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Abstract. We use known characterizations of generalized Paley graphs which
are Cartesian decomposable to explicitly compute the spectra of the corre-

sponding associated irreducible cyclic codes. As applications, we give reduc-

tion formulas for the number of rational points in Artin-Schreier curves defined
over extension fields and to the computation of Gaussian periods.

1. Introduction

In a recent work [20] (see also [19]) we have related the spectra of generalized
Paley graphs with the weight distribution of certain associated irreducible cyclic
codes. In this work we will compute the weight distribution of irreducible cyclic
codes whose associated generalized Paley graphs are Cartesian decomposable. We
now recall the basic definitions and results about these codes and graphs.

Generalized Paley graphs. Let k and q be integers, with q a prime power, say q = pm.
A generalized Paley graph is a Cayley graph (GP-graph for short) of the form

(1) Γ(k, q) = X(Fq, Rk) with Rk = {xk : x ∈ F∗q}.

That is, Γ(k, q) is the graph with vertex set Fq and two vertices u, v ∈ Fq are
neighbors (directed edge) if and only if v − u = xk for some x ∈ F∗q . Notice that

if ω is a primitive element of Fq, then Rk = 〈ωk〉 = 〈ω(k,q−1)〉. This implies that

Γ(k, q) = Γ((k, q−1), q) and that it is a q−1
(k,q−1) -regular graph. Thus, we will always

assume that k | q − 1. Although the graphs Γ(k, q) were denoted as GP (q, q−1k ) in
[16], our notation is more suited to our purposes because of the relation with the
codes C(k, q) that will be defined later. The graph Γ(k, q) is undirected if q is even
or if k | q−12 for p odd, and it is connected if the regularity degree

n = q−1
k

is a primitive divisor of q − 1 (see [16]). For k = 1, 2 we get the complete graph
Γ(1, q) = Kq and the classic Paley graph Γ(2, q) = P (q).
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The spectrum Spec(Γ) of a graph Γ is the spectrum of its adjacency matrix. If Γ
has different eigenvalues λ0, . . . , λt with multiplicities m0, . . . ,mt, we write as usual

Spec(Γ) = {[λ0]m0 , . . . , [λt]
mt}

with λ0 > · · · > λt. It is well-known that an n-regular graph Γ has n as it biggest
eigenvalue, with multiplicity equal to the number of connected components of Γ.

There are few cases of explicitly known spectrum of Cayley graphs. For instance:
unitary Cayley graphs over rings X(R,R∗), where R is a finite abelian ring and R∗

is the group of units ([1], this includes the classic unitary graphs X(Zn,Z∗n)) and

generalized Paley graphs X(Fqm , S`) with S` = {xq`+1 : x ∈ F∗qm} where ` | m ([19],
this includes the classic Paley graphs).

The eigenvalues of the GP-graphs Γ(k, q), being Cayley graphs, are given by

(2) λγ =
∑
y∈Rk

χγ(y)

for each γ ∈ Fq, where {χγ} are the irreducible characters of Fq. In [20], we studied
the spectrum of Γ(k, q) and showed that these eigenvalues λγ coincide with the
Gaussian periods

(3) η
(N,q)
i =

∑
x∈C(N,q)

i

e
2πi
p Trq/p(x) ∈ C, 0 ≤ i ≤ N − 1,

where C
(N,q)
i = ωi 〈ωN 〉 is the coset in Fq of the subgroup 〈ωN 〉 of F∗q and

(4) N = gcd( q−1p−1 , k).

More explicitly, we showed that

Spec(Γ(k, q)) = {[n]1+µn, [ηi1 ]µi1n, . . . , [ηis ]
µisn}.

for some integers µ, µi1 , . . . , µis (see Theorem 2.1 in [20]).

Cartesian graph product. There are many different kind of products in graph the-
ory. The most common ones are the tensor product (also called Kronecker product
or direct product), the strong product and the Cartesian product (also called box
product or sum of graphs). These products allow, in different contexts, to deter-
mine some graphs invariants such as: chromatic, clique and independence numbers,
diameter, eigenvalues and energy, and also the automorphism group. A complete
study of these products can be found in [12]. It is remarkable that they are partic-
ular cases of another graph operation called NEPS (non-complete extended p-sum,
see [4]). In this work, we will only deal with the Cartesian product.

The Cartesian product of the graphs Γ1, . . . ,Γt with t > 1, is the graph

(5) Γ = Γ1 � · · ·�Γt,

with vertex set V (Γ) = V (Γ1)× · · · ×V (Γt), such that (v1, . . . , vt) and (w1, . . . , wt)
in V (Γ) form an edge in Γ if and only if there is only one j ∈ {1, . . . , t} such that
{vj , wj} is an edge in Γj and vi = wi for all i 6= j. For instance, K2�K2 = C4,
the Cartesian product of K2 and a path graph is a ladder graph and the Cartesian
product of two path graphs is a grid graph. Also, the Cartesian product of n edges
is an n-hypercube (K2)�n = Qn, the Cartesian product of two hypercube graphs is
another hypercube: Qn�Qm = Qn+m, and the Cartesian product of two complete
graphs Kn�Km is the n ×m rook’s graph. Another important class of Cartesian
product graphs is given by the Hamming graphs. A Hamming graph H(b,m) is any
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graph with vertex set all the b-tuples with entries from a set V of size m, and two
b-tuples form an edge if and only if they differ in exactly one coordinate. Clearly,

(6) H(b,m) = (Km)�b

for positive integers b,m such that b,m > 1. Notice that Qn = H(n, 2).
It is a classic result of Sabidussi ([23]) from 1957 that the chromatic number of

the Cartesian product satisfies χ(G�H) = max{χ(G), χ(H)}. Hence, a Cartesian
product is bipartite if and only if each of its factors is. More recently in 2000,
Imrich and Klavźar proved that a Cartesian product is vertex transitive if and only
if each of its factors is ([13]). If a connected graph is a Cartesian product, it can
be factorized uniquely as a product of prime factors; that is, graphs that cannot
themselves be decomposed as products of graphs ([24]).

Irreducible cyclic codes. A linear code of length n over Fq is a vector subspace C
of Fnq . The weight of a codeword c = (c0, . . . , cn−1) ∈ C is the number w(c) of its
nonzero coordinates. The weight distribution of C, denoted

Spec(C) = (A0, . . . , An),

is the sequence of frequencies Ai = #{c ∈ C : w(c) = i}. If w0 = 0 < w1 < · · · < wt
are the non-zero weights, then C is called a t-weight code and w1 is the minimum
distance of C.

A linear code C is cyclic if for every (c0, . . . , cn−1) in C the shifted codeword
(c1, . . . , cn−1, c0) is also in C. An important subfamily of cyclic codes is given by
the irreducible cyclic codes. For k | q − 1 we will be concerned with the weight
distribution of the p-ary irreducible cyclic codes

(7) C(k, q) =
{
cγ =

(
Trq/p(γ ω

ki)
)nC−1
i=0

: γ ∈ Fq
}

where ω is a primitive element of Fq over Fp and Trq/p denotes the trace map from

Fq to Fp. This code has zero ω−k and length

(8) nC = q−1
N

with N as in (4). Sometimes, we will need to further assume that k | q−1p−1 . This

extra assumption implies that N = k and nC = n = q−1
k .

