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Abstract. Given a suitable extension F ′/F of algebraic function fields over

a finite field Fq , we introduce the conorm code ConF ′/F (C) defined over F ′

which is constructed from an algebraic geometry code C defined over F . We
study the parameters of ConF ′/F (C) in terms of the parameters of C, the

ramification behavior of the places used to define C and the genus of F . In the

case of unramified extensions of function fields we prove that ConF ′/F (C)⊥ =

ConF ′/F (C⊥) when the degree of the extension is coprime to the characteristic

of Fq . We also study the conorm of cyclic algebraic-geometry codes and we
show that some repetition codes, Hermitian codes and all Reed-Solomon codes

can be represented as conorm codes.

1. Introduction

Let Fq be a finite field with q elements. For a given trascendental element x
over Fq, the field of fractions of the ring Fq[x] is denoted as Fq(x) and it is called
a rational function field over Fq. An (algebraic) function field F of one variable
over Fq is a field extension F/Fq(x) of finite degree where x ∈ F is a trascendental
element over Fq. The finite field Fq is called the field of constants of F and we
will always assume that Fq is the full constant field of F , that is Fq is algebraically
closed in F . We will frequently use the symbol F/Fq to express that F is a function
field over Fq.

Let F/Fq be a function field. The Riemann-Roch space associated to a divisor
G of F is the vector space over Fq defined as

L(G) = {x ∈ F : (x) ≥ G} ∪ {0},
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where (x) denotes the principal divisor of x. It turns out that L(G) is a finite
dimensional vector space over Fq for any divisor G of F (see, for instance, Propo-
sition 1.4.9 of [8]).

The dimension `(G) of a divisor G of F is defined as the dimension of L(G) as a
vector space over Fq. An important result in the theory of algebraic function fields
relates the dimension of some divisors and the genus of the considered function field.
More precisely (see Theorem 1.5.15 of [8]) given a function field F/Fq of genus g, a
divisor G and a canonical divisor W of F , the Riemann-Roch Theorem asserts that

`(G) = deg(G) + 1− g + `(W −G).

Given disjoint divisors D = P1 + · · ·+ Pn and G of F/Fq, where P1, . . . , Pn are
different rational places, the algebraic geometry code (AG-code for short) associated
to D and G is defined as

(1) CFL (D,G) = {(x(P1), . . . , x(Pn)) : x ∈ L(G)} ⊆ (Fq)n,
where x(Pi) denotes the residue class of x modulo Pi for i = 1, . . . , n. If the context
is clear, we will simply write CL instead of CFL (D,G).

It is well known (see Theorem 2.2.2 of [8]) that CL(D,G) is an [n, k, d]-code with
k = `(G)− `(G−D) and

(2) d ≥ n− degG.

Also, if degG < n, then

(3) k = `(G) ≥ degG+ 1− g
and hence k + d ≥ n + 1 − g. If, in addition 2g − 2 < degG, we have the equality
k = degG+ 1− g.

The designed distance of the code is d∗ = n−degG and, similarly, one can define
its designed dimension as

(4) k∗ = degG+ 1− g.
Thus d ≥ d∗ and if degG < n then k ≥ k∗, with equality if 2g − 2 < degG.

From these facts, we see that if degG > 2g− 2, then the dimension of CL(D,G)
can be computed in an exact way knowing the degree of G and the genus of F . On
the other hand, if degG ≤ 2g − 2, then `(D − G) does not vanish and no formula
is available to compute the dimension of CL(D,G).

Sometimes it is useful to distinguish 3 levels of AG-codes. Let C = CL(D,G) be
as in (1). If degG < n we will say that C is a moderate AG-code (or MAG-code). A
moderate AG-code which also satisfies 2g − 2 < degG will be called a strong AG-
code (or SAG-code). Finally, a weak AG-code (or WAG-code) will be an AG-code
which is not moderate.

The main goals of this paper are to introduce the concept of the conorm code
associated to an AG-code, to study some interesting properties of this new code and
to show that some well known families of codes such as repetition codes, Hermitian
codes and Reed-Solomon codes can be obtained as conorm codes from other more
basic codes.

Outline and results. In Section 2, given a suitable extension F ′/F of functions fields

F ′/Fqt and F/Fq, we define the qt-ary conorm code C′ = CF
′

L (D′, G′) of the q-ary
AG-code C = CFL (D,G) by lifting the code C using the conorm map of divisors. We
denote this code as

C′ = ConF ′/F (C).
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If the context is clear, we will simply write Con(C) instead of ConF ′/F (C).
In the next section we deal with the parameters and levels of conorm codes. In

Proposition 1 and Corollary 1 we give bounds for the parameters of C′ in terms
of the parameters of C. Then, we consider conorm codes defined over geometric
extensions, that is extensions of function fields F ′/F having both the same field
of constants Fq (i.e. t = 1) and we study the AG-levels of the construction (see
Corollary 2).

In Section 4, we study conorm codes defined over unramified extensions and
duality. In general, the dual of the conorm code is not the conorm of the dual
code (see Example 5). However, over unramified extensions, this is indeed the case
under some conditions. More precisely, in Theorem 4.1 we show that if F ′/F is an
unramified geometric extension of degree m of function fields over Fq then

Con(C⊥) = Con(C)⊥

holds provided that (m, q) = 1.
In Section 5, we consider the conorm of cyclic AG-codes. We show that, under

certain conditions this construction preserves cyclicity. In the particular case that
F ′/F is a geometric Galois extension of function fields over Fq and every place
in the support of a divisor D of F is totally ramified in F ′, the conorm code
C′ = Con(CFL (D,G)) defined over F ′ and the AG-code CFL (D,G) are different
representations of the same algebraic geometry code over Fq (see Theorem 5.5). We
believe this may have some applications on code-based cryptography.

Finally, in the last section we show that in some general cases, repetition codes,
Hermitian codes and Reed-Solomon codes can be represented as conorm codes, i.e.
they can be seen as the conorm code of simpler AG-codes defined over function
fields of smaller genus.

2. The conorm code of an AG-code

Let F/Fq be a function field and let us denote as usual the set of places of F by
P(F ) and the abelian group of divisors of F by Div(F ). Let F ′/Fqt be a function
field such that F ′/F is a finite extension. We will show how to construct an AG-

code C′ = CF
′

L (D′, G′) over Fqt starting from an AG-code C = CFL (D,G) over Fq.
This will be accomplished by using the conorm map on divisors

ConF ′/F : Div(F )→ Div(F ′),

that we now recall. If P is a place in F , the conorm divisor of P is the divisor

ConF ′/F (P ) =
∑
P ′|P

e(P ′|P )P ′

in F ′, where e(P ′|P ) is the ramification index of the place P ′ in F ′ over P . For
Q ∈ P(F ) and A =

∑
P nPP ∈ Div(F ) we define vQ(A) = nQ. Now, the conorm

divisor of A in F ′ is given by

(5) A′ := ConF ′/F (A) =
∑
P

nP ConF ′/F (P ).

