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Abstract: Tree densities have increased greatly in olive orchards over the last few decades. In many
annual crop species, increased density reduces the horizontal red/far-red (R/FR) and blue/green
(B/G) ratios during canopy development even before direct shading occurs, and such changes are
known to alter plant morphology. This study with olive trees evaluated: (1) whether the leaf area
index (LAI) of neighboring trees modifies the light quality environment prior to a tree being directly
shaded and (2) the potential morphological responses of three olive cultivars to changes in light
quality. Increasing LAI using different spatial arrangements of potted, three-year-old trees reduced
the horizontal R/FR ratio more than that of the B/G ratio. Cultivar-specific responses to low R/FR
ratio were observed for individual leaf area and aboveground/belowground biomass ratio using
laterally positioned FR mirrors or green fences. No statistically significant responses were detected
in response to green vegetation fences that reduced both horizontal R/FR and B/G ratios, but a
cluster analysis grouped together the overall morphological responses to both FR mirrors and green
fences. These results in olive trees suggest that cultivar differences in response to light quality may
be relevant for understanding adaptation to dense orchards and identifying cultivars best suited
to them.

Keywords: blue light; Olea europaea L.; red-to-far-red ratio; shade avoidance syndrome; shade
tolerance

1. Introduction

Olive production has intensified over the last few decades with a shift from traditional
low density orchards towards super high density hedgerow systems [1]. The super high
density production model (SHD; 1000 to 2500 trees ha−1) leads to high yields in only a
few years after planting and is designed for mechanical harvesting with efficient straddle
harvesters [2]. Due to less intra- and inter-row spacing, SHD orchards reach high levels of
leaf area index (i.e., m2 of leaf area per m2 of soil surface) before individual trees cover their
allotted space. This leads to a greater interception of photosynthetically active radiation
(PAR) early in hedgerow formation [3], and oil yield is maximized when trees have grown
enough to intercept about 65% of incident PAR [4,5].

Several studies have addressed the growth and reproductive responses of mature olive
trees to PAR using artificial shading. For example, fruit weight and oil concentration were
reduced when the percentage of daily PAR received under shade cloth was below 40% [6],
while fruit set and vegetative growth were reduced below a slightly higher PAR thresh-
old [7]. Leaf morphological characteristics are also altered by shading, including increased
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individual leaf area and decreased leaf thickness within the hedgerows [8,9]. In contrast,
responses to light quality in olive orchards have received little or no attention [1,10].

Light spectral composition changes within plant canopies because leaves and other
green tissues differentially absorb or reflect specific wavelengths [11]. Green leaves strongly
absorb radiation in the red (R) and blue (B) with weak absorption in the green (G) and
far-red (FR) wavelengths. Thus, as plant density and LAI increase, sharp reductions occur
in the B and R compared with the G and FR [12,13]. Changes in light spectral composition
can also be observed before any direct shading from foliage because light reflected by
neighboring plants is high in the G and the FR wavelengths [14]. The associated reduction
in the red-to-far-red ratio (R/FR) reflected by neighboring plants can be used by a plant as
a signal to indicate impending light competition [15].

Plant morphology in annual crop species often responds to changes in the light spectral
composition (reviewed by [16]). Many annual plants detect changes in R/FR and B/G ratios
with photoreceptors (i.e., phytochromes and cryptocromes) that trigger shade avoidance
responses before shading occurs (reviewed by [17]). For example, reductions in the R/FR
ratio of light prior to direct shading were associated with increases in internode and petiole
length in Nicotiana tabacum and Arabidopsis thaliana, respectively [18,19]. Such responses
contribute to greater new leaf formation in the upper canopy where light intensity is high
in order to avoid shading, and they may affect biomass partitioning between organs and
crop yield [20].

Few studies have evaluated the responses to light quality manipulations in woody
perennial species including fruit trees [11,21]. Increases in main stem and shoot growth
were observed in peach and cherry trees when grown under photo-selective films that
reduced R/FR [22]. Shoot growth was also reduced in Scots pine when illuminated by
laterally positioned light sources that reduced R/FR without affecting PAR. However,
grape vine (Vitis vinifera L.) showed no increase in stem elongation or number of ramifi-
cations when plants were exposed to low R/FR ratio using lateral illumination with FR
LEDs [23]. Additionally, the limited information available suggests a wide range of leaf
area response to low R/FR in woody species [23–25]. To the best of our knowledge, olive
tree morphological and biomass partitioning responses to changes in light quality have not
yet been evaluated. Such responses could ultimately be of agricultural importance if they
affect hedgerow structure in SHD olive orchards [1].