The computation of the spectrum of (irreducible) cyclic codes is in general a
difficult task. There are several papers on the computation of the spectra of some
of these cyclic codes by using exponential sums (see for instance [2], [9], [14], [15]
and [17]). A complete survey on this topic can be found in [8] (see also [7] for the
irreducible case). A different approach for irreducible cyclic codes can be found in
[26]. It is well-known that the weights of irreducible cyclic codes can be calculated
in terms of Gaussian periods (see for instance [3], [5], [6] and [17]). In fact, using
Gaussian periods we have recently showed in [20] that if Γ(k, q) is connected and
k | q−1p−1 , then the eigenvalue λγ of Γ(k, q) and the weight of cγ ∈ C(k, q) for γ in Fq
are related by the simple expression

(9) λγ = n− p
p−1w(cγ)

where n = q−1
k is both the length of C(k, q) and the regularity degree of Γ(k, q).

Moreover, the frequency of the weight w(cγ) coincides with the multiplicity of λγ .
We notice that the relation between cyclic codes and graphs is not new. In [14] and
[29] the spectra of Hermitian form graphs is used to compute the weight distribution
of some cyclic codes with an arbitrary number of zeros.
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We will assume henceforth that q = pm for some natural m with p prime and
that k is a positive integer such that k | q− 1. We next give a brief summary of the
results of the paper.

Outline and results. In Section 2, we consider the weight distribution of the code
C = C(k, q) associated with the graph Γ = Γ(k, q) which is Cartesian decomposable.
In this case it was proved by Pearce and Praeger ([18]) that Γ = �bΓ0 for some fixed
GP-graph Γ0. In Theorem 2.2, we show that the weight distribution of C can be
computed from the corresponding one of the smaller code C0 associated with Γ0. In
fact, the weights of C are certain integral linear combinations w = `1w1 + · · ·+ `sws
of the weights w1, . . . , ws of C0.

In the next two sections we obtain the weight distributions of irreducible cyclic
codes C constructed from 1-weight and 2-weight irreducible cyclic codes. In the 1-
weight case, the weight distribution of C is obtained from the code C(1, q), which in
the binary case is the simplex code (see Proposition 3.1). In the case of irreducible
2-weight cyclic codes, they are of three different kind: subfield, semiprimitive and
exceptional. Subfield subcodes are not connected and hence cannot be considered
by our methods. The semiprimitive case is studied in Proposition 4.1. The com-
putations of the exceptional cases can be done in the same way, but are left over
because of the size of the numbers involved.

Section 5 deals with the weight distribution of the irreducible cyclic codes con-
structed from the codes C(3, q) and C(4, q). We have that Γ(1, q) and Γ(2, q) are
the complete graphs and the classic Paley graphs, respectively. The next graphs to
consider are Γ(3, q) and Γ(4, q). The weight distributions of the associated codes
C(3, q) and C(4, q) are known (see Theorems 19–21 in [7]). In Theorems 5.1 and
5.3 we give the weight distributions of the irreducible cyclic codes constructed from
C(3, q) and C(4, q), respectively.

The final two sections are devoted to applications of the reduction result given
in Theorem 2.2 In Section 6, we consider Artin-Schreier curves Ck,β(pm) with affine
equations

yp − y = βxk

where k | p
m−1
p−1 and β ∈ Fpm . In Proposition 6.1 we obtain the direct relationship

#Ck,β(pm) = 2pm + k(p− 1)λβ

between the the number of Fpm -rational points of the curve Ck,β(pm) and the eigen-
values of the graph Γ(k, pm). Then, via this connection between curves and graphs
and the reduction result for graphs, we express the number of rational points of an
Artin-Schreier curve over a field Fpab in terms of linear combinations of the number
of rational points of Artin-Schreier curves over a subfield Fpa (see Corollary 6.2).

Finally, as a second application, we give an expression for Gaussian periods
in terms of Gaussian periods of smaller parameters (Proposition 7.1). In fact,
we show that, under the same hypothesis of Cartesian decomposability of GP-

graphs used in Theorem 2.2, each Gaussian period η
(k,pab)
i is an integral linear

combination of Gaussian periods η
(u,pa)
j . In the particular case that the smaller

pair is semiprimitive, we get the simple explicit expression of Proposition 7.3.



Weight distribution of cyclic codes and decomposable GP-graphs 5

2. Spectrum of cyclic codes associated with decomposable GP-graphs

A graph Γ is Cartesian decomposable if it can be written as a product of smaller
graphs Γ1, . . . ,Γt as in (5) with t > 1. Recently, Pearce and Praeger ([18]) char-
acterized those generalized Paley graphs which are Cartesian decomposable. They
proved that a Cartesian decomposable GP-graph is a product of copies of a single
graph, which is necessarily another GP-graph.

More precisely, if Γ = Γ(k, pm) is simple and connected, that is if k divides q−1
2

when p is odd and n = pm−1
k is a primitive divisor of pm−1, the following conditions

are equivalent:

(a) Γ = Γ(k, pm) is Cartesian decomposable.

(b) n = bc with b > 1, b | m and c is a primitive divisor of p
m
b − 1.

(c) Γ ∼= �bΓ0, where Γ0 = Γ(u, p
m
b ) with u = p

m
b −1
c for b, c as in (b).

(10)

We recall that n is a primitive divisor of pm − 1 if n | pm − 1 and n 6| pt − 1 for all
t < m. To denote this fact, for convenience, we will use the following notation

(11) n † pm − 1.

We want to point out the following structural consequence of the previous result
of Pearce and Praeger for those GP-graphs which are strongly regular.

Proposition 2.1. Let Γ(k, q) be a connected GP-graph which is strongly regular.
Then, Γ(k, q) is Cartesian decomposable if and only if it is a Hamming graph and
q is a perfect square. In this case we have

(12) Γ(k, q) = Kq′�Kq′ = H(2, q′)

with k =
√
q+1

2 and q′ =
√
q.

Proof. Suppose that Γ = Γ(k, q), with q = pm, is a Cartesian decomposable strongly
regular graph. Since Γ is connected, by (10) we have Γ ∼= �bΓ0, where Γ0 =

Γ(u, pa) with c = pa−1
u † pa − 1, m = ab and n = pm−1

k = bc. Also, since every
connected strongly regular graph has only two non-trivial eigenvalues, necessarily
b = 2 and Γ0 is a complete graph. Otherwise, Γ would have more than two nontrivial
eigenvalues because all of the eigenvalues of the Cartesian product of graphs are
sums of eigenvalues of its factors. Thus, Γ0 must have only two eigenvalues and
b = 2. But the graphs with only two eigenvalues are exactly disjoint unions of two

copies of the same complete graph. As c = pa−1
u † pa − 1 then Γ0 is connected.