From now on the extension F ′/F is a function field extension of degree m. Let
C = CFL (D,G) be an AG-code of length n defined over Fq, where G and D =
P1 + · · ·+ Pn are disjoint divisors and P1, . . . , Pn are different rational places of F .
For any place P in the support of D let us denote by mP ∈ {1, . . . ,m} the number
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of different places of F ′ over P . Suppose that the extension F ′/F is such that for
every place P in the support of D we have that

(6) e(P ′|P ) =
m

mP
,

for any place P ′ of F ′ lying above P . Then all the places of F ′ lying above Pi are
rational for i = 1, . . . , n. Denote by

(7) Q
(1)
i , . . . , Q

(mPi
)

i

the rational places of F ′ lying above Pi and put

(8) Di = Q
(1)
i + · · ·+Q

(mPi
)

i .

Note that by (5) we have

ConF ′/F (Pi) = m
mPi

mPi∑
j=1

Q
(j)
i = m

mPi
Di

and since D and G are disjoint divisors of F then ConF ′/F (D) and ConF ′/F (G) are
disjoint divisors of F ′.

With the above notation we have the following definition of an AG-code “hanging
over” another one.

Definition 2.1. Given a code C = CFL (D,G) as in (1) and a finite extension F ′/F
of function fields such that (6) holds, we define the conorm code associated to C, or
just the conorm of C, as

(9) C′ = ConF ′/F (C) = CF
′

L (D′, G′),

where

D′ = 1
m

n∑
i=1

mPi
ConF ′/F (Pi) and G′ = ConF ′/F (G).

That is, in the notation of (7) and (8),

D′ = D1 + · · ·+Dn =
n∑
i=1

(Q
(1)
i + · · ·+Q

(mPi
)

i ).

When F ′/F is understood, we will write Con(C) instead of ConF ′/F (C). Similarly
for ConF ′/F (Pi) and ConF ′/F (G).

Clearly C′ is an AG-code defined over F ′. For m = 1 the construction is trivial
and C′ = C. By Hurwitz genus formula (see Theorem 3.4.13 of [8]), the genus
g′ = g(F ′) of F ′ is given by

(10) g′ = m
t (g − 1) + 1

2 deg Diff(F ′/F ) + 1,

where g = g(F ) is the genus of F and

Diff(F ′/F ) =
∑
P

∑
P ′|P

d(P ′|P )P ′,

is the different divisor of F ′/F with d(P ′|P ) the different exponent of P ′ over P .
Hence, since d(P ′|P ) ≥ 0 for every P ′|P , we have

(11) g′ = g(F ′) ≥ g(F ) = g.
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3. Parameters and levels

We study now some parameters and levels of the conorm code Con(C) of an AG-
code C in different situations. We begin with the following elementary estimates for
the parameters of a conorm code.

Proposition 1. Let F ′/Fqt and F/Fq be two function fields such that F ′/F is a
finite extension of degree m ≥ 2. Let [n, k, d] and [n′, k′, d′] be the parameters of
C = CL(D,G) and C′ = ConF ′/F (C) respectively, where D = P1 + · · ·+ Pn. Then

(12) n ≤ n′ ≤ mn,

and

(13) d′ ≥ n′ − m
t degG.

Moreover if C′ is a MAG-code (i.e. degG′ < n′) then

(14) k′ ≥ m
t k
∗ − 1

2 deg Diff(F ′/F ),

where k∗ = degG+ 1− g is the designed dimension given in (4).

Proof. We see at once that (12) holds because n′ = # Supp(D′) and, by definition
of the conorm code, we have

n′ =

n∑
i=1

mPi
,

where 1 ≤ mPi ≤ m for i = 1, . . . , n.
We prove now the lower bounds (13) and (14). By (2) we have that

d′ ≥ n′ − degG′.

We see that (13) holds because from Corollary 3.1.14 in [8] we have

(15) degG′ = m
t degG.

Finally from (3) we have that if degG′ < n′ then k′ ≥ degG′ + 1 − g′. From this,
and using (10) and (15), we see that (14) also holds.

With the same hypothesis of Proposition 1 we have the following

Corollary 1. Let s (resp. r) be the number of places Pi in D = P1 + · · ·+Pn which
split completely (resp. are totally ramified) in F ′, and assume that n = r+ s. Then

(a) the length n′ of the conorm code C′ = ConF ′/F (C) satisfy

(16) n+ s ≤ n′ = ms+ r ≤ mn− r,

and equalities hold if and only if the extension F ′/F is quadratic (m = 2).

(b) n′ = mn if and only if s = n and r = 0; and in this case, d′ ≥ m(n− degG
t ).

(c) n′ = n if and only if s = 0 and r = n; and, in this case, d′ ≥ n − m
t degG =

n− degG′.

Proof. (a) It is straightforward to check that both inequalities in (12) hold if and
only if m = 2. In this case, n+ s = 2s+ r = 2n− r.

(b) Since r = n − s, we have that n′ = mn if and only if (m − 1)s = (m − 1)n,
which holds if and only if s = n (and hence r = 0), since m > 1.

(c) Similarly, n′ = n if and only if (m− 1)s = 0, which in turn can only happen
if s = 0 since m > 1. The assertions on the distance are clear now from (13).
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Quadratic extensions. Suppose F ′/Fqt is a quadratic extension of F/Fq. Since t | m
and m = 2, then t = 1 or t = 2. If t = 1 then F ′/F is a geometric extension. This
case will be studied in the next paragraph. Thus, assume that t = 2. In this case
we have that F ′ is a constant field extension of F so that F ′/F is an unramified
extension ([8, Thm. 3.6.3]). Then

n′ = 2s = 2n.

We know that d′ ≥ n′ − degG′ and d ≥ n − degG. Thus the bound for d′ can be
improved since by (13) we have

d′ ≥ 2s− degG = n′ − degG,

or in other terms

d′ ≥ (n− degG) + s.

Regarding the dimension, since the extension is not ramified, then deg(Diff(F ′/F ))
= 0 and we get

k′ ≥ k∗.
So, in general, for conorm codes over non-geometric quadratic extensions the mini-
mum distance and the dimension may increase.