In addition to interspecific differences, photomorphogenic responses may also vary
within the same species [26,27]. For example, Botto [28] found that Arabidopsis thaliana
plants from coastal populations of northeast Spain showed a reduction in aerial biomass
when illuminated laterally with FR to mimic neighboring plants, while mountain popula-
tions did not respond to changes in R/FR. Additionally, different responses to low R/FR
were observed between soybean cultivars with increasing internode length occurring in
cvs. Sultana and Merlin and no response occurring in cv. Lissabon [29]. Given the high
number of genetically diverse olive cultivars, different photomorphogenic responses to
light quality may exist. The objectives of the present study were to: (1) evaluate whether
the leaf area index (LAI; m2 of leaf area per m2 of soil surface) of neighboring olive trees
modifies the light quality environment (R/FR and B/G ratios) prior to a tree being di-
rectly shaded and (2) assess the potential morphological responses of three olive cultivars
(Arbequina, Coratina, Arauco) to changes in light quality that simulated the presence of
neighboring trees.

2. Materials and Methods

The study was performed at the experimental field station of CRILAR-CONICET in
the province of La Rioja in northwestern Argentina (28◦48′ S, 66◦56′ W; 1325 masl) during
the 2018–2019 growing season. The field station is located near the Andes mountains,
and the region is hot and dry with an annual precipitation of 100–150 mm and annual
evapotranspiration of about 1600 mm [30,31].
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2.1. Light Quality Response to Leaf Area Index of Neighboring Trees

Horizontally oriented radiation measurements were performed in February 2019 using
potted trees arranged in different densities to create a wide range of LAI from neighboring
trees. Nine three-year-old olive trees (cv. Coratina) growing in 30 L pots with an average
leaf area of 0.61 m2 tree−1 were used. Leaf area per tree was determined after the radiation
measurements were done by counting the total leaf number of three trees and multiplying
leaf number per tree by average individual leaf area. Individual leaf area was obtained by
dividing the weight of 150 randomly collected leaves (i.e., 50 from each tree) by the specific
leaf mass (mg cm−2) of the same leaves, which was estimated from leaf disks of known
area. The arrangements included a 4 m × 1.3 m spacing to simulate a recently planted SHD
orchard and denser tree spacings of 1.5 × 1.5, 0.75 × 0.75, 1.0 × 1.0, and 0.5 m × 0.5 m
to emulate what would occur as the tree crowns grew. In all cases, the rows of trees were
arranged in a N–S orientation. The range of LAI generated was 0.2 to 2.4 m2 of leaf area
per m2 of ground area (Figure 1A,B). LAI values of 2.5 m2 m−2 have recently been reported
for four-year-old SHD orchards [32].
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Figure 1. Top view of olive tree arrangements with an intermediate leaf area index (LAI = 1.1 m2 leaf
area m−2 ground surface; 0.75 m × 0.75 m tree spacing) (A) and a lower LAI (LAI = 0.2; 4 m × 1.3 m
tree spacing) (B). All light measurements were performed using the central tree. The front view of a
central tree indicates the three positions of the light quality measurements (C). The red/far-red and
RGB sensors were positioned at a distance of 5 cm away from the exterior of the crown of the central
tree and oriented perpendicular to the crown at three heights in order to measure horizontal changes
in light quality associated with the presence of the neighboring plants.

The light environment was characterized for the central tree of each arrangement at R
(660 nm) and FR (730 nm) wavelengths with a Red/Far-Red sensor (µmol m−2 s−1; SKR 110,
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Skye Instruments Ltd., Llandrindod Wells, UK). Blue (465 nm) and G (525 nm) wavelengths
were evaluated with a RGB sensor (µW cm−2; APDS-9960, Avago Technologies Ltd.,
San José, CA, USA) connected to an Arduino board (MEGA 2560 Compatible-CH340; Todo
Micro, Buenos Aires, Argentina). The sensor heads were positioned at a distance of 5 cm
away from the exterior of the central tree crown and oriented perpendicular to the crown
at three heights in order to measure horizontal changes in light quality associated with
the presence of the neighboring trees. The chosen crown heights of 0.5, 1.0, and 1.5 m
represented the lower, middle, and upper portions of the crown, respectively (Figure 1C).
The measurements were performed at four azimuthal orientations (N, S, E, and W) and
at five times along the course of the day (8:00, 10:00, 12:00, 14:00, and 16:00 h solar time)
for all of the tree arrangements. All measurements were made on three consecutive sunny
days, with each day considered as a repetition.

2.2. Morphological Responses to Light Quality
2.2.1. Plant Material

Young plants of cultivars Arbequina, Coratina, and Arauco were obtained from the
nursery of the Junín Experimental Station (Mendoza Province) of the Instituto Nacional
de Tecnología Agropecuaria (INTA). The cv. Arbequina is widely used in SHD orchards
worldwide due to its compact growth form and is originally from Catalonia, Spain. The
cv. Coratina is mainly used in lower density orchards due to its often greater vigor and is
originally from Apulia, Italy. The cv. Arauco, is also used in lower density orchards and is
the only Argentine cultivar recognized by the International Olive Oil Council (2000) [33].

