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FINITE GK-DIMENSIONAL PRE-NICHOLS ALGEBRAS

OF QUANTUM LINEAR SPACES

AND OF CARTAN TYPE

NICOLÁS ANDRUSKIEWITSCH AND GUILLERMO SANMARCO

Abstract. We study pre-Nichols algebras of quantum linear spaces and of
Cartan type with finite GK-dimension. We prove that except for a short list
of exceptions involving only roots of order 2, 3, 4, 6, any such pre-Nichols
algebra is a quotient of the distinguished pre-Nichols algebra introduced by
Angiono generalizing the De Concini-Kac-Procesi quantum groups. There are
two new examples, one of which can be thought of as G2 at a third root of

one.
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1. Introduction

1.1. Overview.

1.1.1. The problem. Let k be a field. Let GK-dim be an abbreviation of Gelfand-
Kirillov dimension, see [KL]. In this paper we contribute to the ongoing program of
classifying Hopf algebras with finite GK-dim. See [B+,G,L] and references therein.

LetH be a Hopf algebra and let H
HYD be the category of Yetter-Drinfeld modules

over H. Assume that H is pointed (similar arguments apply more generally if its
coradical is a Hopf subalgebra). Basic invariants of H are

(i) the group of grouplikes Γ = G(H),
(ii) the diagram R = ⊕n∈N0

Rn, a graded connected Hopf algebra in kΓ
kΓYD,

(iii) the infinitesimal braiding V := R1, an object in kΓ
kΓYD.
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See [AS3]. Assume that Γ has finite growth. In order to classify those H with
finite GK-dim, one first needs to understand all such R with finite GK-dim. As
a coalgebra R is coradically graded and connected; in other words, it is strictly
graded as in [Sw, Section 11.2, see p. 232 and Lemma 11.2.1]. Strictly graded Hopf
algebras R in kΓ

kΓYD with R1 � V are called post-Nichols algebras of V ; also, graded
Hopf algebras R in kΓ

kΓYD generated by R1 � V are called pre-Nichols algebras of
V . See §2.5.

The Nichols algebra B(V ) is isomorphic to the subalgebra of R generated by V ;
see [A] for an introduction to Nichols algebras. When char k = 0 and dimH < ∞
(thus Γ is finite), it was conjectured in [AS2] that R = B(V ); this is known to
be true when Γ is abelian by [An1]. The validity of this conjecture says that the
classification of the finite-dimensional Nichols algebras in kΓ

kΓYD is a substantial
step towards the problem of classifying finite-dimensional pointed Hopf algebras
with group Γ. When chark > 0 or dimH = ∞, the conjecture fails to be true
and the knowledge of the Nichols algebras is not enough. Thus, towards classifying
pointed Hopf algebras with group Γ and finite GK-dim, we do not see how to avoid
the consideration of the following questions:

(A) classify all V ∈ kΓ
kΓYD such that B(V ) has finite GK-dim,

(B) for such V classify all post-Nichols algebras with finite GK-dim.

Question (B) appears to be difficult to handle directly. However Lemma 2.2
below, proved in [AAH3], reduces Question (B) for V as in (A) to

(C) classify all pre-Nichols algebras of V ∗ with finite GK-dim.

As usual it is more flexible to deal with classes of braided vector spaces rather
than classes of groups Γ and correspondingly pre-Nichols algebras as braided Hopf
algebras; see §2.3 for unexplained vocabulary.

1.1.2. Eminent pre-Nichols algebras. For Question (C) we point out that all pre-
Nichols algebras of V form a poset Pre(V ) with T (V ) minimal and B(V ) maximal;
those with finite GK-dim form a saturated subposet PrefGK(V ), cf. §2.5. When
char k = 0 and the braiding is the usual flip, the Nichols algebra is just the sym-
metric algebra and the pre-Nichols algebras with finite GK-dim are the universal
enveloping algebras of the finite-dimensional N-graded Lie algebras generated in
degree one. Thus PrefGK(V ) is hardly computable when dimV ≥ 2. Similar con-
siderations are valid when the braiding is the super flip of a super vector space, see
§2.9.2. But if dimV = 1 and char k = 0, then PrefGK(V ) = Pre(V ) has obviously
a minimal element. We introduce in this paper the notion of eminent pre-Nichols

algebra as one that is a minimum in PrefGK(V ). That is, a pre-Nichols algebra B̂
of a braided vector V is eminent if