Geometric extensions and levels. We consider now the particular case of geometric
extensions, that is finite extensions F ′/F of algebraic function fields over the same
field of constants Fq. Notice that in this case, the bounds for the parameters in
Proposition 1 and Corollary 1 hold with t = 1. Recall that the secondary parameters
of an [n, k, d]-code are the information rate R = k/n and the relative minimum
distance δ = d/n.

Corollary 2. Let F ′/F be a geometric extension of function fields over Fq of degree
m > 1. Let C′ = Con(C) as in Corollary 1 with n = r + s. The following holds:

(a) If C′ is a MAG-code, then C is a MAG-code. If r = 0, then the converse also
holds and d′ ≥ 2. If further d = n− degG, then d′ ≥ md and δ′ ≥ δ.

(b) If either C′ is a MAG-code and 2g − 2 < degG, or else C is a SAG-code and
r = 0, then k′ ≥ mk − 1

2 deg Diff(F ′/F ).

Proof. (a) Since C′ is a MAG-code,

degG′ < n′ = ms+ r.

Also, degG′ = mdegG and n = s+ r, thus

degG < s+ r
m < n.

If r = 0, then n′ = nm and hence degG < n implies that degG′ < n′. In this case,
d′ ≥ m(n− degG) > m ≥ 2. If in addition d = n− degG then d′ ≥ md and hence

δ′ =
d′

n′
≥ md

mn
=
d

n
= δ.

(b) Since C′ is a MAG-code we have (14). By (b), C is also a MAG-code and since
2g − 2 < degG by assumption, C is a SAG-code. This implies k = degG + 1 − g
and hence, by (14), we have

k′ ≥ mk − 1
2 deg diff(F ′/F ).

Now, if C is a SAG-code (in particular a MAG-code), then the hypothesis r = 0
implies, by (a), that C′ is a MAG-code, and hence we are in the previous case.
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Examples in quadratic geometric extensions. We now give examples of conorm codes
in quadratic geometric extensions of some rational function field.

Example 1. Consider F = F4(x) the rational function field over F4 = {0, 1, α, α2},
where α2 + α+ 1 = 0. We define the SAG-code C = CL(D,G) with

D = P1 + Pα + Pα2 and G = 2P∞

where P1, Pα and Pα2 are the rational places which are simple zeroes of x+1, x+α
and x + α2 respectively, and P∞ is the rational place that is a simple pole of x in
F . We have that C is a SAG-code over F4 with parameters [3, 3, 1], hence MDS
(maximum distance separable). In fact, since degG = 2 and g(F ) = 0, we have
that C is a SAG-code. Also, k = 2 + 1− 0 = 3 and d ≥ 3− 2 = 1 but, by Singleton
bound, we know that d ≤ 1.

Let us now consider F ′ = F (y) = F4(x, y) where

y2 + y =
x2

x+ 1
.

This extension F ′/F is the first step of a famous tower of function fields given by
Garcia and Stichtenoth in [4]. Since F ′/F is an Artin-Schreier extension, we have
that P1 and P∞ are totally ramified in F ′ while Pα and Pα2 split completely in F ′.
Moreover, we have

[F ′ : F ] = 2 and g(F ′) = 1.

In this case C′ = ConF ′/F (C) = CL(D′, G′) is also a SAG-code over F4 with

D′ = Q1 +Rα + Sα +Rα2 + Sα2 and G′ = 4Q∞,

where Q1 (resp. Q∞) is the only place over P1 (resp. P∞) and Rα and Sα (resp.
Rα2 and Sα2) are the two places over Pα (resp. Pα2). We have now that n′ = 5,
k′ = 4 and d′ ≥ 1. Thus, C′ is a [5, 4, d′]-code over F4 with 1 ≤ d′ ≤ 2. In fact

d′ = 1 because if z = (x− α)(x− α2), the principal divisor (z)F
′

of z in F ′ is

(z)F
′

= Rα + Sα +Rα2 + Sα2 − 4Q∞.

This implies that z ∈ L(G′) and also that

z(Q1) 6= 0 and z(Rα) = z(Sα) = z(Rα2) = z(Sα2) = 0.

Thus there is a codeword in C′ of weight 1.

Example 2. Let F = Fq(x) be a rational function field and consider the quadratic
extension F ′/Fq of F/Fq determined by the elliptic function field F ′ = Fq(x, y)
given by

y2 = f(x)

where f(x) ∈ Fq[x] is square-free of degree 3. We will fix a rational AG-code
C = CFL (D,G) and we will consider the elliptic conorm code C′ = ConF ′/F (C).

Let R1, . . . , Rq and P∞ be the rational places of F and let P1, . . . , Pr be the
places corresponding to the irreducible monic polynomials pi(x) in the factorization
of f(x), hence 1 ≤ r ≤ 3, and put

D1 = R1 + · · ·+Rq and D2 = P1 + · · ·+ Pr.

There are various possibilities for C, let us see three of them.

(i) Assume that Fq has odd characteristic and consider

C1 = C(D1, `P∞)



8 M. Chara, R. A. Podestá and R. Toledano

for ` ∈ N. Then, P1, . . . , Pr and P∞ are the only ramified places of F ′. Even
more, the places P1, . . . , Pr and P∞ are totally ramified in F ′. If Q1, . . . , Qr and
Q∞ denote the corresponding places of F ′ over them, then degQj = degPj and
degQ∞ = 1. Thus, the conorm codes Con(C1) has parameters [n′1, k

′
1, d
′
1] where

n′1 =


2q if f is irreducible, (r = 1),

2q − 1 if f has only one linear factor, (r = 2),

2q − 3 if f has three linear factors, (r = 3).

By (13) and (14) in Proposition 1, we have

d′1 ≥ n′1 − 2`

and, since Diff(F ′/F ) = Q1 + · · ·+Qr +Q∞ we have that deg Diff(F ′/F ) = 4 and
hence,

k′1 ≥ 2(k∗1 − 1) = 2 degG = 2`.

Thus, by the above expressions and the Singleton bound, we have that

n′1 ≤ d′1 + k′1 ≤ n′1 + 1.

This is in coincidence with the known fact that elliptic codes are almost MDS, that
is they are MDS, or the Singleton bound fails by one.

(ii) Another possibility is to take

C2 = C(D1 + P∞, D2) or C3 = C(D1, D2 + `P∞)

for ` ≥ 1, with parameters [q+ 1, k2, d2] and [q, k3, d3], respectively. Here, to ensure
that the supports of the divisors D and G are disjoint we have to assume that
f is irreducible over Fq. The associated elliptic conorm codes C′2 = ConF ′/F (C2)
and C′3 = ConF ′/F (C3) have parameters [2q + 1, k′2, d

′
2] and [2q, k′3, d

′
3], respectively.