The experiment was conducted from 1 October 2018 (mid-spring) to 15 February
2019 (mid-summer) at the experimental field station of CRILAR-CONICET in La Rioja.
The plants were seven months old at the beginning of the experiment and were grown in
700 cm3 plastic pots filled with a sand/peat/perlite mixture (1:1:1). The young plants were
well-watered twice a day through a microtube spider-type irrigation system based on the
daily atmospheric demand. They were fertilized manually with 2.5 g macronutrients (15 N:
15 P: 15 K) every 15 days. To reduce light reflection from the soil, the pots were placed on
six 40 cm high and 6 m long wooden tables oriented E–W.

2.2.2. Experimental Design and Light Quality Treatments

There were two light quality treatments (i.e., FR mirrors and green fences) with each
treatment having its own control (i.e., control mirrors and control fences) (Figure 2A).
We used one FR mirror per plot that selectively reflected FR wavelengths horizontally to
reduce the R/FR ratio received by the young plants (Figure 2B) and one green vegetation
fence (GF) per plot that reduced both the horizontal R/FR and B/G received by the olive
plants. One plant of each cultivar was placed to the N of each mirror or fence for a total
of three plants per plot. Thus, the experimental design was a split-plot design with light
quality as the main plot (FR mirror or GF) and the cultivar as the subplot. Ten replicate
plots were used for each of the light quality treatments and controls, and one plant of each
of the three cultivars was randomly assigned to each plot. The plants were separated by
20 cm within a light quality plot, and plots were separated by 35 cm.

The FR mirrors were built using cardboard sheets (30 cm height × 60 cm length
and 4 mm thick) that were first covered by aluminum foil, then by a red acetate layer
(0.2 mm, LEE filters 106 Primary Red, Central de Lamps, Buenos Aires, Argentina), and
lastly by a blue acrylic layer (2 mm, 2031, Paolini SAIC; Buenos Aires Argentina) [34]. These
layers covered the entire cardboard surface. The control mirror had a neutral wavelength
reflection and consisted of a similar cardboard sheet covered with black polyethylene
(200 µm). All mirrors were placed 20 cm to the S of the young olive plants, given that the
sun at midday is positioned to the north in the southern hemisphere, and the height of the
mirrors was adjusted to account for plant growth with the main stem apex coinciding with
the center of the mirror. The mirrors were inclined 30◦ from vertical to provide maximum
reflection for the midday solar azimuth angle at our latitude.
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The GF closely simulated the modifications in the light environment that occur due to
the reflection of light by neighboring green plants [14]. The GF were formed using pots
containing a 40 cm height wheat–rye mixture placed 20 cm to the S of the olive plants.
At the start of leaf senescence of the wheat–rye mixture, it was replaced by a fence made
of clades of cactus (Opuntia ficus-indica) on 3 January 2019. The control fence (CF) was
composed of dried rush (Juncus imbricatus). Similar to the mirrors, both GF and CF fences
were positioned such that the main stem apex of the trees coincided with the center of
the fence.

2.2.3. Light, Temperature, and Relative Humidity Measurements

The light horizontally reflected by the treatments and controls was evaluated in all
of the experimental plots three times a day on 20 November 2018 (9:00, 12:00, and 15:00 h
solar time) at the R, FR, B, and G wavelengths. The Red/Far-Red and the RGB sensors were
placed such that the sensor head was placed horizontally with the sensor window facing
the mirror or the fence in order to measure horizontal changes in light quality reflected
by the mirrors or fences at stem apex height. Vertical light fluxes were also measured
at midday on the apex of the central plant of each plot. The vertically and horizontally
reflected PAR were estimated using previously constructed relationships between R, B, and
G fluxes and values from a PAR sensor. Humidity and air temperature were measured at
the same times using a digital thermohygrometer (Hygropalm 2, Rotronic Ag, Hauppauge,
NY, USA).

More detailed, hourly measurements (5:00 to 19:00 h; solar time) of the R/FR ratio
were also evaluated in one randomly-selected FR mirror plot and one control mirror plot.
The mirrors were effective in decreasing the R/FR ratio in relation to the control between
5:00 and 15:00 h (average R/FR = 0.44 for the FR mirror versus 1.10 for the control). From
16:00 to 19:00 h, no differences between the treatments were observed in the R/FR ratio
due to the sun falling behind the mountains to the west of the experimental station.

2.2.4. Morphological and Biomass Measurements

The initial size of all young olive plants, including main stem length, number of nodes,
and number of leaves, was evaluated at the beginning of the experiment. The initial size of
the plants assigned to the two treatments and their controls was similar for all variables. At
the end of the experiment, main stem elongation was calculated as the difference between
stem length at the beginning and the end of the experiment. The number of nodes per
main stem that were formed during the experiment were also counted, and the internode
length was estimated by dividing stem elongation by the number of new nodes.

