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Temporal Talbot effect applied to determine dispersion parameters

Christian Cuadrado-Laborde a,*, Pablo A. Costanzo-Caso a,
Ricardo Duchowicz a, Enrique E. Sicre b
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Abstract

The space–time duality theory and the temporal selfimaging phenomenon (or Talbot effect) are used to propose a method for deter-
mining dispersion parameters associated with an optic fiber link. From the space–time analogy, the actions of free-space propagation and
phase curvatures taking place in the general spatial Talbot effect are implemented for time-varying wavefields. Using the temporal selfi-
maging conditions, a relationship is derived for determining the second-order dispersion coefficient of a given dispersive medium under
test. As a particular application, we analyze the feasibility of the measuring approach using a linearly chirped fiber grating as the dis-
persive component under test. Some simulations are carried out in order to study the sensitivity and accuracy of the developed method.
� 2005 Elsevier B.V. All rights reserved.

Keywords: Temporal Talbot effect; Pulse transmission; Dispersion
1. Introduction

The space–time duality is based on the close mathemat-
ical analogy between the impulse response equations
describing paraxial diffraction of optical beams in free-
space propagation and temporal distortion of light pulses
traveling in dispersive media, i.e., linearly chirped fiber
gratings (LCFGs) or optical fibers [1–11]. In the space
domain, the Talbot effect, or selfimaging phenomenon, is
a well-known optical experiment, which has been widely
studied [12,13]. Several applications have been developed
in different fields such as interferometry, metrology and
image processing [14]. Using the space–time duality rela-
tionships, it was proposed the temporal analogue of the
Talbot effect for light transmission in single mode optical
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fibers [15–19]. As a direct application of this phenomenon,
periodic pulse trains with minimum distortion and different
repetition periods can be obtained.

In this paper, we propose an application of the temporal
Talbot effect to implement a method for determining the
second-order dispersion coefficient of a certain dispersive
device under test. Although the basic relationships of the
method are derived for a quite general case, we focus our
attention to consider the particular case of the LCFGs.
Since these components become quite useful in the develop-
ment of dispersion compensation techniques, an accurate
measurement approach of the LCFG dispersion parame-
ters is an application of great concern in the field of long-
haul, optical communication systems [20]. Most of the
well-known techniques for measuring chromatic disper-
sion, such as the modulation phase-shift and the pulse
delay methods [21], determine the group delay changes cor-
responding to different wavelength intervals. In this way,
they suit properly for characterizing fiber optic dispersion
but are not so adequate for the dispersion measurement
of the LCFG since the wavelength range (in reflection) is
very narrow in this case.
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In the general spatial Talbot effect, a periodic grating is
illuminated with a spherical wavefront. The diffracted field
becomes scaled replica of the input periodic structure at
certain fixed locations. In the temporal analogue experi-
ment, a periodic pulse train replaces the grating structure,
a time lens does the spherical wave illumination action
and the free-space propagation is realized by pulse trans-
mission in a certain dispersive medium. In the proposed
optical device, the output signal becomes a replica of the
input pulse train but with a different repetition rate, which
depends on both the phase modulation factor and the dis-
persion parameter of the LCFG [18]. Using the temporal
Talbot conditions, we derive a relationship for obtaining
the second-order dispersion coefficient of the LCFG under
study. Some simulations are done for illustrating the pre-
sented approach. The measuring sensitivity and the
involved errors of the method are analyzed, followed by
a discussion concerning with the required (realizable) time
lenses that are needed for a practical implementation of the
method.
2. Space–time analogy applied to temporal selfimaging

The general problem of selfimaging in the temporal
domain was extensively treated by Azaña and Chen [18].
Based on this analysis, let us consider the basic relation-
ships involved in the selfimage formation in order to be fur-
ther employed for implementing the dispersion measuring
method. In the spatial Talbot effect, a periodic object G
is illuminated with a spherical wavefront of wavelength k.
This situation becomes equivalent to employ planewave
illumination and to insert a lens L (just behind G) of focal
length f. Depending on the lens (if positive or negative), G
is illuminated with a convergent or a divergent spherical
wave, respectively. Thus, the selfimaging formation can
be considered as a tandem operation on the periodic input
amplitude of lens action plus free-space propagation. For
certain distances z = zT, the diffracted field amplitude
u(x;z) becomes scaled replicas of G; i.e.,

uðx; zTÞ ¼ uinðx=M ; 0Þ; ð1aÞ

zT ¼ n
Md2

k
; ð1bÞ

where the scaling factor M of the selfimage located at zT is
given by

M ¼ f þ zT

f
; ð2Þ

being d the spatial period of G and n an arbitrary integer. It
should be noted that: (i) for z > 0, the scale factor is M > 1
for f > 0, and M < 1 for f < 0; (ii) the Talbot distances zT