Similarly as in (i), one can obtain bounds for the dimension and minimum distance
of these codes.

4. Unramified extensions and duality

We consider now unramified extensions F ′/F of function fields over Fq. Under
this assumption, it is possible to get some nice results for duality of conorm codes.

We begin by studying the relation between the AG-levels of an AG-code and its
conorm code.

Proposition 2. Let F ′/F be an unramified extension of algebraic function fields
over Fq of degree m. Then C′ is a SAG-code (resp. MAG) if and only if C is a SAG-
code (resp. MAG). In this case, k′ = mk and R′ = R. If in addition d = n−degG,
then d′ ≥ md and δ′ ≥ δ.
Proof. Recall that F ′/F is unramified if and only if Diff(F ′/F ) = 0. Hence,

g′ − 1 = m(g − 1),

by (10). Also, r = 0 and n′ = mn. By (b) of Corollary 1, C′ is a MAG-code if and
only if C is a MAG-code. Since

2m(g − 1) = 2(g′ − 1) < degG′ = m degG,

we see that C′ is a SAG-code if and only if C is a SAG-code. In this situation, we
have both k′ = degG′ + 1 − g′ and k = degG + 1 − g. Putting together all these
information we have

k′ = mdegG+m(1− g) = m(degG+ 1− g) = mk,
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and then R′ = k′/n′ = mk/mn = k/n = R.
For the remaining assertion, by (13) we have

d′ ≥ m(n− degG
t ) ≥ m(n− degG) = md,

from which we have δ′ = d′/n′ ≥ md/mn = δ, as we wanted to show.

Example 3. Let F0 = K(x0) be the rational function field over K = F43 and
consider the finite tower

F0 ⊂ F1 ⊂ F2 ⊂ F3

of functions fields over K, where each field extension is a Kummer extension of
degree 3 recursively defined for i = 1, 2, 3 by Fi = Fi−1(xi) where

x3
i = 1 +

x3
i−1

(xi−1 − 1)3
.

Let us denote by Pβ the simple zero of x0 − β, for β ∈ F4 = {0, 1, α, α2}, and by
P∞ the simple pole of x0 in F0. In [10], Wulftange proved that P0 splits completely
in F3/F0, P1 splits completely in F1/F0, is totally ramified in F2/F1 and then splits
completely again in F3/F2. Furthermore Pα, Pα2 and P∞ are totally ramified in
F1/F0 and then they split completely in F3/F1. The ramification behavior of the
other rational places of F0 was studied in [10], where the author also proved that
the extension F2/F1 is ramified but the extension F3/F2 is unramified.

Using the above description of the the ramification behavior and the Hurwitz
genus formula, we have that g(F2) = 4. We also have that there are exactly nine
places Q1, . . . , Q9 of F2 lying above P0, three places Q10, Q11 and Q12 of F2 lying
above P1 and three places R1, R2 and R3 lying above P∞. All of them are rational
places of F2. We define C = CL(D,G) with

D = Q1 + · · ·+Q12 and G = 3R1 + 3R2 + 3R3.

Since
2g(F2)− 2 = 6 < 9 = degG < 12 = n,

we have that C is a [12, 6, d] SAG-code with d ≥ 3. In fact d = 3 because the
principal divisor (x0)F2 of x0 in F2 is

(x0)F2 = Q1 + · · ·+Q9 −G,
so that x0 ∈ L(G) and also

x0(Q1) = · · · = x0(Q9) = 0 and x0(Q10) 6= 0, x0(Q11) 6= 0, x0(Q12) 6= 0.

This implies that there is a codeword of C of weight 3. Now, since F3/F2 is unram-
ified, we see from Proposition 2 that the conorm code C′ of C is also a SAG-code
with n′ = 36, k′ = 18 and d′ ≥ 9. In fact d′ = 9 because the principal divisor (x0)F3

of x0 in F3 is

(x0)F3 = Q′1 + · · ·+Q′27 +Q′28 + · · ·+Q′36 −G′,
where Q′1, · · · , Q′27 are all the places of F3 lying over P0, Q′28, · · · , Q′36 are all the
places of F3 lying over P1 and G′ = ConF3/F2

G. Thus x0 ∈ L(G′) and we also have
that

x0(Q′1) = · · · = x0(Q′36) = 0 and x0(S) 6= 0,

for any S ∈ {Q′28, . . . , Q
′
36}. This implies that there is a codeword of C′ of weight

9. In particular we see that the lower bound for d′ given in Proposition 2 can not
be improved in general.
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Duality. In general, the dual of the conorm code is not the conorm of the dual
code. However, this is indeed the case for conorm codes defined over unramified
extensions with an additional condition. More precisely

Theorem 4.1. Let F ′/F be an unramified finite extension of algebraic function
fields of degree m over Fq such that gcd(m, q) = 1 and let C = CL(D,G). Then

(17) Con(C⊥) = Con(C)⊥.

Proof. Let C = CL(D,G) and Con(C) = CL(D′, G′) with D′ = Con(D) and G′ =
Con(G). On the one hand, from Definition 2.2.6 and Theorem 2.2.8 in [8], we have
that Con(C)⊥ = CΩ(D′, G′).

On the other hand, we know that C⊥ = CΩ(D,G) and by Lemma 2.2.9 and
Proposition 2.2.10 in [8] there exist a Weil differential η of F such that

C⊥ = CΩ(D,G) = CL(D,H) with H = D −G+ (η)

and also vPi
(η) = −1 and ηPi

(1) = 1 for all i = 1, . . . , n where {P1, . . . , Pn} =
Supp(D). Then

Con(C⊥) = CL(D′, H ′) with H ′ = Con(H) = D′ −G′ + Con((η)).

Let η′ = CotrF ′/F (η) be the cotrace of η, that is η′ is a Weil differential of F ′

such that (see [8], Theorem 3.4.6)

(η′) = (CotrF ′/F (η)) = ConF ′/F ((η)) + Diff(F ′/F ),

and since in this case the extension is unramified we have

(η′) = Con((η)).

Moreover, if Supp(D′) = {Q1, . . . , Qn′} then for each j there is an index i such
that

Qj ∩ F = Pi ∈ Supp(D),

and since Pi 6∈ Supp(H), because vPi
(η) = −1, then Qj 6∈ Supp(H ′). Thus, we have

0 = vQj
(H ′) = vQj

(D′ −G′ + (η′))

= vQj
(D′)− vQj

(G′) + vQj
(η′) = 1− 0 + vQj

(η′).