Leaf length and width were measured at the end of the experiment on five fully
developed leaves that formed during the latter part of the experiment. Individual leaf area
of the same five leaves was determined by sampling leaf disks of known area from them
and drying the disks and the leaves in a forced-air oven at 70 ◦C. The individual leaf area
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was then calculated by dividing leaf dry weight by the specific leaf mass (mg cm−2; SLM).
The increase in leaf number per plant was calculated by counting the number of leaves
at the beginning and the end of the experiment. Additionally, the increase in plant leaf
area was estimated by multiplying the increase in the number of leaves per plant by the
individual leaf area. The number of axillary shoots per plant was counted only at the end
of the experiment since few plants had axillary shoots at the beginning of the experiment.
Axillary shoot angles were estimated using digital photographs (Leica 13 MP dual camera,
Huawei Vns L23, Huawei Technologies Co., Ltd., Longgang District, Shenzhen, China)
that were processed using ImageJ software (ImageJ, U.S. National Institutes of Health,
https://imagej.nih.gov/ij/, 1997–2018 (accessed on 10 June 2019)).

Each plant was harvested at the end of the experiment to determine biomass. Leaves,
stems, and roots from each plant were separated and dried in a forced-air oven at 70 ◦C
until reaching a constant dry weight. Total plant biomass and aboveground/belowground
biomass ratio were also calculated.

2.3. Statistical Analyses

For the light characterization experiment, analysis of variance (ANOVA) was used
to assess the potential effects of LAI and azimuth orientation on R/FR and B/G ratio. A
split-plot ANOVA was performed separately for each of the two light quality treatments
(FR mirror and green fence) and its respective control to assess the effects of light quality in
the different cultivars on the morphological and biomass variables. In all cases, the Fisher
LSD post-test was used to detect the significance of differences between means (p < 0.05). A
hierarchical clustering analysis by average linkage (Euclidean distance) was carried out to
group light quality treatments and controls based on their mean values of morphological
and biomass variables. A principal components analysis was also performed to further
identify potential patterns due to cultivar and light quality for these same variables. The
statistical analyses were performed with InfoStat statistical software [35].

3. Results
3.1. Light Quality Characterization in Response to Leaf Area Index

Increasing LAI from 0.2 to 2.4 m2 m−2 led to decreases in the R/FR ratios from 0.84 to
0.56 when averaged over the different azimuth orientations and crown heights along the
course of the day (Figure 3A). In contrast, the B/G ratio decreased from only 0.81 to 0.76
(Figure 3B), although this decrease was still statistically significant (p < 0.05).

The R/FR and B/G ratios varied over the course of the day by azimuth orientation for
the intermediate LAI evaluated (1.1 m2 m−2; Figure 4). In the early morning (8:00 solar
time), the horizontally oriented R/FR ratio of light incident on the crown was highest on
the E side of the central tree in the array, as would be expected based on the position of
the sun with the R/FR ratio being intermediate on the N side and lowest to the S and W
(p < 0.05; Figure 4A). At mid-morning (10:00), the horizontal R/FR ratio was high on both
the E and N sides and low on the S and W sides. At midday, no statistically significant
differences in R/FR between azimuth directions were observed. In mid-afternoon (14:00),
the R/FR ratio was highest on the W side, intermediate on the N side, and low on the E
and S sides (p < 0.05). In the late-afternoon, the values on the W side were higher than
those of the other azimuth orientations as would be expected.

The B/G ratio did not show large differences between azimuth orientations over the
day (Figure 4B). On all sides of the tree, the ratios increased from 8:00 to 10:00 h and showed
a tendency to decrease during the afternoon. The only statistically significant (p < 0.05)
lower B/G ratio with respect to the other orientations was detected on the N side in the
early afternoon (14:00).

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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3.2. Morphological Responses to Light Quality
3.2.1. Light Quality Characterization of Far-Red Mirrors and Green Fences

The R/FR ratio at 9:00 and 12:00 h was reduced from about 0.9 with the control mirror
to less than 0.4 with the FR mirror (Figure 5A). At 15:00 h, the difference was smaller with
values of about 1.05 for the control and 0.85 for the FR mirror. The GF also significantly
reduced the R/FR ratio at 9:00 and 12:00 h, with the CF having ratios of about 0.75 and the
GF less than 0.4 (Figure 5B). However, no difference was apparent between the CF and the
GF at 15:00 h.
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The B/G ratio was slightly higher with the FR mirror than the control at 9:00 and
12:00 h (Figure 5C) due to slightly lower reflection in the G by the FR mirrors. No difference
was detected at 15:00 h. Larger differences between the GF and CF were observed at all
three solar times with lower average B/G values in GF (0.80) than in CF (0.85) (Figure 5D).