are not equidistant since the magnification factor M de-
pends on zT itself. At other specific distances from G given
as

zT;m ¼
n
m

Md2

k
; ð3Þ
where n, m are coprime integers (and m P 2), a periodic
pattern is reobtained but now the period dm of these so-
called fractional Talbot selfimages is also modified by the
integer m as

dm ¼
Md
m

. ð4Þ

The duty-cycle a/d associated with the input periodic pat-
tern G (being a the slit width) remains unchanged for the
integer Talbot selfimages, but it is modified as m · (a/d)
for the fractional selfimages. This effect becomes the main
difference between integer and fractional Talbot effects,
and it imposes a restriction to the allowed values of m for
which the fractional selfimages can be actually visualized.

In the temporal domain, a time lens introduces a qua-
dratic phase modulation into the time-varying signal.
Besides, a dispersive medium (up to the first-order) has
associated a quadratic-phase spectral response with a
mathematical expression similar to that found in spatial
Fresnel diffraction. Therefore, space–time equivalencies
can be established as [6,7]

kz() 2pU20; ð5aÞ
2p
kf
() /20; ð5bÞ

where U20 is the second-order dispersion coefficient of the
medium (specified at the working central frequency
x = x0) and /20 is the quadratic modulation factor of
the time lens. By applying this space–time analogy, and
taking into account the spatial Talbot effect (Eqs. (1)–
(4)), the equivalent temporal selfimaging conditions can
be derived. Thus, if a periodic input pulse train with repe-
tition period T0 is initially phase-modulated, as given by
Eq. (5b), and then it is transmitted through a first-order
dispersive medium (Eq. (5a)), the output signal becomes
a scaled replica of the input pulse train irradiance whenever
the involved parameters are related as [18]

jU20j ¼
n
m

T 2
0

2p
j1� U20/20j; ð6Þ

being the repetition period T of the output selfimage

T ¼ j1� U20/20j
T 0

m
. ð7Þ

where n, m are coprime integers. For m = 1 the integer Tal-
bot effect is observed, and for m P2 the fractional. How-
ever, this fractional Talbot effect is only observed if the
output pulses do not temporally overlap.

3. Dispersion determination based on the temporal Talbot

effect

The optical arrangement proposed to implement the dis-
persion measuring technique is shown in Fig. 1. A periodic
sequence of light pulses, with arbitrary shape and repeti-
tion period T0, propagates in a single mode optical fiber.
This input signal successively interacts with a phase modu-
lator (time lens) and with the dispersive medium under test,



Fig. 1. Scheme of the proposed optical device. LCFG is the linearly
chirped fiber grating under test. OC is an optical circulator.
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which can be either an optical fiber or a LCFG. In this last
case, the properties of the reflected signal amplitude are
determined by the reflection coefficient r(Dx) associated
with the LCFG, which, in the proximity of the central
Bragg frequency x0, can be written as

rðDxÞ ¼ r0 expð�iDU10DxÞ

� exp �i
DU20

2
ðDxÞ2

� �
exp �iUrðDxÞ½ �; ð8Þ

being Dx = x � x0 the frequency difference variable and
DUk0 = (okU/oxk)x0, with k = 1,2, the k-order derivatives
of the phase function U(x) associated with the LCFG, both
calculated at x = x0. An additional phase term Ur(Dx) was
included in Eq. (8) to take into account the ripple in the
group delay, which is normally present in a LCFG unless
an apodization procedure is to be implemented. It should
be noted that Eq. (8) could also describe the pulse train prop-
agation through an optical fiber (now as a transmission
transfer function), where Ur(Dx) takes into account the effect
of the third-order fiber dispersion. From now on, we restrict
the analysis to the LCFGs being the method also applicable
to optical fibers in a similar way. Inside a certain limited spec-
tral bandwidth dx, centered at x = x0, the coefficients DUk0

can be considered as nearly constant and |r(Dx)| = r0 is the
reflectivity for x = x0. The spectral behavior of the reflected
light pulse is determined by r(Dx) so it can be considered as
the transfer function of the pulse train reflected by the
LCFG. If we neglect the effect of Ur(Dx), the transfer func-
tion of the LCFG becomes similar to the dispersion line used
to establish the space–time equivalency (as given by Eq. (5a))
replacing the coefficient DU20 by U20. The effects due to the
ripple in the group delay of the LCFG, or to the third-order
dispersion in the case of a fiber, will be later studied in this
section. Since DU20 > 0 for the case of a LCFG, depending
on /20 (if positive or negative), the output signal can be a
magnified temporal selfimage (by selecting |1�DU20/20| >
1) or a compressed temporal selfimage (by selecting
|1�DU20/20| < 1), whenever the integer Talbot condition is
satisfied. In this instance, from Eq. (7) the repetition period
T of the output pulse train becomes
T ¼ j1� DU20/20jT 0 ¼ MT 0; ð9Þ
being M = |1�DU20/20| the selfimage magnification.