Since m = [F ′ : F ] is coprime with q, we can consider m̄ ∈ F∗q and its inverse

m̄−1 in the multiplicative group F∗q and define η̃ = m̄−1 η′. Therefore, vQj (η̃) =
vQj (η′) = −1 for each j = 1, . . . , n′. Moreover, we also have

η̃(1) = m̄−1η′(1) = η′(m̄−1) = TrFq/Fq
(η′(m̄−1)) = η(TrF ′/F (m̄−1)) = η(1) = 1.

Then, by using Proposition 2.2.10 in [8] again, we have

CΩ(D′, G′) = CL(D′, D′ −G′ + (η̃)).

Finally, putting all these things together we have that

Con(C⊥) = CL(D′, H ′) = CL(D′, D′ −G′ + (η̃))

= CΩ(D′, G′) = (CL(D′, G′))⊥ = (Con(C))⊥

as we wanted to show.
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Remark 1. Theorem 4.1 probably holds not only for unramified extensions. In
general we have that

Con(C)⊥ = C(D′, D′ −G′ + (η′)) and Con(C⊥) = C(D′, D′ −G′ + Con(η)),

where η (resp. η′) is a Weil differential of F (resp. F ′). Thus, by the results of
Munuera and Pellikaan in [7], the problem in proving that Con(C)⊥ = Con(C⊥)
reduces to determine whether or not the canonical divisors (η′) and Con(η) are
equal or rational equivalent.

5. The conorm of cyclic AG-codes

Here we assume, as we did in Section 3, that all the extensions of function fields
considered are geometric. By using Galois extensions we study the conorm codes of
cyclic AG-codes. We will show that under certain conditions on the ramification be-
havior of the rational places of D, we can represent a cyclic AG-code C = CFL (D,G)
defined over F as a cyclic AG-code defined over F ′ by using the conorm.

First we will need some auxiliary results. Let F ′/F be a function field extension
and let G′ ∈ Div(F ′). The set of all places of F lying below the places in Supp(G′)
will be denoted as Supp(G′) ∩ F . In other words

Supp(G′) ∩ F = {Q′ ∩ F : Q′ ∈ Supp(G′)}.

Lemma 5.1. Let F ′/F be a extension of algebraic function fields over Fq. Assume
that G ∈ Div(F ) and G′ ∈ Div(F ′) are such that Supp(G′) ∩ F = Supp(G). If
vQ′(G

′) ≥ e(Q′|Q) vQ(G) for every Q′ ∈ Supp(G′) and Q = Q′ ∩ F , then

L(G) ⊆ L(G′).

Proof. Let Q′ ∈ Supp(G′), put Q = Q′ ∩ F and take x ∈ L(G). By hypothesis
Q ∈ Supp(G) and therefore vQ(x) ≥ −vQ(G). Then we have,

vQ′(x) = e(Q′|Q) vQ(x) ≥ −e(Q′|Q) vQ(G)

≥ −e(Q′|Q)
(

1
e(Q′|Q)vQ′(G

′)
)

= −vQ′(G′),

and thus x ∈ L(G′).

Remark 2. The result in the previous lemma holds in a more general situa-
tion, namely when Supp(G′) ∩ F ⊆ Supp(G), provided that G = G0 − G+ where
Supp(G0) = Supp(G′) ∩ F and G+ ∈ Div(F )+ is a positive divisor of F . In the
particular case that G+ = 0 we are in the situation of Lemma 5.1.

Lemma 5.2. Let F ′/F be a finite extension of algebraic function fields over Fq of
degree m = [F ′ : F ]. If G ∈ Div(F ) and G′ = ConF ′/F (G) then L(G) ⊆ L(G′).
Furthermore,

(a) L(G) ⊆ Tr(L(G′)) if (m, q) = 1, and

(b) Tr(L(G′)) ⊆ L(G) if F ′/F is Galois,

where Tr(L(G′)) = {Tr(x) : x ∈ L(G′)} and Tr is the trace map from F ′ to F .

Proof. The fact that L(G) ⊆ L(G′) follows from the previous Lemma.

(a) Now, let x ∈ L(G) ⊆ F . Note that in this case Tr(x) = mx. Let x′ = m−1x
where m−1 is the inverse of m modulo p = char(Fq). Then, if Q′ ∈ P(F ′), we have
that Tr(x′) = m−1 Tr(x) = x and

vQ′(x
′) = vQ′(m

−1x) = vQ′(x) = e(Q′|Q) vQ(x) ≥ −e(Q′|Q) vQ(G) = −vQ′(G′).
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Thus, x′ ∈ L(G′) and therefore x ∈ Tr(L(G′)).

(b) Now let us assume that F ′/F is Galois. In this case we have that e(Q′|Q) = eQ
is the same for every Q′|Q and if G = Gal(F ′/F ) then Tr(x) =

∑
σ∈G σ(x). Let

x ∈ Tr(L(G′)), i.e. x = Tr(x′) with x′ ∈ L(G′). Then vQ′(x
′) ≥ −vQ′(G′) for every

Q′ ∈ P(F ′). Let Q ∈ Supp(G) and Q′|Q. Note that

vQ′(x) = vQ′(Tr(x′)) = vQ′
(∑
σ∈G

σ(x′)
)
≥ min

σ∈G
{vQ′(σ(x′)}

= vQ′(σ0(x′)) = vσ−1
0 (Q′)(x

′) = vQ′′(x
′) ≥ −vQ′′(G′),

for some σ0 and some Q′′|Q. Then, by the above calculation, we have

vQ(x) = 1
eQ
vQ′′(x) = 1

eQ
vQ′(x) ≥ −1

eQ
vQ′′(G

′) = −vQ(G),

and thus x ∈ L(G).

Remark 3. Item (b) also holds if we replace the trace map with the norm map
from F ′ to F , since N(x′) =

∏
σ∈G σ(x′) and we have

vQ′(N(x′)) = vQ′
( ∏
σ∈G

σ(x′)
)

=
∑
σ∈G

vQ′(σ(x′)) ≥ min
σ∈G
{vQ′(σ(x′))}.

The next result is a direct consequence of Lemmas 5.1 and 5.2.

Corollary 3. If F ′/F is a finite Galois extension of degree m and G′ = ConF ′/F (G),
then Tr(L(G′)) ⊆ L(G) ⊆ L(G′). If, in addition, (m, q) = 1, then we have

(18) Tr(L(G′)) = L(G).

Totally ramified places and cyclicity of AG-codes. We recall that a linear code C ⊆
Fnq is cyclic if it is closed under the cyclic shift of its coordinates. Namely, for every
(c1, . . . , cn) ∈ C we have that the word (cn, c1, . . . , cn−1) is also in C.

We will show that the conorm construction preserves cyclicity in a special case.
First we give this simple result.