The PAR received horizontally from the FR mirrors, the GF, and their controls had a
very narrow range (123–136 µmol m−2 s−1) when measured at midday, with no statistically
significant differences between them. This PAR was about 6% of the PAR received vertically
(2040 µmol m−2 s−1). Additionally, there were no significant differences in air temperature
or relative humidity between any of the treatments at any time of measurement (data
not shown).

3.2.2. Morphological Responses to Far-Red Mirrors

Leaf area response to the FR mirrors differed between the cultivars. While individual
leaf area was reduced 26% by the FR mirrors in cv. Arbequina (p < 0.05), an increase of
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18% was observed in cv. Arauco (p < 0.05), and no response was apparent in cv. Coratina
(Figure 6A). These changes in leaf area were primarily attributed to differences in leaf width
and not to differences in leaf length between treatments (data no shown). The increase in
leaf number per plant during the experiment was also reduced 16% by the FR mirrors in
cv. Arbequina (p < 0.05) but was not affected in the cvs. Coratina and Arauco (Figure 6B).
The reductions in both individual leaf area and the increase in leaf number per plant in cv.
Arbequina led to a 38% decrease in the leaf area produced per plant during the experiment
(p < 0.05; Figure 6C). No significant effect on leaf area per plant was apparent for the cvs.
Coratina and Arauco.
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Figure 6. Individual leaf area (A) and the increase in leaf number (B) and in leaf area (C) per plant
for the experiment with far-red or control mirrors. Bars represent averages ± SE (n = 10). Different
letters indicate significant differences between the means for a given morphological variable using
the Fisher LSD post-test (p < 0.05).

Main stem length more than doubled during the experiment, but no statistically
significant differences in stem elongation in response to the FR mirrors were detected in
any of the three cultivars evaluated (Table 1). However, internode length was 30% lower
with the FR mirrors than with the control mirrors in cv. Coratina (p < 0.05), while the



Horticulturae 2021, 7, 369 10 of 17

increase in the number of main stem nodes was reduced by 18% in response to the FR
mirrors in cv. Arbequina.

Table 1. Stem growth responses to far-red (FR) or control mirrors in three olive cultivars. Average values ± SE (n = 10) are
shown. Different letters indicate a significant difference between the means for a given morphological variable using a
Fisher LSD post-test (p < 0.05).

Variables

Cultivar

Arbequina Coratina Arauco

FR Control FR Control FR Control

Main stem elongation (cm) 22.9 ± 3.2 bc 29.5 ± 3.4 c 18.7 ± 3.2 ab 22.8 ± 3.2 bc 18.4 ± 3.8 ab 12.3 ± 3.6 a
Internode length (cm) 3.5 ± 0.4 abc 3.7 ± 0.5 bc 3.1 ± 0.4 ab 4.4 ± 0.4 c 3.2 ± 0.5 abc 2.2 ± 0.5 a

Increase in main stem nodes (#) 6.6 ± 0.5 b 8.0 ± 0.5 c 5.9 ± 0.5 ab 5.0 ± 0.5 a 6.0 ± 0.5 ab 5.8 ± 0.5 ab
Axillary shoots per plant (#) 3.2 ± 0.5 bc 4.3 ± 0.5 c 0.5 ± 0.5 a 0.4 ± 0.5 a 1.9 ± 0.6 ab 1.6 ± 0.6 a

Axillary shoot angle (◦) 61.0 ± 3.3 b 56.4 ± 3.6 ab 52.2 ± 3.3 ab 49.8 ± 3.3 a 53.1 ± 4.1 ab 53.9 ± 3.8 ab

The leaf biomass per plant was lower with the FR mirrors than with the control in
cvs. Arbequina and Coratina (p < 0.05) and was not affected in cv. Arauco (Table 2).
Stem biomass also tended to be lower due to the FR mirrors (p < 0.10) in cv. Arbequina.
Consistent with the leaf and stem biomass responses, aboveground biomass was 25% and
36% lower with the FR mirrors in cvs. Arbequina and Coratina, respectively, but was not
affected in cv. Arauco (Table 2). Since root weight was not different with the FR mirrors
in the cvs. Arbequina or Coratina, the aboveground/belowground ratio decreased with
the FR mirrors in these cultivars (p < 0.05). Total plant biomass decreased significantly
only in cv. Coratina (p < 0.05). While no biomass determinations were made prior to the
experiment, the number of leaves quadrupled on average during the experiment, which
suggests that most aboveground biomass accumulated during the experimental period.

Table 2. Biomass responses to far-red (FR) or control mirrors in three olive cultivars. Average values ± SE (n = 10) are
shown. Different letters indicate a significant difference between the means for a given biomass variable using a Fisher LSD
post-test (p < 0.05).