We propose the following measurement procedure.
First, for a given fixed quadratic phase modulation factor
/20, the repetition period T0 of the input pulse train is var-
ied in such a way that the output signal becomes a tempo-
ral integer selfimage, which means that the Talbot
condition, as established by Eq. (6) for m = 1, is satisfied.
The repetition period T of the output irradiance is mea-
sured, and the selfimage magnification is obtained as
M = T/T0. From Eq. (9), the unknown dispersion coeffi-
cient DU20 associated with the LCFG results as

DU20 ¼
1�M
/20

����
����. ð10Þ

Since the dispersion coefficient is obtained from an integer
Talbot condition, it becomes important to distinguish be-
tween integer and fractional selfimaging. If the output sig-
nal is detected for a certain fractional selfimaging condition
and the period T is measured, then an uncertainly origi-
nated by the unknown integer m results, because
M = m Æ T/T0 (from Eq. (7)). This uncertainly is translated
to the determination of dispersion coefficient DU20 from
Eq. (10). Thus the sub-Talbot effect is not a convenient
measurement condition. However, these fractional self-
images can be discarded by determining from the output
irradiance both the repetition period T and its duty-cycle.
As it was discussed in Section 2, the duty-cycle of the dif-
ferent magnified selfimages remains constant and equal to
the duty-cycle associated with the input periodic pattern.
On the contrary, the duty-cycle varies for the fractional
selfimages proportional to the value of the integer m.

Next, for studying the accuracy of the method we ana-
lyze the involved errors measurement. Basically, we con-
sider two components: (i) the error propagation in Eq.
(10), from which the unknown dispersion coefficient DU20

is derived, and (ii) the adjust error, or insensibility, due
to the adjustment of an integer Talbot condition. Therefore
small variations of T0 will produce an output signal change
that cannot be detected by the employed measuring instru-
ment. From Eq. (10), the propagation error ep results as

ep ¼
2M

1�M
eT; ð11Þ

being eT the relative error involved in the time
measurement.

For determining the second component (the adjust error),
we assume a measurement situation near to an integer Talbot
condition and we determine the minimum change in the
input period, producing a detectable change in the output
signal (which depends on the measurement capability of
the instrument). Thus, by performing a combined error anal-
ysis involving Eq. (10) and the required duty-cycle conserva-
tion condition, the adjust error ead can be found as

ead ¼
M

1�M
dt; ð12Þ
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where dt is the relative resolution of the instrument being
used for time measurement. If the measurement condition
is favorable, then satisfy dt� eT, from Eqs. (11) and (12)
it can be seen that ead� ep, and so it can be neglected as
compared with ep.

As it was mentioned in the errors discussion above, it is
important to accurately ‘‘recognize’’ a selfimaging condi-
tion, namely, by varying the input period T0 we must
decide when an output selfimage is met. We analyze this
effect by determining the similarity degree existing between
the input and output signals in the vicinity of a Talbot con-
dition. To this end, we introduce a convolution parameter
C defined as

C ¼ maxfIout � I ing
maxfIoutg �maxfI ing

; ð13Þ

where max{. . .} denotes the maximum value of the func-
tion between each curly brackets and Iout * Iin means con-
volution operation in the time domain between the
irradiances of the output and input pulse trains. Thus, by
detecting the output irradiance Iout(t), the parameter C

can be obtained by using Eq. (13). In Fig. 2, it is shown
the variation of C for different repetition periods T0 of
the input pulse train, in a range between 40 and 150 ps.
As it is expected, there exist several peaks associated with
integer and fractional selfimages (the variation of the peaks
height is due to the normalization procedure chosen in Eq.
(13)). Since these peaks are very sharp, the selection of T0