Therefore, Γ0 is the complete graph with pa vertices, since b = 2, and then q′ =
pa =

√
q. On the other hand, we have

k = pm−1
n = p2a−1

2(pa−1) = pa+1
2 =

√
q+1

2 ,

as desired. The second equality in (12) follows by (6).
The converse is clear from the fact that the eigenvalues of Kq′�Kq′ are 2q′ − 2,

q′ − 2 and −2, with multiplicities 1, 2(q′ − 1) and (q′ − 1)2, respectively.

We next show that if Γ is a Cartesian decomposable GP-graph, say Γ ∼= �bΓ0,
then the computation of the spectrum of the cyclic code C associated with Γ reduces
to the one of the smaller code C0 associated with Γ0. We will use a recent result in
[20] relating the spectra of C0 with the one of Γ0.
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In the sequel we assume that p is a prime and k,m are positive integers such that

(13) q = pm, k | q − 1 and put n = q−1
k .

In addition, sometimes we will also require that

(14) m = ab, n = bc and u = pa−1
c ,

for non-negative integers a, b, c with b > 1 and c | pa − 1. Notice that if p − 1 | c
(or, equivalently, if u | p

a−1
p−1 ), then k | q−1p−1 .

We are now in a position to state and prove our main result.

Theorem 2.2. Let p, q, k,m, n, a, b, c, u be positive integers as in (13)–(14) with
c † pa − 1 and n † pm − 1. Consider the irreducible cyclic codes C = C(k, pm) and
C0 = C(u, pa). If p− 1 | c, then Spec(C) is determined by Spec(C0). More precisely,
if the weights of C0 are 0 = w0 < w1 < · · · < ws with frequencies Awi = mi for
i = 0, . . . , s, then the weights of C are given by

(15) w`0,...,`s = `1w1 + · · ·+ `sws

where (`0, . . . , `s) ∈ Ns+1
0 such that `0 + · · ·+ `s = b, with frequencies

(16) A`0,...,`s =
(

b
`0,...,`s

)
m`1

1 · · ·m`s
s .

In particular, C has the same minimum distance as C0.

Proof. We have k | p
m−1
p−1 and u | p

a−1
p−1 since p−1 | c. Also, the graphs Γ = Γ(k, pm)

and Γ0 = Γ(u, pa) are connected because of the primitiveness of n and c, respectively.
Thus, we can apply Theorem 5.1 in [20] to the codes C and C0 of lengths n and c,
respectively.

By hypothesis, since conditions (10) are satisfied, we have that Γ ∼= �bΓ0 and
therefore Spec(Γ) = Spec(�bΓ0). It is known that the eigenvalues of the Cartesian
product of graphs is the sum of the eigenvalues of its factors (see for instance
[4]). Now, if Spec(Γ0) = {[λ0]m0 , [λ1]m1 , . . . , [λs]

ms} where λ0 = c is the trivial
eigenvalue with multiplicity m0 = 1, then the eigenvalues of Γ are

(17) Λ`0,...,`s = `0λ0 + · · ·+ `sλs

where the (s+ 1)-tuple of integers (`0, . . . , `s) satisfies

`0 + · · ·+ `s = b

and `i ≥ 0 for every i, with corresponding multiplicity

(18)
(

b
`0,...,`s

)
m`1

1 · · ·m`s
s

since m0 = 1, where
(

b
`0,...,`s

)
stands for the multinomial coefficient. The hypothesis

p− 1 | c is equivalent to u | p
a−1
p−1 . Thus, we can apply Theorem 5.1 in [20] (i.e. (9))

to the graph Γ0 and the code C0 and, hence, we have

λi = c− p
p−1wi

for each i = 0, . . . , s. Therefore, we get

Λ`0,...,`s =

s∑
i=0

`i(c− p
p−1wi) = n− p

p−1

s∑
i=1

`iwi,
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since c(`0 + · · ·+ `s) = bc = n and w0 = 0. Also, the frequency of wi in C0 is mi for
all i = 0, . . . , s. Since p− 1 | c we have k | q−1p−1 and hence by (9) again applied to C
and Γ, we have that the weights of C are given by

w`0,...,`s = p−1
p (n− Λ`0,...,`s) = `1w1 + · · ·+ `sws

with frequencies
(

b
`0,...,`s

)
m`1

1 · · ·m`s
s , as desired.

The last assertion is straightforward from (15), and the result follows.

Remark 2.3. Suppose that Γ ' �bΓ0. Then Γ and Γ0 have associated irreducible
cyclic codes C and C0. Under the hypothesis of the theorem, we can only assure
that the spectrum of C equals the spectrum of the direct sum code

Cb0 = C0 ⊕ · · · ⊕ C0,

with C0 repeated b-times, which is not cyclic in general. Thus, one may wonder if
there is some code operation ∗ such that C = C0 ∗ · · · ∗ C0, with C0 repeated b-times.

3. Cyclic codes from 1-weight cyclic codes

In this and the next two sections we will apply Theorem 2.2 to compute the
spectra of irreducible cyclic codes constructed from irreducible cyclic codes with few
weights. We consider 1-weight irreducible cyclic codes here and 2-weight irreducible
cyclic codes in the next section. In Section 5 we will deal with some codes that are
3-weight and 4-weight irreducible cyclic codes.

One-weight irreducible cyclic codes are already characterized when k | q− 1 (see
[7], [28]). In fact, by Theorem 16 in [7], we have that if k | q − 1, then the cyclic
code C(k, q) is irreducible if and only if

N = gcd( q−1p−1 , k) = 1.

In our case, the restriction k | q−1p−1 implies that k = 1 and hence, the only irreducible

cyclic code that we can take into account is

C(1, q) = {(Trq/p(γω
i))q−1i=0 : γ ∈ Fq}

over Fp of length q − 1, where ω is a primitive element of Fq. Note that in the
binary case p = 2, C(1, 2m) is just the simplex code (i.e. the dual of the Hamming
code).

From now on, it will be useful to use the following notation

(19) Ψb(x) = xb−1
x−1 = xb−1 + · · ·+ x2 + x+ 1.

Proposition 3.1. Let q = pa with p prime, a ≥ 1 and b > 1 an integer dividing
Ψb(q). Put k = kb = 1

bΨb(q). Then, C = C(k, qb) is an irreducible b-weight cyclic
code with weights 0, w, 2w, . . . , bw and frequencies given by

(20) Spec(C) = {A`w(C) =
(
b
`

)
Aw

`}0≤`≤b
where w = (p − 1)pa−1 and Aw = pa − 1 is the weight distribution of the code
C0 = C(1, q).

Proof. Notice that k = qb−1
b(q−1) and thus k | q

b−1
p−1 . Clearly c = q − 1 is a primitive

divisor of itself. By Theorem 2.2, the spectrum of the irreducible cyclic code C is

determined by the spectra of the code C0 = C(1, q) if n = qb−1
k = b(q − 1) is a

primitive divisor of qb − 1. Equivalently, if the GP-graph Γ(k, qb) is connected.
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Thus, we will show that Γ(k, qb) is connected by showing that it is a Hamming
graph. For integers d, q with d > 1 and q > 1, recall that a Hamming graph H(d, q)
is any graph with vertex set all the d-tuples with entries from a set V of size q, and
two d-tuples form an edge if and only if they differ in exactly one coordinate.