Variables

Cultivar

Arbequina Coratina Arauco

FR Control FR Control FR Control

Leaves (g) 4.7 ± 0.6 b 6.6 ± 0.6 c 2.9 ± 0.6 a 5.4 ± 0.6 bc 4.3 ± 0.7 ab 4.5 ± 0.7 ab
Stems (g) 3.4 ± 0.3 ab 4.2 ± 0.3 b 2.9 ± 0.3 a 3.6 ± 0.3 ab 2.7 ± 0.4 a 2.7 ± 0.3 a
Roots (g) 5.8 ± 0.7 a 5.3 ± 0.7 a 5.6 ± 0.7 a 6.1 ± 0.8 a 5.3 ± 0.8 a 4.7 ± 0.8 a

Aboveground (g) 8.1 ± 0.8 ab 10.8 ± 0.9 c 5.8 ± 0.8 a 9.1 ± 0.8 bc 7.1 ± 1.0 ab 7.3 ± 0.9 ab
Aboveground/belowground 1.5 ± 0.2 ab 2.1 ± 0.2 c 1.1 ± 0.2 a 1.6 ± 0.2 bc 1.4 ± 0.2 ab 1.6 ± 0.2 bc

Total plant (g) 13.9± 1.3 abc 16.0 ± 1.4 c 11.5 ± 1.3 a 15.1 ± 1.3 bc 12.3 ± 1.6 ab 12.0 ± 1.5 ab
Specific leaf mass (mg cm−2) 22.7 ± 0.8 a 24.9 ± 0.8 a 23.50 ± 0.8 a 24.7 ± 0.8 a 22.8 ± 0.9 a 22.6 ± 0.9 a

3.2.3. Morphological Responses to Green Fences

Individual leaf area as well as the increase in leaf number and in leaf area per plant
during the experiment was similar between GF and CF in all cultivars (Figure 7). The cv.
Arbequina had smaller leaves than cv. Coratina (Figure 7A), but it had a greater number of
leaves than the other two cultivars (Figure 7B). The increase in leaf area per plant during
the experiment was greater in cv. Arbequina than in cv. Arauco, with intermediate values
in cv. Coratina (Figure 7C).
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Figure 7. Individual leaf area (A) and the increases in leaf number (B) and in leaf area (C) per plant
during the experiment with green and control fences. Bars represent averages± SE (n = 10). Different
letters indicate significant differences between the means for a given morphological variable using
the Fisher LSD post-test (p < 0.05).

The main stem elongation and other stem-related variables did not show any signifi-
cant differences between the GF and CF for the three cultivars evaluated (Table 3). There
were also no differences between GF and CF in plant biomass or its partitioning (Table 4).
Among cultivars, cv. Arbequina had a greater increase in the main stem nodes and axillary
shoots per plant, and cv. Arauco had about 40% less stem weight, aboveground biomass,
and total biomass (p < 0.05).
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Table 3. Stem growth with green (GF) and control fences in three olive cultivars. Average values ± SE (n = 10) are shown.
Different letters indicate a significant difference between the means for a given morphological variable using Fisher LSD
post-test (p < 0.05).

Variables

Cultivar

Arbequina Coratina Arauco

GF Control GF Control GF Control

Main stem elongation (cm) 27.3 ± 3.6 b 29.2± 3.4 b 22.4 ± 3.4 ab 25.5 ± 3.4 b 12.5 ± 3.8 a 14.4 ± 3.8 a
Internode length (cm) 3.8 ± 0.7 ab 3.7 ± 0.7 ab 3.7 ± 0.7 ab 5.1 ± 0.7 b 2.8 ± 0.8 a 3.1 ± 0.8 ab

Increase in main stem nodes (#) 7.7 ± 0.7 b 7.9 ± 0.6 b 5.7 ± 0.6 a 5.3 ± 0.6 a 6.3 ± 0.8 ab 5.5 ± 0.7 a
Axillary shoots per plant (#) 4.3 ± 0.6 c 3.9 ± 0.6 bc 1.1 ± 0.5 a 1.0 ± 0.5 a 2.3 ± 0.8 ab 2.8 ± 0.7 abc

Axillary shoot angle (◦) 58.1 ± 4.0 a 59.2 ± 3.8 a 49.9 ± 3.8 a 55.1 ± 3.8 a 53.0 ± 4.2 a 59.8 ± 4.2 a

Table 4. Biomass with green (GF) and control fences in three olive cultivars. Average values ± SE (n = 10) are shown.
Different letters indicate a significant difference between means for a given biomass variable using a Fisher LSD post-test
(p < 0.05).