Lemma 5.3. Let F ′/F a finite extension of function fields over Fq. Let C =
CFL (D,G) be an AG-code such that Supp(D) has only totally ramified places. Then
C is a subcode of its conorm code C′ = Con(C) and C is cyclic if C′ is cyclic.

Proof. Let D = P1 + · · · + Pn with every Pi totally ramified in F ′. Let Qi be the
only place of F ′ over Pi, for i = 1, . . . , n, and thus D′ =

∑n
i=1Qi. Now, consider

c = (c1, . . . , cn) ∈ C. Then, there is some x ∈ L(G) such that ci = x(Pi) for
every i = 1, . . . , n. Since G′ = Con(G), we have that L(G) ⊂ L(G′), by Lemma
5.1. Hence, x(Qi) = x(Pi) = ci and therefore c ∈ C′. The remaining assertion is
clear.

We recall the condition for an AG-code C = CL(D = P1+· · ·+Pn, G) to be cyclic.
Any codeword of C is of the form c = (x(P1), x(P2), . . . , x(Pn)) with x ∈ L(G). The
code C is cyclic if and only if s(c) = (x(Pn), x(P1), . . . , x(Pn−1)) is also in C. But
this happens if and only if there exists z ∈ L(G) such that

(19) (x(Pn), x(P1), . . . , x(Pn−1)) = (z(P1), z(P2), . . . , z(Pn)).

That is, C is cyclic if and only if for each x ∈ L(G) there is a z = z(x) ∈ L(G) such
that (19) holds.
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Example 4. Let F ′/F be an algebraic function field extension over Fq of finite
degree m. Let C = CFL (P,G) where P /∈ Supp(G) is a rational place which splits
completely in F ′. The code C, being of length 1, is just {0} or the whole Fq
depending on the degree of G, and hence trivially cyclic. If C is not trivial, its
conorm code is C′ = CF

′

L (D′, G′), where D′ =
∑
P ′|P P

′ and G′ = Con(G). If F ′/F

is a cyclic extension, the elements in the Galois group G = Gal(F ′/F ) cyclically
permute the places over P and hence it is (equivalent to) a cyclic code.

We will need the following well-known equality for the residue classes of a rational
place on F and any place in F ′ lying over it.

Lemma 5.4. Let F ′/Fqt be a finite extension of algebraic function fields of F/Fq.
If P is a rational place of F , then x(P ) = x(Q) for any x in the valuation ring OP
of the place P and every place Q of F ′ lying over P .

Proof. Since P is a rational place of F/Fq, the residue class field FP = OP /P of
P is just Fq, and thus x(P ) ∈ Fq, for every x ∈ OP . This means that there is
some α ∈ Fq such that vP (x − α) > 0. That is, we have x − α ∈ P and hence
0 = (x−α)(P ) = x(P )−α(P ) from which we get x(P ) = α. Now, let Q be a place
of F ′ lying over P . Then, we have vQ(x − α) = e(Q|P ) vP (x − α) > 0. Therefore,
proceeding as before we get x(Q) = α = x(P ) as desired.

Despite the trivial case of the previous example, we will show now that in finite
Galois extensions of function fields, the conorm lift of (certain) cyclic AG-code is
also cyclic.

Theorem 5.5. Let F ′/F be a Galois extension of algebraic function fields over Fq
of degree m, with (m, q) = 1 or q | m. Let C = CFL (D,G) be an AG-code such that
every place in Supp(D) is totally ramified in F ′. Then, C is cyclic if and only if
C′ = ConF ′/F (C) is cyclic.

Proof. By Lemma 5.3 we know that C ⊆ C′ and hence C is cyclic if C′ is cyclic.
Now, assume that C = CFL (D,G) is cyclic. We want to show that C′ = CF

′

L (D′, G′)
is cyclic too. Suppose that D = P1 + · · ·+ Pn where the Pi’s are different rational
places totally ramified in F ′. For every i = 1, . . . , n, let P ′i be the only place in F ′

above Pi. Thus, we have D′ = P ′1 + · · ·+ P ′n.
Hence, given a codeword c′ = (x′(P ′1), . . . , x′(P ′n)) ∈ C′, where x′ ∈ L(G′), we

want to show that we can find an element z′ = z′(x′) ∈ L(G′) satisfying (19), i.e.

(20) (z′(P ′1), z′(P ′2), . . . , z′(P ′n)) = (x′(P ′n), x′(P ′1), . . . , x′(P ′n−1)).

Let us first assume that (m, q) = 1. Let G = Gal(F ′/F ) and consider the element

(21) x := Tr(x′) =
∑
σ∈G

σ(x′) ∈ F.

Since Tr(L(G′)) = L(G), by Corollary 3, we have that x ∈ L(G), actually. Since C
is cyclic, by (19) there is an element z ∈ L(G) such that

(22) (z(P1), z(P2), . . . , z(Pn)) = (x(Pn), x(P1), . . . , x(Pn−1)).

Now, put z′ = m−1z ∈ L(G′) where m−1 is the inverse modulo p = char(Fq).
Hence for every i mod n we have

z′(P ′i ) = m−1z(P ′i ) = m−1z(Pi) = m−1x(Pi−1) = m−1x(P ′i )
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where we have used (22) and Lemma 5.4. Thus, by (21) we get

z′(P ′i ) = m−1
(∑
σ∈G

σ(x′)
)

(P ′i−1) = m−1
∑
σ∈G

x′(σ−1(P ′i−1))

= m−1
∑
σ∈G

x′(P ′i−1) = m−1mx′(P ′i−1) = x′(P ′i−1) .

In this way, we see that z′ ∈ L(G′) satisfies (20) and therefore C′ is a cyclic code as
desired.

In the case q | m we use a similar argument but now considering

x := N(x′) =
∏
σ∈G

σ(x′) ∈ F,

where G = Gal(F ′/F ). Now, we have that N(L(G′)) ⊆ L(G) by Remark 3 so that
x ∈ L(G). We define z′ = z. For every i mod n, we have

z′(P ′i ) = z(P ′i ) = x(P ′i−1) =
( ∏
σ∈G

σ(x′)
)

(P ′i−1) =
∏
σ∈G

x′(σ−1(P ′i−1))

=
∏
σ∈G

x′(P ′i−1) = (x′(P ′i−1))m = x′(P ′i−1) .

In this way we see that z′ ∈ L(G′) satisfies (20) and therefore C′ is a cyclic code, as
desired.

We have seen in Lemma 5.3 that under certain conditions, the original code C is
a subcode of its conorm lift C′. If, in addition, the code C is cyclic, then both codes
coincide. That is, as algebraic codes over Fq, C and C′ are the same code.