(a) GK-dim B̂ < ∞;
(b) if B is a pre-Nichols algebra of V with GK-dimB < ∞, then there exists a

morphism of pre-Nichols algebras B̂ → B, necessarily surjective.

The existence of an eminent pre-Nichols algebra B̂ reduces Question (C) to the

determination of all pre-Nichols algebra quotients of B̂, that is its homogeneous
Hopf ideals starting in degree (at least) 2. Presently there is no general recipe to
decide whether a braided vector space admits an eminent pre-Nichols algebra. In
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this paper we shall show that many braided vector spaces of diagonal type have
eminent pre-Nichols algebras.

1.1.3. Distinguished pre-Nichols algebras. From now on we assume that k is al-
gebraically closed and char k = 0. In this paper we deal with Question (C) for
braided vector spaces V of diagonal type, i.e. with braiding determined by a ma-
trix q = (qij)i,j∈I with entries in k× where θ ∈ N and I = {1, . . . , θ}. See §2.8 for
precise definitions.

First we need to discuss Question (A) for this class. Finite-dimensional Nichols
algebras of diagonal type, i.e. those with GK-dim = 0, were classified in [H1]
through the notion of (generalized) root system. More generally the list of all
Nichols algebras of diagonal type with finite root system is given in loc. cit. It was
conjectured in [AAH1], and verified in various cases [R], [AA1,AAH2], that Nichols
algebras of diagonal type with finite GK-dim are precisely those with finite root
system. We recall this as Conjecture 2.6. We shall assume in a few proofs that
Conjecture 2.6 is valid in dimensions ≤ 5.

Let B(V ) = T (V )/J (V ) be a finite-dimensional Nichols algebra of diagonal
type. The distinguished pre-Nichols algebra of V introduced in [An3] is the quotient

B̃(V ) := T (V )/I(V ), where I(V ) is the ideal of T (V ) generated by the defining
relations of J (V ) given in [An1] but excluding the powers of the Cartan root
vectors and including the quantum Serre relations at Cartan vertices. Detailed
presentations of J (V ) and I(V ) are available in [AA2, §4]. The notion of Cartan
root requires the theory of Weyl groupoid that would led us too far from the goal of
this paper. Indeed in Cartan type all roots are so and the distinguished pre-Nichols

algebras are the positive parts of the quantum groups of [DKP]. Originally B̃(V )
was introduced as a tool for understanding the relations of B(V ); several results on

B̃(V ) were established in [An3]. The graded duals of the distinguished pre-Nichols
algebras have been presented by generators and relations in [AAR].

Unlike the notion of eminent pre-Nichols algebra, we lack at the moment a concise

abstract definition of B̃(V ) that could be adapted beyond finite dimensional B(V )
of diagonal type; but see §1.2.1 for quantum linear spaces.

In [An3] the author and one of us asked whether a distinguished pre-Nichols al-
gebra is eminent (in the terminology just introduced). Recall that the classification
in [H1] was organized in [AA2] in various types: Cartan, standard, super, modular,
super modular and UFO. Here we address the question above when B(V ) is either
a quantum linear space or of Cartan type. The recent paper [ACS] treats super
and standard types, the remaining ones being the subject of work in progress.

1.2. The main results. In the present paper we focus on braided vector spaces of
diagonal type of two kinds. Fix V of diagonal type as in §2.8, with braiding given
by the matrix q = (qij)i,j∈I.