for obtaining a selfimaging condition can be accurately per-
formed. This feature will be better illustrated in the follow-
ing section with an application. On the other hand, if we
compare the curve of Fig. 2 with the correlation curve that
is shown in [16], which was obtained for the temporal Tal-
bot effect without phase modulation, it can be observed
broader correlation peaks. In our case the time lens effect
makes easy the determination of T0 that satisfy de integer
Talbot condition.
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To obtain the Talbot condition in order to determine the
dispersion parameter, we have considered the LCFG char-
acterized by a quadratic phase transfer function. The group
delay ripple in the LCFG (or the third-order dispersion
coefficient if an optical fiber were considered) produces
an additional phase term Ur(Dx), which was neglected in
the analysis following Eq. (8). Let us now to discuss the
validity of this approximation evaluating the effect of the
group delay ripple on the periodic pulse train when the
integer Talbot condition is achieved. The practical LCFGs,
which are commonly used for single channel dispersion
compensation, have associated a chirp parameter in the
range 0.03–0.1 nm/cm and a fiber distance between 1 and
40 cm [22]. In these gratings, the amplitude of the group
delay ripple never reaches the 200 ps, and the maximum
oscillation periodicity is around 5 GHz (these represents
the worst conditions). Fig. 3 shows the output signal (at
a Talbot condition) when the group delay ripple is consid-
ered (dotted line), and without including Ur(Dx) (solid
line). The ripple was considered with amplitude of 200 ps
and 5–1 GHz linearly variable interval of oscillation, inside
a bandwidth of 100 GHz centered at the Bragg central fre-
quency. In Fig. 3(a), the ripple effect is practically not
observed. In Fig. 3(b), a small time interval of the output
signal was amplified so it can be observed low distortion
amplitude, which is around two-order of magnitude lower
than the original pulse amplitude. Thus, we conclude that
the Talbot selfimage remains almost unchanged, so justify-
ing the selection of a quadratic phase transfer function for
the pulse reflection analysis in the LCFG. Indeed, it was
experimentally demonstrated the excellent performance of
a LCFG as a real time Fourier transformer [9].

Finally, for the case of pulse transmission in standard
optical fibers, Fatome et al. [23] studied, from a theoretical
and experimental point of view, the behavior of a periodic
pulse train, satisfying the Talbot conditions, under the
influence of the third order dispersion. They showed that
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Fig. 3. Ripple effect of a LCFG on the output optical irradiance using the
setup of Fig. 1: (a) output signal (at a Talbot condition) when the group
delay ripple is considered (dotted line) and without considering this effect
(solid line); (b) a small time interval of the output signal was amplified so it
can be observed the low distortion amplitude introduced by this effect.
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Fig. 4. Output optical irradiance using the setup of Fig. 1: (a) the
selfimaging condition is satisfied with: T0 = 100 ps (Tn = 1, m = 1, in the
convolution curve); (b) a fractional selfimaging condition is found with:
T0 = 141.4 ps (Tn = 1, m = 2, in the convolution curve). A change in the
duty-cycle can be clearly observed; (c) the selfimaging condition is not
satisfied with: T0 = 109 ps. A large distortion of the pulse train can be
observed.
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third order dispersion effects are noticeable whenever the
repetition rate is high enough (T0 < 6 ps), a situation which
is not to be selected in our method (where T0 ffi 100 ps), as
we illustrate in the following section with some examples.

4. Applications and results

In order to illustrate the proposed approach, we numer-
ically calculate the light propagation through the optical
device schematized in Fig. 1. The input pulse train was ini-
tially built as N = 41 consecutive light pulses each one sep-
arated by a time interval T0. The later was varied
maintaining the pulse width constant to a value FWHM
= 16.7 ps. This input signal successively interacts with a
phase modulator initially characterized with a /ð1Þ20 ¼
�4:7124� 1020 Hz2 rad and finally with a LCFG having
dispersion coefficients: DU10 = 1 ns, DU20 = 6.36 ·
103 ps2/rad, being the Bragg central frequency m0 =
193.165 THz. In Fig. 4, the output irradiances are shown
for three different situations: (a) the output signal becomes
a Talbot selfimage, with n = 1, being the repetition period
T0 = 100 ps; (b) the output signal becomes a fractional self-
image, with n = 1 and m = 2, being the repetition period
T0 = 141,4 ps (in this case the output pulse width is the
same as in case (a) but not the period T so originating a
change of the duty-cycle); (c) the input period was selected
as T0 = 109 ps (which does not satisfy the Talbot condi-
tion, integer or fractional), so it can be observed a strong
distortion of the pulse train.