In [16], Lim and Praeger characterized all the GP-graphs which are Hamming

graphs. They proved that Γ(p
m−1
n , pm) is Hamming if and only if n = b(p

m
b − 1)

for some divisor b > 1 of m. Clearly, n satisfies this last condition and then Γ(k, qb)
is a Hamming graph, which is connected by definition. This implies that n is a
primitive divisor of qb − 1.

We have that C0 = C(1, pa). By Theorems 15 and 16 in [7], C0 is a 1-weight
[pa, a, (p − 1)pa−1]-code with weight distribution given by w = (p − 1)pa−1 with
Aw = pa − 1. The proposition thus follows from Theorem 2.2.

By (15) the weights are w`0,`1 = `1w1 with (`0, `1) ∈ N2
0 such that `0 + `1 = b.

Thus, the weights are

w` = `w with 0 ≤ ` ≤ b.

By (16) the frequencies are given by

A`w = A`0,`1 =
(

b
`0,`1

)
m`1

1 = b!
`0!`1!

m`1
1 =

(
b
`1

)
A`1w .

Since `1 runs from 0 to b, we get the desired result.

Notice that one can check that (20) is correct by adding the frequencies∑
0≤`≤b

(
b
`

)
A`w = (1 +Aw)b = pab = qb.

Example 3.2. Consider p = 2 and a = 3, hence q = 8. One can check that if b = 7
then b | 86 + · · ·+ 82 + 8 + 1 = 299.593. The simplex code C0 = C(1, 8) has weights
w0 = 0, w1 = 4, with frequencies A0 = 1, A4 = 7. Now, kb = 1

7Ψ7(8) = 42.799. By
the previous proposition, the irreducible cyclic code

C( 1
7Ψ7(8), 87) = C(42.799, 2.097.152)

has weight distribution

w0 = 0, w1 = 4, w2 = 8, w3 = 12, w4 = 16, w5 = 20, w6 = 24, w7 = 28

with frequencies

A0 = 1, A4 =
(
7
1

)
7 = 72 = 49,

A8 =
(
7
2

)
72 = 3 · 73 = 1.029, A12 =

(
7
3

)
73 = 5 · 74 = 12.005,

A16 =
(
7
4

)
74 = 5 · 75 = 84.035, A20 =

(
7
5

)
75 = 3 · 76 = 352.947,

A24 =
(
7
6

)
76 = 77 = 823.543, A28 = 77 = 823.543.

By Theorem 17 in [7], if q−1
p−1 is even, then C(2, q) is a 2-weight irreducible cyclic

code with non-zero weights w± =
(p−1)(q±√q)

qN with frequencies Aw± = q−1
2 . The

next result exhibits another infinite family of 2-weight irreducible cyclic codes.

Corollary 3.3. If q is a power of an odd prime p, then C( q+1
2 , q2) is a 2-weight

irreducible cyclic code with weights 0, w, 2w with corresponding frequencies A0 = 1,
Aw = 1(q − 1), A2w = (q − 1)2 where w = p−1

p q.
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Proof. Taking b = 2, we clearly have that 2 | Ψ2(q) = q + 1 since q is odd. Thus,
the statement follows directly from Proposition 3.1.

Remark 3.4. The code C( q+1
2 , q2) belongs to the class of semiprimitive 2-weight

irreducible cyclic codes. In the following section, we will use this kind of codes to
find other weight distributions. The GP-graph Γ associated with this code is the
one given in Proposition 2.1, that is Γ = Kq�Kq = H(2, q).

By Proposition 3.1, to get the weight distribution of C( 1
bΨb(q), q

b) we only need
to check that b | Ψb(q). In the next result we give some sufficient conditions for this
to happen, based on previous results on [21].

Corollary 3.5. Let p be a prime and let a, b, k,m, x be positive integers such that
m = ab with b > 1, k = 1

bΨb(p
a) and x = pa. The weight distribution of C(k, pm)

is given by (20) in the following cases:

(a) If b = r is a prime different from p and x ≡ 1 (mod r).

(b) If b = 2r with r an odd prime, x coprime with b and x ≡ ±1 (mod r).

(c) If b = rr′ with r < r′ odd primes such that r 6| r′ − 1 and x ≡ 1 (mod rr′).

(d) If b = r1r2 · · · r` with r1 < r2 < · · · < r` primes different from p with x ≡ 1
(mod r1) and xb/ri ≡ 1 (mod ri) for i = 2, . . . , `.

(e) If b = rt with r prime such that ordb(x) = rh for some 0 ≤ h < t.

(f) If b = rt11 · · · r
t`
` with r1 < · · · < r` primes different from p where ord

r
ti
i

(x) = rhii
with 0 ≤ hi ≤ ti − 1 for all i.

Proof. Clearly (a)–(d) are direct consequences of Proposition 3.1 and the divisibility
properties of Ψb(x) in the square-free case given in Lemma 5.1 of [21]. On the other
hand, (e) follows from Proposition 3.1 and Lemma 5.2 of [21]. The remaining
assertion is straightforward from Proposition 3.1 and Lemma 5.3 of [21].

4. Cyclic codes from 2-weights cyclic codes

In [25], Schmidt and White conjectured that all two-weight irreducible cyclic
codes of length n over Fp, with p − 1 | n, belong to one of the following disjoint
families:
• The semiprimitive codes, which are those C(u, pa) such that −1 is a power of p

modulo u. Equivalently, (k, q) with q = pm is a semiprimitive pair, that is k | pt+ 1
for some t such that t | m and mt = m

t even, and k 6= p
m
2 + 1.

• The subfield subcodes, corresponding to C(u, pa) where u = pa−1
pt−1 with t < a.

• The exceptional codes, i.e. irreducible 2-weight cyclic codes which are neither
subfield subcodes nor semiprimitive codes.

If one does not require the condition p − 1 | n, Pinnawala and Rao ([22]) has
given a family of 2-weight irreducible cyclic codes which are not of the previous
kind.

Notice that in the subfield subcode case, the graph Γ(u, pa) is not connected since

c = pa−1
u is not a primitive divisor of pa−1; and thus we cannot apply Theorem 2.2.

Hence, we are only interested in the other two cases.
We now compute the spectrum of the code C associated with the decomposable

graph Γ ' �bΓ0, where Γ0 is a semiprimitive GP-graph.
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Proposition 4.1. Let p, q, k,m, n, a, b, c, u be positive integers as in (13)–(14) such
that n † pm − 1. If (u, pa) is a semiprimitive pair then the weights of the code
C = C(k, pm) are given by

(21) w`1,`2 = (p−1)p
a
2
−1

u

{
`1(p

a
2 − σ(u− 1)) + `2

(
p
a
2 + σ

)}
for every pair of non-negative integers `1, `2 such that 0 ≤ `1 + `2 ≤ b, where we
put σ = ±1 if u | p a2 ± 1, with frequencies

(22) A`1,`2 =
(
b
`1

)(
b−`1
`2

)
c`1+`2(u− 1)`1 .