1.2.1. Quantum linear spaces. Here we assume that q satisfies qijqji = 1 for all i 	=
j ∈ I. We extend the notion of distinguished pre-Nichols algebra to quantum linear
spaces even when they are infinite-dimensional. Namely we define the distinguished

pre-Nichols algebra B̃(V ) as the one presented by generators (xi)i∈I and relations
xixj − qijxjxi, for all i 	= j ∈ I. If 1 	= qii is a root of unit for all i, then
dimB(V ) < ∞, V is of Cartan type A1 × · · · ×A1 and any root is Cartan, so this
definition is consistent with the one given in [An3] and discussed above.
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We need some notation to state our first Theorem. Set

I∞ = {i ∈ I : qii /∈ G∞}, IN = {i ∈ I : ord qii = N}, N ≥ 1,

It =
⋃
N>3

IN , I± = {i ∈ I : qii = ±1} = I1 
 I2.(1.1)

Thus I = I± 
 I3 
 It 
 I∞. For � ∈ N ∪ {±, t,∞}, let V � be the subspace of V
spanned by (xi)i∈I� and q� the restriction of q to V �. Then

V = V ± ⊕ V 3 ⊕ V t ⊕ V ∞.

Theorem 1.1. Assume that Conjecture 2.6 is true.

(a) The distinguished pre-Nichols algebra B̃(V �) is eminent, � ∈ {3, t,∞}.
(b) Let B be a finite GK-dimensional pre-Nichols algebra of V ; let B±,3, respec-

tively Bt, B∞ be the subalgebra of B generated by V ± ⊕ V 3, respectively V t,
V ∞. Then there is a decomposition

B � B±,3⊗Bt⊗B∞.(1.2)

(c) Assume that V has a basis {x1, x2} with x1 ∈ V 3, x2 ∈ V 1. Then

B̆(V ) = T (V )/〈(adc x1)
4(x2), (adc x2)

2(x1)〉
is an eminent pre-Nichols algebra of V and has GK-dim = 6.

See §2.1 for the meaning of ⊗. Parts (a) and (b) follow from Proposition 3.2
whose proof assumes that Conjecture 2.6 is true. Part (c) is Proposition 3.3. Al-

though B̆(V ) of part (c) is not the distinguished pre-Nichols algebra of the quantum
plane V , it can be thought of as the distinguished one of the braided vector space
of Cartan type G2, but degenerated in the sense that the parameter is a primitive

third root of unity. Via suitable bosonizations, B̆(V ) provides new examples of
pointed Hopf algebras with finite GK-dim.

Let B ∈ PrefGK(V ). By (a) and (1.2) we have a surjective map of pre-Nichols

algebras B±,3⊗B̃(V t)⊗B̃(V ∞) → B. Therefore it remains to understand B±,3.
Towards this, we know:

◦ The pre-Nichols algebras of V ± with finite GK-dim are (up to a twist) the en-
veloping superalgebras U(n), where n = ⊕j∈Nn

j is a finite-dimensional Lie su-
peralgebra generated by n1 � V , see §2.9.2.

◦ By Proposition 3.2, B2,3 � B2⊗B3.
◦ For instance, if V 1 = 0, then there is a surjective map of pre-Nichols algebras

B2⊗B̃(V 3)⊗B̃(V t)⊗B̃(V ∞) → B.

Towards B1,3 we know Part (c) and §3.3. It is natural to ask:

Question 1.2. Assume that V = V 1 ⊕ V 3, dimV 1 = 1 and dimV 3 = 2. Is the

distinguished pre-Nichols algebra B̃(V ) eminent?

1.2.2. Connected Cartan type. Here q is of finite Cartan type, i.e.

qijqji = q
aij

ii , − ord qii < aij ≤ 0, i 	= j ∈ I,

where a = (aij)i,j∈I is a Cartan matrix of finite type with connected Dynkin di-
agram. In §4 we recall the possibilities for such q. They depend on a root of
unity q, whose order is denoted by N . In the following statement the symbols
x1112, x2221, x2112, x1221 are defined in (2.1).
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Theorem 1.3.