Now, the measuring capability of the method will be
tested using the quadratic phase modulation factor men-

tioned above (/ð1Þ20 ¼ �4:7124� 1020 Hz2 rad), and a new

one (/ð2Þ20 ¼ �ð1=4Þ/ð1Þ20 ¼ 1:1781� 1020 Hz2 rad). These
values were selected in order to get two well distinct cases:

M > 1 (for /ð1Þ20 ) and 0 < M < 1 (for /ð2Þ20 ). Fig. 5(a) (for /ð1Þ20 )

and Fig. 5(b) (for /ð2Þ20 ) show the several calculation points
(and the interpolating curves) that are obtained by varying
the repetition period T0, and for a wide range of values of
the dispersion coefficient DU20 (which is the parameter to
be derived). As DU20 is obtained (see Eq. (10)) by determin-
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ing the selfimage magnification M, these values are also
included in the right side, vertical axis (points without an
interpolation line). The solid line curves passing through
the several calculation points illustrate the variation of T0

for the different dispersion parameters DU20, while the
points alone (depicting a linear variation, in accordance
with Eq. (9)) illustrate the change of the selfimage magnifi-
cation M for varying DU20.

We now analyze the uncertainty involved in the determi-
nation of the dispersion coefficient DU20. By considering
/ð1Þ20 , the Talbot selfimage (for n = 1) is obtained for a rep-
etition period T0 = 100 ps. As it was previously discussed,
the main error measurement is given by Eq. (11), with eT

as the relative error of the time measurement. Therefore,
the whole measuring uncertainty can be described by Eq.
(11). By considering eT ffi 1%, and taking into account that
M = 4, it results a relative error in the DU20 determination
of ep ffi 2.7%. An identical consideration in the case of /ð2Þ20

results in a relative error in the DU20 determination of
ep ffi 0.7%. These values may be compared with that
obtained by the method proposed by Azaña and Muriel
employing selfimaging in a two steps measuring procedure
[16]. In this case, for the same value of the dispersion coef-
ficient, the relative error can be estimated as ep � 10%.
Thus, the time lens effect (changing the selfimage magnifi-
cation) allows achieving high sensitivity and a low relative
error measurement.

The optical implementation feasibility of the method
will be now discussed. The effects of chirped laser pulse
sequences on temporal selfimaging phenomena have been
recently discussed [24]. Besides this, the effect of the time
lens is critical, and here we discuss some of its properties.
If we assume that the time lens is realized by an electro-
optic phase modulator driven with a sinusoidal voltage of
angular frequency xm, then the optical wave form must
be shorter than a time aperture: TA � 1/xm, with
xm � (/20)1/2 [4]. Thus, by employing this technology,
phase factors and time apertures are related by:
TA � (|/20|)�1/2. For /ð1Þ20 ¼ �4:7124� 1020 Hz2 rad, it is
obtained: TA1 ffi 50 ps and so it is not possible to select
N = 41 pulses with T0 = 100 ps, because this input train
exceeds the obtained time aperture. Similar considerations
with /ð2Þ20 ¼ 1:1781� 1020 Hz2 rad results in a time aper-
ture: TA2 ffi 90 ps. Although TA2 > TA1, the second input
train (for the /ð2Þ20 case) is four times longer, for identical
N (Fig. 5), this clearly represents a worst situation. There-
fore, it is important to know how the selfimage formation is
affected by reducing the time duration of the input train,
namely N. To this end we recalculate the convolution
parameter C, as given by Eq. (13), by diminishing N. From
Fig. 6, it can be observed that N = 15 pulses would be an
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acceptable minimum. Therefore, we need to modulate at
least 15 consecutive light pulses each one separated by
100 ps (400 ps), for the /ð1Þ20 ð/

ð2Þ
20 Þ numerical example. How-

ever, with time lens based on sum-frequency generation in
a non-linear crystal, these limitations can be overcame, and
the time lens can be selected to provide the selected phase
factor and time aperture, essentially as independent param-
eters [25,26]. To conclude we believe that this time lens
technology based on non-linear processes would be an
optimal candidate to implement this measurement
procedure.

5. Conclusions

In this paper, we presented a method based on the tem-
poral Talbot effect for determining the dispersion param-
eter associated with a LCFG. By combining a quadratic
phase modulation action on a periodic, input pulse train
together with propagation/reflection in the dispersive
component (LCFG), output periodic pulse trains having
minimum distortion and different magnified repetition
rates can be obtained. The unknown dispersion coefficient
of the LCFG can be determined by obtaining the magni-
fication factor of the period associated with the output
temporal selfimage. In order to avoid fractional (or sub-
Talbot) selfimaging, which would difficult the determina-
tion of the dispersion value, a criterion is given based
on the detection of the selfimage duty-cycle. The uncer-
tainty in the dispersion determination, inherent to the
proposed method, was analyzed. From the numerical sim-
ulations performed, it can be attained a relative error
below 3% (for M = 4) which is very adequate for most
dispersion compensation techniques.
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