Proof. Consider the semiprimitive irreducible cyclic code C0 = C(u, pa). Thus, we
have that u | p` + 1 for some ` | a with a

` even and that C0 is a 2-weight code. By
Remark 5.6 in [20] the weights of C0 are

w1 = (p−1)p
a
2
−1

u (p
a
2 − σ(u− 1)) and w2 = (p−1)p

a
2
−1

u (p
a
2 + σ)

where σ = (−1)
m
2`+1 with ` the minimal positive integer such that u | p` + 1.

Since (u, pa) is a semiprimitive pair then u | p
a−1
p−1 and k | p

m−1
p−1 . Indeed, assume

that u | p` + 1 with a
` even, then if we denote by v = v2(a` ) the 2-adic value of m`

we obtain that a
2v = h` for some h odd. On the first hand, by taking into account

that p` ≡ −1 (mod p` + 1) we obtain that

p
a
2v = ph` ≡ (−1)h ≡ −1 (mod p` + 1)

i.e we have that p` + 1 | p a
2v + 1 and thus u | p a

2v + 1. On the other hand, it is easy
to see that

pa − 1 = (p
a
2v − 1)

v∏
j=1

(p
a

2j + 1).

Notice that p− 1 | p a
2v − 1 and therefore u | p

a−1
p−1 , as desired. Now, since u | p

a−1
p−1

and Ψb(p
a) = pab−1

pa−1 then uΨb(p
a) | p

ab−1
p−1 . Using that k = u

bΨb(p
a) we obtain that

k | p
m−1
p−1 , as we wanted. Thus, by Remark 5.6 in [20] the frequencies of w1, w2 are

m1 = c and m2 = c(u− 1), respectively.
Now, by hypothesis we have that m = ab and n = bc is a primitive divisor of

pm − 1. Hence, by Theorem 2.2 the weights of C(k, pm) are w`0,`1,`2 = `1w1 + `2w2

where (`0, `1, `2) ∈ N3
0 with `0 + `1 + `2 = b, with frequencies

Aw`0,`1,`2 =
(

b
`0,`1,`2

)
m`1

1 m
`2
2 =

b!

`1!`2!(b− (`1 + `2))!
m`1

1 m
`2
2 .

Thus, disregarding `0 we have that

w`1,`2 = `1w1 + `2w2 = (p−1)p
a
2
−1

u

{
`1(p

a
2 − σ(u− 1)) + `2

(
p
a
2 + σ

)}
with corresponding multiplicities

Aw`1,`2 =
(
b
`1

)(
b−`1
`2

)
c`1+`2(u− 1)`1 ,

where (`1, `2) runs over all 2-tuples of non-negative integers such that 0 ≤ `1+`2 ≤ b,
and therefore we obtain (21) and (22), as we wanted.

The proposition implies that one knows the weight distribution of the cyclic
code C = C(k, pab) associated to the decomposable graph Γ(k, pab) = �bΓ(u, pa)
without need to know the weight distribution of the smaller cyclic code C0 = C(u, pa)
associated to Γ0(u, pa).
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Example 4.2. Let p be an odd prime and take a = u = 2 and b = 3. The graph
Γ0 = Γ(2, p2) is the classic Paley graph over Fp2 with spectrum

Spec(Γ0) = {[p
2−1
2 ]1, [p−12 ]

p2−1
2 , [−p+1

2 ]
p2−1

2 }

(see for instance [10]). Then, the two nonzero weights of the code C0 = C(2, p2),

that can be obtained from (9), have multiplicity p2−1
2 . We have m = ab = 6 and

c = p2−1
2 and thus

n = bc = 3(p2−1)
2 .

Clearly, c is a primitive divisor of p2 − 1. Notice that if p 6= 3 (p = 2t + 1 prime
and t 6≡ 1 (mod 3)), then 9 | n. In particular, if p ≡ 2, 5, 7 (mod 9), then n is a
primitive divisor of p6 − 1, since in these cases the order of p modulo 9 is 6 and
then 9 does not divide pa − 1 when 1 ≤ a < 6. This implies that n does not divide
pa − 1, either.

In this case one can choose σ = 1 or−1 indistinctly in the formula (21). Therefore
the code

C = C( 2(p6−1)
3(p2−1) , p

6) = C( 2
3 (p4 + p2 + 1), p6)

has weights

w`1,`2 = (p−1)
2 {`1(p− 1) + `2(p+ 1)} = (p−1)2

2 `1 + c`2

for every pair 0 ≤ `1 + `2 ≤ 3, with frequencies

A`1,`2 =
(
3
`1

)(
3−`1
`2

)
(p

2−1
2 )`1+`2 .

If `2 = 0, then w1,0 = (p−1)2
2 , w2,0 = (p − 1)2, and w3,0 = 3(p−1)2

2 . If `1 = 0,

then w0,1 = p2−1
2 , w0,2 = p2− 1, and w0,3 = 3(p2−1)

2 . Also, if `1 and `2 are nonzero,

then w1,1 = p(p− 1), w2,1 = (p−1)
2 (3p− 1) and w1,2 = (p−1)

2 (3p+ 1). One can check
that if p 6= 5, all these weights are different and hence the spectrum of C is given
by Table 1.

Table 1. Weight distribution of C with p ≡ 2, 5, 7 (mod 9) and
p > 5.

weight frequency

w0,0 = 0 A0,0 = 1

w1,0 = (p−1)2
2 A1,0 = 3(p

2−1
2 )

w2,0 = (p− 1)2 A2,0 = 3(p
2−1
2 )2

w3,0 = 3(p−1)2
2 A3,0 = (p

2−1
2 )3

w0,1 = p2−1
2 A0,1 = 3(p

2−1
2 )

weight frequency

w0,2 = p2 − 1 A0,2 = 3(p
2−1
2 )2

w0,3 = 3(p2−1)
2 A0,3 = (p

2−1
2 )3

w1,1 = p(p− 1) A1,1 = 6(p
2−1
2 )2

w2,1 = p−1
2 (3p− 1) A2,1 = 3(p

2−1
2 )3

w1,2 = p−1
2 (3p+ 1) A1,2 = 3(p

2−1
2 )3

Notice that adding all the frequencies we get∑
0≤i+j≤3

Ai,j = 1 + 6c+ 12c2 + 8c3 = p6

and therefore the code C has dimension 6 and minimum distance (p−1)2
2 . That is,

C has parameters [ 3(p
2−1)
2 , 6, (p−1)

2

2 ].
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For instance, if p = 5, we have C = C( 2
3 (54 + 52 + 1), 56) = C(434, 15.625) with

parameters [36, 6, 8] defined over F5. The weights of C are given by

w1,0 = 8, w2,0 = 16, w3,0 = w0,2 = 24, w0,1 = 12,

w0,3 = 36, w1,1 = 20, w2,1 = 28, w1,2 = 32,

with frequencies

A8 = A12 = 3c = 36, A16 = 3c2 = 432, A20 = 6c2 = 864,

A24 = (c+ 3)c2 = 2.160, A28 = A32 = 3c3 = 5.184, A36 = c3 = 1.728.

since c = 12. ♦

Remark 4.3. The weight distribution of irreducible cyclic codes constructed from
exceptional 2-weight irreducible cyclic codes can be obtained from Theorem 2.2 and
from the spectrum of the associated GP-graphs, which are computed in [20].