(a) The distinguished pre-Nichols algebra B̃q is eminent except in the following
cases: A2 with N = 3,

Aθ, θ ≥ 2, N = 2; Dθ, θ ≥ 4, N = 2; G2, N = 4, 6.(1.3)

(b) Suppose q is of type A2 with N = 3. Then

B̂ = k〈x1, x2|x1112, x2221, x2112, x1221〉

is an eminent pre-Nichols algebra of q, and GK-dim B̂ = 5.

This answers (partially) a question in [An3].
The proof of (a) is given in Lemmas 4.12, 4.13, 4.15, 4.16, 4.17, 4.18. For the

cases listed in (1.3) the determination of the poset PrefGK(V ) remains an open
problem except for G2, with N = 4, 6 that was solved in [ACS]. See Section 5 for
partial results; answers to Questions 5.2, 5.5, 5.7, 5.9 and 5.11 would shed light on
the issue. The proof of (b) is given in Proposition 4.11. The eminent pre-Nichols

algebra B̂ is introduced and studied in §4.2.2. There we show that B̂ properly

covers the distinguished pre-Nichols algebra B̃(V ), which has GK-dim B̃(V ) = 3.

2. Preliminaries

2.1. Conventions. For n ≤ m ∈ N0, put In,m = {k ∈ N0 : n ≤ k ≤ m} and
Im = I1,m. Given a positive integer N , we denote by GN the group of N -th roots
of unity in k×, and by G′

N ⊂ GN the subset of those of order N . The group of all
roots of unity is denoted by G∞ and G′

∞ := G∞ − {1}.
The subalgebra generated by a subset X of an associative algebra is denoted by

k〈X〉.
All Hopf algebras are assumed to have bijective antipode. If H is a Hopf algebra,

the group of group-like elements is denoted by G(H), while P(H) is the subspace
of primitive elements. By grH we mean the graded coalgebra associated to the
coradical filtration.

If A and B are algebras in H
HYD, we denote by A⊗B = (A ⊗ B, μA⊗B) the

algebra with multiplication μA⊗B = (μA ⊗ μB)(idA ⊗cB,A ⊗ idB), where μA and
μB are the multiplications of A and B, respectively.

2.2. Gelfand-Kirillov dimension. We refer to [KL] for general information on
this topic. The following useful statement is immediate from the definition of
GK-dim. Let R be a ring and let M = ⊕n∈N0

Mn be a direct sum of R-modules Mn

which are free of finite rank (we say M is a locally finite graded R-module). The
Poincaré series of M is

PM :=
∑
n∈N0

rankMn Xn ∈ Z[[X]].

Lemma 2.1. Let L and F be fields and let T = ⊕n∈N0
Tn and U = ⊕n∈N0

Un be two
locally finite graded algebras generated in degree one over L and F respectively. If
PT = PU , then GK-dim T = GK-dimU . �

Actually [KL, 12.6.2] shows that the Poincaré series of a graded finitely generated
algebra provides its GK-dim.
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2.3. Braided Hopf algebras. A pair (V, c) where V is a vector space and c ∈
GL(V ⊗2) satisfies the braid equation

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c)

is called a braided vector space. A braided vector space with compatible algebra
and coalgebra structures as in [T] is called a braided Hopf algebra. For instance the
tensor algebra T (V ) has a canonical structure of (graded connected) braided Hopf
algebra such that the elements of degree 1 are primitive. Also the tensor coalgebra
T c(V ) becomes a braided Hopf algebra by the twisted shuffle product; see e.g.
[R, Proposition 9]. There is a homogeneous morphism of braided Hopf algebras
Ω: T (V ) → T c(V ) determined by Ω(v) = v, v ∈ V ; its image is the Nichols algebra
of V , denoted B(V ). In fact Ω is the quantum symmetrizer, see e.g. [A, Section
3.3].

Another description: let J (V ) be the largest element of the set S of graded
Hopf ideals of T (V ) trivially intersecting k⊕ V . Then B(V ) � T (V )/J (V ).