Corollary 4. Under the same hypothesis of Theorem 5.5, if C is cyclic then C = C′.

Proof. We know by Lemma 5.3 that C ⊆ C′. Let c′ ∈ C′. Then c′ = (x′(P ′1), . . . , x′

(P ′n)) with x′ ∈ L(G′). By Theorem 5.5, C′ is cyclic and hence the cyclic shift
s(c′) ∈ C′. Thus, there is z′ ∈ L(G′) satisfying the cyclic condition

z′(P ′1) = x(P ′n), z′(P ′2) = x(P ′1), . . . , z′(P ′n) = x(P ′n−1).

In the proof of Theorem 5.5 we showed how to construct this element z′ performing
the shift, and that z′ is actually in L(G), by construction. Therefore, s(c′) ∈ C and,
in this way, c′ = sn(c′) ∈ C. This implies that C′ ⊆ C and thus C = C′.

In other words, given a cyclic AG-code C = CL(D,G) over a finite Galois exten-
sion F ′/F of degree m, such that either m is coprime to q or q divides m, and where
the support of D is totally ramified, the conorm lift gives a geometric representation
C′ = Con(C) of C in a function field of greater genus.

6. Classic codes as conorm codes

In this final section we show that repetition codes, Hermitian codes and Reed-
Solomon codes can be considered, in many general cases, as conorm codes of rational
AG-codes.
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Repetition codes. Any repetition code

Rq(n) = {(c, . . . , c) : c ∈ Fq}

of length n ≤ q + 1 can be represented as a rational AG-code in F = Fq(x) as
C = CL(D, (y)), with D = P1 + · · ·+ Pn, where P1, . . . , Pn are rational places of F
and (y) is any principal divisor disjoint with D. In fact, if c ∈ C, then

c = (x(P1), . . . , x(Pn)) = (x, . . . , x),

since x ∈ L((y)) = Fq (degG = 0 implies dimL(G) = 1) and hence,

(23) Rq(n) = C = CL(D, (y)).

Furthermore, we have the following.

Lemma 6.1. In the case of geometric extensions, the conorm code of a repetition
code is a repetition code.

Proof. Consider the repetition codeRq(n) as in (23) defined over a rational function
field F = Fq(x). Suppose that F ′/F is a geometric extension over Fq of degree m

and genus g′ > 0. Since ConF ′/F ((y)F ) = (y)F
′
, we have

C′ = ConF ′/F
(
CFL (D, (y)F )

)
= CF

′

L
(
D′, (y)F

′)
,

with D′ = D1 + · · · + Dn. But C′ is a repetition code by the previous comments
and thus we get

C′ = Rq(n′),
with n′ as in (12), as we wanted to show.

By using Kummer extensions we can give a partial converse of the previous result.
In fact, we will show that any repetition code is the conorm lift to a Kummer
extension of the field Fq viewed as a rational AG-code.

Proposition 3. If n | q − 1, the repetition code Rq(n) is a conorm code.

Proof. Consider the rational function field F = Fq(x) and let F ′ = F (y) be the
Kummer extension of F given by

yn = (x− α)(x− α−1)

where n | q − 1, α ∈ F∗q and α 6= α−1.
By Proposition 6.3.1 in [8] we have that F ′/F is cyclic of degree n and Fq is the

full constant field of F ′ whose genus is g = [n−1
2 ]. Also, the places Pα and Pα−1 ,

the zeroes of x− α and x− α−1 respectively, are totally ramified in F ′/F .
Let ϕ(T ) = Tn − (x − α)(x − α−1) ∈ Fq[T ] and let ϕ̄(T ) be its reduction mod

P0, the zero of x in F . Since x(P0) = 0 and n | q − 1 then

ϕ̄(T ) = Tn − 1 =

n∏
i=1

(T − ai) ∈ Fq[T ] .

Therefore, by Kummer Theorem, P0 splits completely in F .
Let D = P1 + · · ·+Pn, where P1, . . . , Pn are the (rational) places of F ′ lying over

P0 and G = (z)F
′

with z ∈ F . By the previous example we have

C′ := CL(D, (z)F
′
) = Rq(n)

and clearly C′ = ConF ′/F (C) where C = CL(P0, (z)
F ) = Fq.
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Hermitian codes. We now show that certain Hermitian codes are conorm codes over
Hermitian function fields of rational AG-codes.

Consider the Hermitian function field H = Fq2(x, y) as the degree q extension of
the rational function field F = Fq2(x), given by the equation

yq + y = xq+1.

The field F has q2 + 1 rational places P1, . . . , Pq2 and P∞, the pole of x. For each
α ∈ Fq2 there are q elements β ∈ Fq2 satisfying

βq + β = αq+1,

and for all such pairs (α, β) there is a unique place Pα,β in H such that x(Pα,β) = α
and y(Pα,β) = β. Thus, H has q3 + 1 rational places, q places over each rational
place Pα,β of F and Q∞, the common pole of x and y in H, lying over P∞.

Hermitian codes are the 1-point AG-codes defined as

(24) Ha = CHL (D′, aQ∞),

where

(25) D′ =
∑

P∈P(H)r{Q∞}

P =
∑

βq+β=αq+1

Pα,β .

Remark 4. In order to construct codes from the Hermitian function field in which
the divisor G is not a one-point divisor, one can consider the function field H
not as an Artin-Schreier extension of F2

q(x), but rather as a Kummer extension of

F = F2
q(y) defining the divisor G by means of the zeroes of yq + y and D by the

places which are unramified over F (see Example 4.8 in [1]).

Proposition 4. If q | a then Ha is a conorm code.

Proof. Using the above notation, let us consider the code

Ct = CFL (D, tP∞),

where D = P1 + · · ·+ Pq2 . Note that if q | a then

Ha = ConH/F (Ca/q)

where H = Fq2(x, y) is the Hermitian field given by yq +y = xq+1, because we have
Con(D) = D′ as in (25) and Con(sP∞) = sqQ∞ for any s.

As an application of these results, we show next that the identity (17) fails to
hold in general, that is the dual of a the conorm code of C is not necessarily the
conorm of the dual code of C.

Example 5. Consider the Hermitian function field H = Fq2(x, y), i.e. the extension
of the rational function field F = Fq2(x) defined by yq + y = xq+1. Consider the

rational AG-code Cq = CFL (D, qP∞), where D is the sum of all the rational places
of F different from P∞, with parameters [q2, q + 1] and let Ha = CHL (D′, aQ∞) be
the Hermitian code, where D′ is the sum of all the places over the support of D,
with parameters [q3, k′].