5. Cyclic codes from C(3, q) and C(4, q)

In general, 3-weight or 4-weight irreducible cyclic codes are not classified. In
this section we will use the irreducible cyclic codes C(3, q) and C(4, q) to find new
weight distributions of irreducible cyclic codes via the reduction formula obtained
in Section 2. More precisely, for u = 3, 4, if C0 = C(u, q) is the code associated to
Γ0(u, q), we will compute the weight distributions of codes C(k, qr) associated to
the Cartesian product graph Γ(k, qr) = �rΓ(u, q).

We begin with cyclic codes constructed from C(3, q).

Theorem 5.1. Let p and r be different primes with p ≡ 1 (mod 3) and let c, k,m,
q, t be integers such that m = 3t, q = pm, c = q−1

3 and k = 3
rΨr(q). If q ≡ 1

(mod r) and (3, r) = 1, then the weights of C(k, qr) are given by

w`1,`2,`3 = p−1
3p {hq + (a( `2+`32 − `1) + 9b

2 (`2 − `3))pt}

where (`1, `2, `3) ∈ N3
0 such that 0 ≤ h = `1 + `2 + `3 ≤ r, and a, b are the unique

integers satisfying

4pt = a2 + 27b2, a ≡ 1 (mod 3) and (a, p) = 1,

with corresponding frequencies

A`1,`2,`3 =
(
r
h

)(
h

`1,`2,`3

)
ch.

Proof. The spectrum of C(3, q) is given in Theorems 19 and 20 in [7], with different
notations (r for our q, N for our k, etc).

If p ≡ 1 (mod 3), by Theorem 19 in [7], the four weights of C(3, q) are w0 = 0,

(23) w1 =
(p−1)(q−a 3

√
q)

3p , w2 =
(p−1)(q+ 1

2 (a+9b) 3
√
q)

3p , w3 =
(p−1)(q+ 1

2 (a−9b) 3
√
q)

3p ,

with frequencies A0 = 1 and A1 = A2 = A3 = q−1
3 = c; where a and b are the only

integers satisfying 4 3
√
q = a2 + 27b2, a ≡ 1 (mod 3) and (a, p) = 1. Clearly, 3 | q−1p−1 ,

since p ≡ 1 (mod 3) and m = 3t. Moreover, c is a primitive divisor of pm− 1, since
the associated graph Γ(3, pm) is connected.

Assume now that (3, r) = 1 and q ≡ 1 (mod r), we will show now that n =
rc = r( q−13 ) is a primitive divisor of qr − 1. Notice that the statement n | qr − 1
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is equivalent to r | 3 Ψr(q), since Ψr(q) = qr−1
q−1 . By hypothesis q ≡ 1 (mod r), this

implies that

Ψr(q) =

r−1∑
i=0

qi ≡ r ≡ 0 (mod r).

Thus n | qr − 1 as desired.
It is enough to show that n 6| pl − 1 for all 1 ≤ l ≤ r− 1. Assume first that m | l,

i.e l = hm for some 1 ≤ h ≤ r − 1, then the statement n 6| phm − 1 is equivalent to
r 6| 3 Ψh(q) and this is equivalent to r 6| Ψh(q) since (3, r) = 1. By hypothesis q ≡ 1
(mod r), then Ψh(q) ≡ h 6≡ 0 (mod r), therefore n 6| phm − 1 for all 1 ≤ h ≤ r − 1.

On the other hand, if l < m then n cannot divide pl − 1, since c divides n and c
is a primitive divisor of pm − 1. On the other hand, if m ≤ l ≤ rm and n | pl − 1
we necessarily have that m | l. Indeed, if l = md+ e with 0 ≤ e < m− 1 then

pl ≡ pe (mod c).

But pl ≡ 1 (mod c) since c | n. The primitive divisibility of c implies that e = 0,
therefore m | l, that is l = hm with 1 ≤ h ≤ r − 1. By the last case n 6| phm − 1 for
all 1 ≤ h ≤ r − 1, therefore n is a primitive divisor of qr − 1, as desired.

The statement now follows from Theorem 2.2 proceeding as in the proofs of
Propositions 3.1 and 4.1.

Example 5.2. In the notation of the previous theorem, let p = 7, r = 2, t = 1,
m = 3t = 3, q = p3 = 343 , and hence c = q−1

3 = 114. Clearly p ≡ 1 (mod 3),
(r, 3) = 1 and q ≡ 1 (mod r). In this case, it is not difficult to see that a = b = 1
satisfying 4 3

√
q = a2 + 27b2 with (a, p) = 1 and a ≡ 1 (mod 3).

By the last theorem, the weights of the irreducible cyclic code C( 3(q+1)
2 , q2) =

C(516, 76), after routine calculations, are given by

w`1,`2,`3 = 2 (49h− `1 + 5`2 − 4`3)

for 0 ≤ h = `1+`2+`3 ≤ 2 with `i’s non-negative integers, with frequencies A`1,`2,`3 .
By a simple analysis of cases, we obtain that the weight distribution of C(516, 76)
is given by Table 2. ♦

Table 2. Weight distribution of C(516, 76).

weight frequency

w0,0,0 = 0 A0,0,0 = 1

w1,0,0 = 96 A1,0,0 = 228

w0,1,0 = 108 A0,1,0 = 228

w0,0,1 = 90 A0,0,1 = 228

w2,0,0 = 192 A2,0,0 = 1142

weight frequency

w0,2,0 = 216 A0,2,0 = 1142

w0,0,2 = 180 A0,0,2 = 1142

w1,1,0 = 204 A1,1,0 = 2 · 1142

w1,0,1 = 186 A1,0,1 = 2 · 1142

w0,1,1 = 198 A0,1,1 = 2 · 1142

Proceeding similarly as in the proof of the previous theorem, one can obtain the
weight distribution of irreducible cyclic codes obtained from C(4, q). We leave the
details to the reader.
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Theorem 5.3. Let p, and r be different primes with p ≡ 1 (mod 4) and let c, k,m,
q, t be integers such that m = 4t, q = pm, c = q−1

4 and k = 4
rΨr(q). If q ≡ 1

(mod r) and (4, r) = 1, then the weights of C(k, qr) are given by

w`1,`2,`3,`4 = p−1
4p {hq + (`1 + `2 − `3 − `4)

√
q + (2a(`1 − `2) + 4b(`3 − `4))pt}

for 0 ≤ h = `1 + `2 + `3 + `4 ≤ r with (`1, `2, `3, `4) ∈ N4
0, where a, b are the unique

integers satisfying

√
q = a2 + 4b2, a ≡ 1 (mod 4) and (a, p) = 1.

with frequencies

A`1,`2,`3,`4 =
(
r
h

)(
h

`1,`2,`3,`4

)
ch.