2.4. Principal realizations. Theorems 1.1 and 1.3 are relevant for the classifi-
cation of Hopf algebras with finite GK-dim. Indeed a braided vector space arises
(up to a mild condition) as a Yetter-Drinfeld module over a Hopf algebra; this is
called a realization. Realizations are not unique and we single out a class of them
for braidings of diagonal type. Let H be a Hopf algebra. A YD-pair is a couple
(g, χ) ⊂ G(H)×HomAlg(H, k) satisfying

χ(h)g = χ(h(2))h(1)gS(h(3)), h ∈ H.

Compare with [AS1, p. 671]. This compatibility guarantees that kχg (i. e. H acting
and coacting on k by χ and g, respectively) is a Yetter-Drinfeld module over H.
Let (V, cq) be a braided vector space of diagonal type. Following [AS1, p. 673], a
principal realization of (V, cq) over H is a family (gi, χi)i∈I of YD-pairs such that
qij = χj(gi) for all i, j. In this case V =

⊕
i k

χi
gi ∈ H

HYD.

2.5. Pre-Nichols and post-Nichols algebras. We present in detail the objects
of interest in this paper.

• Let B =
⊕

n∈N0
Bn be a graded connected braided Hopf algebra with B1 � V .

Then B is a pre-Nichols algebra of V if it is generated by B1. In this case there
are epimorphisms of (graded) braided Hopf algebras

T (V ) � B � B(V ).

Hence the setPre(V ) of isomorphism classes of pre-Nichols algebras of V is partially
ordered with T (V ) minimal and B(V ) maximal:

T (V )

�������
���

���
���

��

���� �� ����
���

���
���

���

B . . . . . . B′ . . . . . . B′′

B(V )
�� ��

�������������� ���� ����

��������������
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• Dually, a graded connected braided Hopf algebra E =
⊕

n∈N0
En with E1 � V is

a post-Nichols algebra of V if it is coradically graded. Thus we have monomor-
phisms of (graded) braided Hopf algebras

B(V ) ↪→ E ↪→ T c(V ).

Hence the set Post(V ) of isomorphism classes of post-Nichols algebras of V is
partially ordered with T c(V ) maximal and B(V ) minimal:

B(V )
� �

�����
���

���
���

��
� �

��

� �

����
���

���
���

���

B . . . . . . B′ . . . . . . B′′

T (V )
��

� ��������������� ��

� �

��

� ���������������

The only pre-Nichols which is also a post-Nichols algebra of V is B(V ) itself.

2.6. Eminent pre- and post-Nichols algebras. For the purposes of classify-
ing Hopf algebras with finite GK-dim, it is important to describe the (partially
ordered) subset PostfGK(V ) of Post(V ) consisting of post-Nichols algebras with
finite GK-dim. In this paper we are mainly interested in the (partially ordered)
subset PrefGK(V ) of Pre(V ) consisting of pre-Nichols algebras with finite GK-dim.
The reason to start with this is given by the following result:

Lemma 2.2 ([AAH3]). Let B be a pre-Nichols algebra of V and let E = Bd be the
graded dual of B. Then GK-dim E ≤ GK-dimB. If E is finitely generated, then
the equality holds. �

A first approximation to the determination of PostfGK(V ) and PrefGK(V ) is
through the following notion.

Definition 2.3.

(a) A pre-Nichols algebra B̂ is eminent if it is the minimum of PrefGK(V ); i. e.

there is an epimorphism of braided Hopf algebras B̂ � B that is the identity
on V for any B ∈ PrefGK(V ).

(b) A post-Nichols algebra Ê is eminent if it is the maximum of PostfGK(V ); that
is for any E ∈ PostfGK(V ), there is a monomorphism of braided Hopf algebras

E ↪→ Ê that is the identity on V .

Beware that there are braided vector spaces without eminent pre-Nichols alge-
bras; e. g., if dimV > 1 and the braiding is the usual flip, then PrefGK(V ) has
infinite chains. An intermediate situation could be described as follows.

Definition 2.4. A family (B̂i)i∈I ⊂ PrefGK(V ) is eminent if

(a) for any B ∈ PrefGK(V ), there exists i ∈ I and an epimorphism of braided

Hopf algebras B̂i � B that is the identity on V , and

(b) (B̂i)i∈I is minimal among the families in PrefGK(V ) satisfying (a).

