dimers and trimers were synthesized by “click 

chemistry” and analyzed as TcTS substrates using MUNANA as donor of sialic acid to 

give disialylated and trisialylated products with moderate yields (Fig. 9) (155).
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Figure 9 Sialylation of galactomacrocycles by TcTS. Adapted from (155)

Multivalent ligands of β-thio- and β-N-lactosides are also acceptors of sialic acid in the 

TcTS reaction using 3′-SL as donor (131,156). A divalent β-N-lactoside yielded the 

monosialylated derivative as the major product with minor amounts of the disialylated 

product (Scheme 9) as observed by HPAEC analysis and later confirmed by mass 

spectrometry. TcTS efficiently transferred sialyl residues to di, tri, tetra and octa β-

thiolactosides (131). A preparative reaction with a tetravalent β-thio-glycocluster gave 

a mixture of monosialo, disialo and trisialo species that could be separated with an 

anion exchange resin and their degree of sialylation confirmed by MALDI-MS. The 

possibility of multisialylation of ligands suggests their use as competitive inhibitors of 

sialylation and anti-adhesion agents for microbial infections (157). 
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Scheme 9 Mono and disialylation of divalent β-N-lactosides synthesized by click chemistry. Adapted from (156)

4 Conclusions

The role of sialic acid in the infection by microorganisms is well known. The spike 

glycoprotein of SARS-CoV-2, the agent of the current Covid 19 pandemic carries N- and 

O-glycans decorated with sialic acids. Future studies on interaction of the glycans with 

host cells could lead to the design of inhibitors to the penetration of the virus. With 

this purpose chemoenzymatic synthesis of the glycans would be desirable.

Selected trans-sialidases are a convenient tool for the synthesis of 

sialooligosaccharides. The reaction is regiospecific for the construction of the non-

reducing unit Neu5Acα2-3βGalp. One of the main advantages is that the donor 

Neu5Ac-CMP may be replaced by a glycoprotein with a convenient content of sialic 

acid such as fetuin or GMP, an easily available by-product of the cheese industry. In 

addition to being less expensive their higher molecular weights facilitate separation of 

the excess donor from the newly obtained sialooligosaccharide. The commercial 

sialosides, Neu5AcαpNP and Neu5AcαMU (MUNANA) have much lower activities than 

3′SL for the transfer reaction (61,99), but have the advantage that the reactions are 

not reversible and the nonpolar aglycone can be easily isolated from the reaction 
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products. Sialidases have been engineered to act as trans-sialidases, with an activity 

that depended on the reaction conditions, like temperature, pH, water activity, time of 

reaction. Transglycosylation was favored when higher acceptor concentrations were 

used. Recombinant TcTS was used for preparative synthesis of sialooligosacchacarides 

with potential application in the elaboration of supplement for baby formula, based on 

the beneficial effect of these sugars present in human colostrum. The enzyme is not 

commercially available yet, however, extension of its use may encourage its 

commercial production.
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