Remark 5.4. The condition k | q−1p−1 , which allows us to switch between the spec-

trum of the graph Γ(k, q) and the weight distribution of the code C(k, q), implies
that p ≡ ±1 (mod k) for k = 3, 4. The cases not covered by Theorems 5.1 and 5.3,
that is p ≡ −1 (mod k) with k = 3, 4, are semiprimitive ones and fall into the case
of Theorem 4.1.

6. Number of rational points of Artin-Schreier curves

In this section we consider Artin-Schreier curves Ck,β(pm) with affine equations

Ck,β(pm) : yp − y = βxk, β ∈ Fpm(24)

with k | pm−1. A good treatment of Artin-Schreier curves can be found in Chapter 3

by Güneri-Özbudak in [11].
We begin by establishing a direct relationship between the number of rational

points of Ck,β(pm) and the eigenvalue λβ of Γ(k, pm) –see equation (2)–.

Proposition 6.1. Let p be a prime and let k, n,m be positive integers such that

k | p
m−1
p−1 and n = pm−1

k . If n is a primitive divisor of pm − 1 then

(25) #Ck,β(pm) = 2pm + k(p− 1)λβ

for all β ∈ Fpm .

Proof. The code Ck = {ck(β) = (Trpm/p(βx
k))x∈F∗

pm
: β ∈ Fpm} is obtained from

k-copies of C(k, pm). This implies that

w(ck(β)) = k w(c(β)) where ck(β) =
(

Trpm/p(βω
ik)
)n
i=1

.

On the other hand, the weight of the codeword ck(β) is related to the number
of Fpm-rational points of the curve Ck,β(pm). In fact, by Theorem 90 of Hilbert we
have

Trpm/p(βx
k) = 0 ⇔ yp − y = βxk for some y ∈ Fpm .

Since Ck,β(pm) is a p-covering of P1, considering the point at infinity, we get

#Ck,β(pm) = 1 + p#{x ∈ Fpm : Trpm/p(βx
k) = 0} = pm+1 − pw(ck(β)) + 1.

Then, equation (25) follows directly from the last equality and (9).
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Artin-Schreier curves over extensions. As an application of Theorem 2.2, we will
next obtain a relationship between the rational points of Artin-Schreier curves as
in (24) defined over two different fields

Fpa ⊂ Fpm ,

with p a fixed prime. We recall the notation Ψb(x) = xb−1
x−1 = xb−1 + · · ·+x2 +x+1.

Corollary 6.2. Let p be a prime and let k,m = ab, n, a, b, c, u as in Theorem 2.2.
Then, for each β ∈ Fpm there are α1, . . . , αb ∈ Fpa such that

(26) #Ck,β(pm) = 1
bΨb(p

a)

b∑
i=1

#Cu,αi(p
a)− (p+ 1)paΨb−1(pa).

Conversely, given α1, . . . , αb ∈ Fpa there exists β ∈ Fpm satisfying (26).

Proof. Consider the cyclic codes Ck and C(k, pm) as before and the analogous ones
Cu and C(u, pa). Proceeding similarly as in the the proof of Proposition 6.1, we have
that

#Cu,α(Fpa) = 1 + p ·#{x ∈ Fpa : Trpa/p(αx
u) = 0} = pa+1 − pw(cu(α)) + 1.

First notice that Fpa ⊂ Fpm . Now, by Theorem 2.2, for each element β ∈ Fpm
there exist elements α1, . . . , αb ∈ Fpa such that w(c(β)) = w(c(α1))+ · · ·+w(c(αb)).
Moreover, given α1, . . . , αb ∈ Fpa , w(c(α1)) + · · · + w(c(αb)) defines a weight in
C(k, pm), i.e. there must be some β ∈ Fpm such that

w(c(β)) = w(c(α1)) + · · ·+ w(c(αb)).

Therefore, the number #Ck,β(pm) equals

(27) pm+1 + 1− pk
b∑
i=1

w(c(αi)) = pm+1 + 1− k
u

b∑
i=1

(pa+1 + 1−#Cu,αi(p
a)).

Since k
u = pm−1

b(pa−1) = 1
bΨb(p

a), after straightforward calculations we get (26) as

desired.

In particular, from (26) we have

#Ck,β(pm) ≡ 1
bΨb(p

a)

b∑
i=1

#Cu,αi(p
a) (mod M)

with M = p+ 1, M = pa or Ψb−1(pa). Since Ψt+1(x) = xt + Ψt(x), taking x = pa

and t = b− 1 we also have

b ·#Ck,β(pm) ≡ pa(b−1)
b∑
i=1

#Cu,αi(p
a) (mod Ψb−1(pa)).

Example 6.3. In the notations of Theorem 2.2, take p = 2 and u = 1. Hence,
c = 2a−1, n = b(2a−1) and m = ab. Obviously 2a−1 is a primitive divisor of itself
and it can be shown that if b is odd and x = 2a ≡ 1 (mod b) then n is a primitive
divisor of 2m − 1. If k = Ψb(x), by the last corollary the F2m -rational points of the
curve

(28) Ck,β(2m) : y2 + y = βxk

with β ∈ F2m can be calculated in terms of the F2a -rational points of the curves

C1,αi(2
a) : y2 + y = αix
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for some α1, . . . , αb ∈ F2a .
The simplex code C(1, 2a) has only one nonzero weight, which is 2a−1. Taking

into account that

#C1,α(2a) = 2a+1 − 2w(c1(α)) + 1

with w(c1(α)) ∈ C(1, 2a) we have that #C1,α(2a) = 2a+1+1 or 2a+1 for all α ∈ F2a .
By (27) and Corollary 6.2, we have that the number of F2m-rational points of each
curve in (28) is given by 2m+1 + 1 − k`2a for some ` depending on β ranging over
all the interval 0 ≤ ` ≤ b, that is

{#Ck,β(2m)}β∈F2m
= {2m+1 + 1− k`2a : 0 ≤ ` ≤ b}.

7. A reduction formula for Gaussian periods

The Gaussian periods η
(N,q)
i defined in (3) satisfy some arithmetic relations.

From Theorem 14 in [7], we have the following integrality results:

(29) η
(N,q)
i ∈ Z and Nη

(N,q)
i + 1 ≡ 0 (mod p)

where q = pm and N = gcd( q−1p−1 , k). Furthermore, if k | q−1p−1 then N = k and we

have

(30)

k−1∑
i=0

η
(k,q)
i = −1 and

k−1∑
i=0

η
(k,q)
i η

(k,q)
i+j = qθj − n (0 ≤ j ≤ k − 1)

with n = q−1
k and where θj = 1 if and only if −1 ∈ C(k,q)

j and θj = 0 otherwise

(see [27]). Equivalently, θj = 1 if and only if either n is even and j = 0 or else n is

odd and j = k
2 . Apart from (29) and (30), there are not many known relations for

Gaussian periods (to our best knowledge).
As another application of Theorem 2.2, we next give a relation between Gaussian

periods defined over two different fields Fpa ⊂ Fpm , showing that one can reduce

the computation of η
(k,q)
i to integral linear combinations of Gaussian periods η

(u,a)
j

with smaller parameters, namely u | k and a | m.