We have seen that Ha is the conorm code of Cq if q divides a. Thus we can
take, for instance, a = 3q2. By (b) of Proposition 8.3.3 of [8], the code H3q2 has
dimension

k′ = dim(H3q2) = 3q2 + 1− 1
2q(q − 1) = 5q2+q

2 + 1.
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Now, on the one hand, since H⊥a = Hq3+q2−q−2−a for any a, in our case we have

Con(Cq)⊥ = H⊥3q2 = Hq3−2q2−q−2

with parameters [q3, k⊥]. It is clear that

k⊥ = q3 − k′ = q3 − 5q2+q+2
2 > 0,

for any q ≥ 3.
On the other hand, C⊥q = CFL (D,G⊥) with G⊥ = D−qP∞+(η) is a [q2, q2−q−1]-

code, where η is a Weil differential. The conorm code is Con(C⊥q ) with parameters

[q3, k̃]. By (14) of Proposition 1 we have

k̃ ≥ q(degG⊥ + 1− g)− 1
2 deg Diff(H/F )

= q(q2 − q − 2)− 1
2 (q2 − q) = q3 − 3q2−3q

2 = q3 − 3
2q(q + 1) > 0,

for any q ≥ 3.
It is straightforward to check that k⊥ < k̃ if and only if q2 + 1 > q and this

last inequality holds for every q. Since the dimensions of the codes Con(Cq)⊥ and
Con(C⊥q ) are different, we have that

Con(Cq)⊥ 6= Con(C⊥q ),

as we wanted to show. For instance, if q = 3 the parameters of the codes Con(C3)⊥

and Con(C⊥3 ) over H = F9(x, y), y3 + y = x4, are [27, 2] and [27,≥ 9], respectively.
Also, the parameters of the codes Con(C4)⊥ and Con(C⊥4 ) over H = F16(x, y) with
y4 + y = x5 are [64, 21] and [64,≥ 34], respectively.

Reed-Solomon codes. As a final application, we show that classical Reed-Solomon
codes can be obtained as conorm codes of rational cyclic AG-codes.

Proposition 5. Any Reed-Solomon code is a conorm code.

Proof. Let n = q − 1 and k be such that 1 ≤ k ≤ n and let us consider the
Reed-Solomon code

Ck = {(f(β), f(β2), . . . , f(βn)) : f ∈ Lk)}
over Fq, where β ∈ Fq is a primitive element of the subgroup F∗q and

Lk = {f ∈ Fq[x] : deg f ≤ k − 1}.
The code Ck can be represented as a rational AG-code as follows. Let F = Fq(x)

be a rational function field and denote by Pi the zero of x−βi in F for i = 1, . . . , n,
and by P∞ the pole of x in F . Let u ∈ F be such that u(Pi) = 1 for i = 1, . . . , n
(such an element exists by the Approximation theorem). Now, letting

D = P1 + · · ·+ Pn and G = (k − 1)P∞ + (u),

where (u) denotes the principal divisor of u in F , we have (see Proposition 2.3.5 of
[8]) that Ck = CL(D,G).

Let us consider now the field extension F ′/F = Fq(x, y)/Fq(x) where x and y
satisfy

yn = (x− β)(x− β2) · · · (x− βn).

By Proposition 6.3.1 in [8] we have that F ′/F is a cyclic extension of degree n
and the places P1, . . . , Pn are totally ramified in F ′/F . In this way, we are in the
hypothesis of Theorem 5.5 and Corollary 4 and thus

C′ = Con(Ck) = CL(Con(D),Con(G))
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satisfies C′ = Ck, as we wanted to show.

Final Remarks

Generalized conorm codes. The definition of conorm code given in Section 2 can
be generalized as follows. Let F ′/F be a finite extension of function fields over Fq
and let C = CFL (D,G) be an AG-code as in (1). Suppose that every place P ′ of F ′

over any place P ∈ Supp(D) is rational. We define the generalized conorm code
associated to C, or just the conorm of C, as

(26) C′ = ConF ′/F (C) = CF
′

L (D′, G′),

where

D′ =

n∑
i=1

∑
Q|Pi

Q and G′ = ConF ′/F (G).

Note: For any given AG-code C = CFL (D,G) over a function field F/Fq, we can
always find a field extension F ′ of F such that the condition on the rationality of the
places above the places in the support of D holds: we just take a suitable constant
field extension F ′ = FFqt of F .

This construction of generalized conorm codes behaves well on finite towers of
function fields. That is, given F ⊂ F ′ ⊂ F ′′ and C = CFL (D,G) we have

(27) ConF ′′/F (C) = ConF ′′/F ′(ConF ′/F (C)),
or, in other words, if C′ = ConF ′/F (C), then

C′′ = ConF ′′/F ′(C′) = ConF ′′/F (C).
This is a direct consequence of the fact that

ConF ′′/F (G) = ConF ′′/F ′(ConF ′/F (G)),

for any divisor G in F and the fact that if every place R in F ′′ over a place P in
the support of D is rational, then every place Q in F ′ over a place P in the support
of D is also rational. Furthermore⋃

P ∈ SuppD

{R | P : R ∈ P(F ′′)} =
⋃

Q∈ SuppD′

{R | Q : R ∈ P(F ′′)}.

Notice that with the definition of conorm codes given in Section 2, the equality
(27) was obtained in the particular cases of complete splitting or total ramification
of the places in Supp(D). Moreover when every place in Supp(D) splits completely
in F ′, we have that D′ is actually the conorm of D.

Code-based cryptography. Different families of codes have proved to be insecure for
code-based cryptography and there have been many attempts to replace traditional
Goppa codes. In [5], Janwa and Moreno proposed to use a collection of AG-codes
on curves for the McEliece cryptosystem, but this was broken for codes on curves
of genus g ≤ 2 by Faure and Minder ([3]).

Couvreur, Márquez-Corbella, Mart́ınez-Moro, Pellikaan and Ruano ([2] and [6])
have managed to break certain higher-genus cryptosystems based on evaluation
codes, but none of these attacks are against subfield subcodes. The security status
of the McEliece public key cryptosystem using algebraic geometry codes is, to the
best of our knowledge, still not completely settled and remains as an open problem.

The construction of taking conorm codes can be iterated, so in principle it can
be applied to a code defined over the base field of a tower of function fields. By the
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results in Theorem 5.5 and Corollary 4 we can begin with a cyclic AG-code defined
over the rational function field (g = 0). Under appropriate conditions, we get the
same code (as a conorm code) defined on a bigger field with greater genus. The
procedure can be repeated in such a manner to get the same algebraic cyclic code
defined on a function field of genus arbitrarily large. Can this procedure be useful
in some way in code-based cryptography? This is a question we hope to answer in
a forthcoming work.
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