Variables

Cultivar

Arbequina Coratina Arauco

GF Control GF Control GF Control

Leaves (g) 5.6 ± 0.7 bcd 6.9 ± 0. 7 d 4.6 ± 0.6 abc 6.2 ± 0.7 cd 3.1 ± 0.7 a 3.9 ± 0.7 ab
Stems (g) 4.1 ± 0.4 b 4.0 ± 0.4 b 4.1 ± 0.4 b 4.6 ± 0.4 b 2.1 ± 0.4 a 2.4 ± 0.4 a
Roots (g) 5.9 ± 0.8 ab 5.5 ± 0.8 a 6.5 ± 0.8 ab 8.1 ± 0.8 b 4.3 ± 0.9 a 4.3 ± 0.9 a

Aboveground (g) 9.7 ± 1.1 c 10.9 ± 1.0 c 8.7 ± 1.0 bc 10.8 ± 1.0 c 5.2 ± 1.1 a 6.3 ± 1.1 ab
Aboveground/belowground 1.7 ± 0.2 ab 2.2 ± 0.2 b 1.4 ± 0.2 a 1.5 ± 0.2 a 1.4 ± 0.3 a 1.5 ± 0.3 a

Total plant (g) 15.6 ± 1.7 bc 16.4 ± 1.6 c 15.2 ± 1.6 bc 18.9 ± 1.6 c 9.5 ± 1.8 a 10.6 ± 1.8 ab
Specific leaf mass (mg cm−2) 24.1 ± 0.8 a 23.9 ± 0.8 a 23.5 ± 0.8 a 23.5 ± 0.8 a 23.8 ± 0.8 a 21.9 ± 0.8 a

3.2.4. Cluster and Principal Component Analysis

A hierarchical clustering analysis integrated morphological and biomass variables in
response to the FR mirrors, green fences, and their respective controls for the three olive
cultivars (Figure 8A).

Young olive plants exposed to the FR mirror and GF were grouped in one cluster, and
both controls were grouped in another cluster. Principal component analysis explained 82%
of the total variability, with the first principal component (PC1) explaining 65% and the
second principal component (PC2) explaining 17%. PC1 was associated mainly with the
increase in leaf area per plant and aboveground/belowground biomass as well as increase
in leaf number and leaf weight per plant. Plant biomass, SLM, and the increase in the
number of main stem nodes had a smaller contribution to PC1. The PC2 was associated
to a large extent with individual leaf area. The PCA highlighted the fact that the three
cultivars showed different responses to light quality. In cv. Arbequina, plants with the
control mirror and control fence treatments were strongly associated with PC1. In contrast,
the GF plants showed less association with PC1, and the FR mirror plants appeared to be
negatively associated with PC2. In cv. Coratina, the control plants had some association
with PC2, but the FR mirror plants were negatively associated with PC1. In cv. Arauco,
little difference was observed between the controls and the treatments.
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far-red (FR) mirrors, green fences (GF), and their respective controls (C or CF). The different cultivars are abbreviated as cv.
Arbequina (Arb), Coratina (Cor), and Arauco (Ara). The variables used in the analyses were individual leaf area, total plant
biomass, specific leaf mass (SLM), leaf weight, leaf area per plant, aboveground/belowground biomass (A/B), leaf number
per plant, and number of nodes per main stem.

4. Discussion

The influence of plant density on light quality has been well documented in many
annual crop species [29,36,37], but little or no information is available for fruit tree or-
chards [1,38]. The results of our study show that the optical properties of olive leaves can
modify the light quality reflected by the tree crown even before direct shading between trees
occurs (Figures 3 and 4). Increasing tree density and the corresponding increases in the LAI
decreased the horizontally reflected R/FR and B/G ratios. The lowest R/FR (0.56) and B/G
(0.76) values were obtained at the highest measured LAI value (2.4 m2 m−2). Similar LAI
values were found cv. Arbequina SHD orchards with a tree density of 1480 trees ha−1 [32].
Thus, changes in the horizontally reflected light quality environment due to neighboring
trees can be expected in SHD orchards even before direct shading between trees begins.

Olive leaves have species-specific characteristics that should affect the degree to which
light quality is affected in dense orchards. Evidence indicates that the upper leaves of olive
trees are more vertically oriented than lower leaves, which has the effect of reducing the
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solar radiation absorbed by the upper leaves and reducing their heat load [39,40]. Fairly
vertical leaf inclination angles would lead to considerable reflection of light by the dense
layer of trichomes on the partially exposed, abaxial side of the leaf [41]. Given that the
spectral distribution of light reflected from the whitish trichome layer should be more
wavelength neutral than light reflected by green tissue, the B/G and R/FR ratios would be
affected. These optical properties would explain the smaller decreases in the horizontal
B/G and R/FR ratios with increasing LAI in our study relative to stands of annual species
such as Datura ferox and Sinapsis alba [42].