Proposition 7.1. Let p be a prime and let k,m, n, a, b, c, u be integers as in Theo-
rem 2.2. Then, for each i = 0, . . . , k−1 there exist integers s ∈ N and `0, `1, . . . , `s ∈
N0 such that

(31) η
(k,pm)
i = c`0 +

s∑
j=1

`jη
(u,pa)
ij

where the `i’s run over all possible (s+1)-tuples (`0, . . . , `s) such that `0+· · ·+`s = b
different from (b, 0, . . . , 0).

Proof. By hypothesis, Γ = Γ(k, pm) decomposes as Γ = �bΓ0 where Γ0 = Γ(u, pa).
Let q = pm and z = pa. We know that the spectra of Γ and Γ0 are given in terms
of Gaussian periods. In fact, by Theorem 2.1 in [20] we have that

Spec(Γ(k, q)) = {Λ0 = n, Λ1 = η
(k,q)
1 , . . . , Λk−1 = η

(k,q)
k−1 },

Spec(Γ(u, z)) = {λ0 = c, λ1 = η
(u,z)
1 , . . . , λu−1 = η

(u,z)
u−1 }.

(32)

By (17) in the proof of Theorem 2.2, the eigenvalues of Γ and of Γ0 are related
by the expression

(33) Λ`0,...,`s = `0λ0 + · · ·+ `sλs



Weight distribution of cyclic codes and decomposable GP-graphs 17

where `0, . . . , `s are integers satisfying `0 + · · ·+ `s = b. By (32) and (33) we have
(31). It remains to rule out all the cases giving

η
(k,q)
i = n = bc.

But the only way to have η
(k,q)
i = n is given by (`0, `1, . . . , `s) = (b, 0, . . . , 0), since

`0 + · · ·+ `s = b, and the result thus follows.

Remark 7.2. The Gaussian periods η
(k,q)
0 , . . . , η

(k,q)
k−1 with (k, q) a semiprimitive

pair are explicitly known (see Lemma 13 in [7]).

We now show that if Γ = Γ(k, pm) is Cartesian decomposable, say Γ ' �bΓ0,
with Γ0 = Γ(u, pa) a semiprimitive GP-graph then we can explicitly compute the

Gaussian periods η
(k,pm)
i .

Proposition 7.3. Let q = pm with p prime and k | q − 1 such that n = q−1
k = bc

where m = ab, u = pa−1
c and (u, pa) is a semiprimitive pair. Then, the different

Gaussian periods modulo q are given by

(34) η
(k,q)
i = `0c+ `1

(u−1)σ
√
pa−1

u − `2 σ
√
pa+1
u

where the non-negative integers `0, `1, `2 run in the set

{(`0, `1, `2) : `0 + `1 + `2 = b} \ {(b, 0, 0)}
and σ = (−1)

a
2t+1 with t the least integer j such that u | pj + 1.

Proof. By Corollary 7.1 we have an expression for each η
(k,q)
i in terms of the η

(u,pa)
j ’s.

Since (u, pa) is a semiprimitive pair, there are only two different such periods, given

by (3.4) and (3.5) of [20], depending the case. In case (a), that is p, α = pt+1
u and

s = a
2t odd, we have

η
(u,pa)
0 = (u−1)

√
pa−1

u and η
(u,pa)
1 = −

√
pa+1
u

while in case (b) we have

η
(u,pa)
0 = −σ

√
pa+1
u and η

(u,pa)
1 = σ(u−1)

√
pa−1

u .

Now, by (31) we get

ηi = `0 c+ `1 η
(u,pa)
0 + `2 η

(u,pa)
1 .

Since the triples (`0, `1, `2) satisfying `0 + `1 + `2 = b are symmetric, the above
expression is the same no matter if we are in case of (a) or (b), or if σ is 1 or −1,
and hence we get (34).

Example 7.4. Take u = 2, a = 2, b = 3 and p = 5. Then (u, pa) = (2, 52) is a
semiprimitive pair and Γ0 = Γ(2, 52) = P (25), a classic Paley graph. Thus, we have

m = ab = 6, q = 56 = 15.625, c = pa−1
u = 52−1

2 = 12 and n = bc = 36; hence

k = q−1
n = 434.

By (34), the Gaussian periods for (k, q) = (434, 15.625) are given by

η
(434,15.625)
i = 12`0 + 2`1 − 3`2

where `0 +`1 +`2 = 3 and (`0, `1, `2) 6= (3, 0, 0); compare with (3). There are 9 such
triples, namely (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 1, 1), (1, 0, 2), (0, 3, 0), (0, 2, 1), (0, 1, 2)
and (0, 0, 3). Thus, we have that

η1 = 26, η2 = 21, η3 = 16, η4 = 11, η5 = η6 = 6, η7 = 1, η8 = −4, η9 = −9.
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Note that ηi ≡ 1 (mod 5) for 1 ≤ i ≤ 9 as it should be, since kηi ≡ −1 (mod p) by
(29).

We now check the expressions in (30). If η
(k,q)
i is associated with (`0, `1, `2), then

its frequency is given by µi = 1
nAi where

Ai = A`0,`1,`2 =
(

3
`0,`1,`2

)
m`0

0 m
`1
1 m

`2
2 ,

with m0,m1,m2 the multiplicities of the Paley graph P (25). The spectrum of P (q)
is well-known and it is given by

Spec(P (p2)) = {[p
2−1
2 ]1, [p−12 ]n, [−p−12 ]n}

with n = p2−1
2 . Hence, Spec(P (25)) = {[12]1, [2]12, [−3]12} and we thus havem0 = 1

and m1 = m2 = 12. In this way we obtain

A2,1,0 = A2,0,1 = 3 · 12 = 36, A1,2,0 = A1,0,2 = 3 · 122 = 432,

A1,1,1 = 6 · 122 = 684, A0,2,1 = A0,1,2 = 3 · 123 = 5184,

A0,3,0 = A0,0,3 = 1 · 123 = 1728,

and hence

µ1 = µ2 = 1, µ3 = µ5 = 12, µ4 = 24, µ6 = µ9 = 48, µ7 = µ8 = 144.

Therefore we have
433∑
i=0

η
(434,56)
i =

9∑
i=1

µiηi

and hence
433∑
i=0

η
(434,56)
i = µ1(η1 + η2) + µ3(η3 + η5) + µ4η4 + µ6(η6 + η9) + µ7(η7 + η8)

= (26 + 21) + 12(16 + 6) + 24 · 11 + 48(6− 9) + 144(1− 4) = −1.

One can also check that
9∑
i=1

µiη
2
i = 15.589 = q − n and

9∑
i=1

µiµi+jηiηi+j = −36 = −n

for j = 1, . . . , 9, and hence the second identity of (30) holds. ♦
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