Individual leaf area responses to low R/FR can be highly variable between species,
including both inhibition and promotion of leaf expansion (as reviewed by [43]), and
differences between agronomic cultivars have also been observed [29]. In our study,
different leaf area responses were found between olive cultivars, with individual leaf
area being reduced in cv. Arbequina and increased in cv. Arauco when plants received
low R/FR using laterally positioned FR mirrors (Figure 6). This may be related to the
considerable genetic differences among olive cultivars in vegetative vigor and growth
habit [33,44] that arose during olive domestication around the Mediterranean Basin [45].
The reduction in individual leaf area observed for cv. Arbequina in response to low R/FR
prior to direct shading could affect hedgerow structure and improve its performance under
SHD by increasing light penetration within the canopy [41]. The reduction in leaf area
of cv. Arbequina due to low R/FR does appear to contrast with the larger and thinner
leaves of this cultivar that develop within the shade of the tree crown where both PAR and
R/FR ratio are low [46]. However, preliminary results evaluating the separate effects of
FR supplementation and reduced PAR are consistent with horizontal FR light reducing
individual leaf area in cv. Arbequina [47].

In many plant species, early R/FR signals due to the presence of neighbors trigger
shade avoidance responses, such as an increase in internode length and stem elongation
(reviewed by [17]). These morphological responses are advantageous for survival in high
density stands in natural ecosystems, but they may have negative consequences in crop
systems because yield can be reduced due to greater biomass partitioning to stems rather
than to reproductive organs [20,37]. In woody plant species, increased stem elongation
(i.e., shade avoidance) has been reported in some species such as silver birch [48], but no
response (i.e., shade tolerance) was apparent in grape vine [23]. In our study, main stem
elongation as well as branch number was not affected when the R/FR ratio was reduced
using FR mirrors in the three olive cultivars evaluated (Table 1). Internode length was
actually 30% lower in plants with FR mirrors in cv. Coratina and was not affected in the
cvs. Arbequina and Arauco (Table 1). These stem results suggest that olive trees are shade-
tolerant in that they do not attempt to escape imminent shading from neighboring trees.

Most shade-avoidant species allocate more biomass to stems than to roots under
low R/FR [17]. Examples of this response can be found in Pinus sylvestris L. [49] or sil-
ver birch [24], which showed an increase in the aboveground/belowground biomass
ratio under low R/FR. In contrast, shade-tolerant species often show a reduction or
no change in aboveground/belowground biomass ratio when exposed to low R/FR
environments [11,50,51]. In our study, the aboveground/belowground biomass ratio was
reduced in cvs. Arbequina and Coratina by low R/FR using the FR mirrors due to reduced
total leaf weight per plant, but it was not reduced in cv. Arauco (Table 2). Again, these
results are consistent with these two olive cultivars showing shade-tolerant characteristics.
It has also been suggested that shade-avoiding responses are attenuated under water stress
(as reviewed by [52]). Given that olive cultivars were selected for under mostly semi-arid,
water-limited conditions, preferential allocation to aboveground biomass in response to
impending shade would likely not have been beneficial if competition for soil water with
neighboring plants was the most limiting factor for plant growth. From an agricultural
perspective, the reductions in aboveground/belowground ratio would facilitate adaptation
to SHD orchard systems by contributing to reduced tree crown size and by favoring root
water absorption.
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In addition to the FR mirrors, green vegetation fences (GF) were also used to hori-
zontally reflect light to simulate the presence of neighboring plants. The GF had similar
R/FR values compared with the FR mirrors, but the difference between the control fence
and the GF in R/FR ratio was less than expected due to some reflection of FR light by the
control fence (Figure 5). Leaf area per plant, internode length, and leaf biomass tended
to be lower with the GF compared with the control fence in cvs. Arbequina and Coratina
(Figure 7; Tables 3 and 4), but statistically significant differences were not detected (Figure 6;
Tables 1 and 2). It is likely that the combined difference in the R/FR and B/G ratios be-
tween the GF treatment and the CF (Figure 5) was not large enough to cause significant
morphological responses. In grape vines, morphological responses were observed when
B/G was reduced to less than 0.04, but not with lesser B/G ratio reductions [53]. Addition-
ally, morphological responses to FR reflected by green vegetation were considered to be
proportional to the reduction in the R/FR ratio in silver birch [24]. A cluster analysis of the
GF and FR mirror data did group the GF and FR mirror treatments together versus the two
controls (CF and control mirror), which indicates some similarity in the responses to these
two treatments (Figure 8).

5. Conclusions

Different spatial arrangements of potted olive trees showed that increasing LAI modi-
fies the light quality environment by lowering horizontal R/FR and B/G ratios even before
direct shading between neighboring trees occurs. Furthermore, reductions in horizon-
tal R/FR using FR mirrors led to cultivar-specific responses in individual leaf area and
aboveground/belowground biomass ratio during a controlled experiment. These first
results in olive trees suggest that knowledge of cultivar differences in response to light
quality may be relevant for understanding adaptation to SHD orchards and potentially
for identifying cultivars to be used in SHD. However, further studies in more cultivars
using different experimental approaches and measuring physiological variables, including
photosynthesis and reproductive variables such as flowering, are needed to expand our
limited knowledge.
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