Eminent families of post-Nichols algebras are defined similarly.
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All the notions above about braided Hopf algebras related to braided vector
spaces have a counterpart for Yetter-Drinfeld modules. Namely, suppose that (V, c)

is realized in H
HYD for some Hopf algebra H. Then Pre

H(V ) is the subset of

Pre(V ) of pre-Nichols algebras that belong to H
HYD; similarly we have Pre

H
fGK(V ),

Post
H(V ), Post

H
fGK(V ), and also H-eminent pre-Nichols or post-Nichols algebras.

2.7. The adjoint representation and q-brackets. Any Hopf algebra R in H
HYD

comes equipped with the (left) adjoint representation adc : R → EndR, given by

(adc x)y = μ(μ⊗ S)(id⊗c)(Δ⊗ id)(x⊗ y), x, y ∈ R,

where μ, Δ and S denote the multiplication, comultiplication and antipode of R,
respectively. The adjoint action of a primitive element x ∈ R is

(adc x)y = xy − (x(−1) · y)x(0), y ∈ R.

Given xi1 , xi2 . . . , xik ∈ R, put

xi1i2...ik = (adc xi1) . . . (adc xik−1
)xik .(2.1)

We also set x(k h) = xk (k+1) (k+2)...h for k < h.
On the other hand, the braided commutator is defined by

[x, y]c = xy − (x(−1) · y)x(0), x, y ∈ R.

We refer to [AA2, Introduction] for a more detailed treatment.

2.8. Nichols algebras of diagonal type. Fix a natural number θ and let I = Iθ.
Any matrix q = (qij)i,j∈I with coefficients in k× determines a braided vector space
of diagonal type (V, cq), where

V has a basis (xi)i∈I, cq(xi ⊗ xj) = qijxj ⊗ xi, i, j ∈ I.(2.2)

The Dynkin diagram associated to q is a non-oriented graph with θ vertices.
The vertex i is labelled by qii, and there is an edge between i and j if and only if
q̃ij := qijqji 	= 1; in this case, the edge is labeled by q̃ij . Thus we may speak of the
connected components of this diagram and by abuse of notation of q. The following
useful result says that a connected component with at least 2 vertices one of them
labelled by 1 gives rise to an infinite GK-dimensional Nichols algebra.

Lemma 2.5 ([AAH1, Lemma 2.8]). Let U be a braided vector space of diagonal
type with Dynkin diagram

q◦ r 1◦ , r 	= 1.

Then GK-dimB(U) = ∞. �

Let α1, . . . , αθ be the canonical basis of Z
θ. From the braiding matrix q we obtain

a k×-valued bilinear form on Zθ, still denoted q and determined by q(αi, αj) = qij ,
i, j ∈ I. Put also

q̃(α, β) := q(α, β)q(β, α), α, β ∈ Zθ.(2.3)

For sake of brevity, we use qαβ = q(α, β) and q̃αβ = q̃(α, β) as well.

The braided vector space (V, cq) as in (2.2) is realized in Zθ

ZθYD by declaring

deg(xi) = αi, αi · xj = qijxj , i, j ∈ I.(2.4)
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The algebra T (V ) becomes Zθ-graded. Thus any quotient algebra R of T (V ) by a
graded ideal inherits the grading: R =

⊕
α∈Zθ Rα. We keep the notation deg for

this degree. Furthermore, if R is an algebra obtained as a quotient of T (V ) by a

graded ideal I (thus a subobject in Zθ

ZθYD), then the braiding on the homogeneous
subspaces is given by

c(u⊗ v) = qα,β v ⊗ u, u ∈ Rα, v ∈ Rβ .(2.5)

We shall use (2.5) many times. The braided commutators satisfy

[u, vw]c = [u, v]cw + qαβv[u,w]c,(2.6)

[uv, w]c = qβγ [u,w]cv + u[v, w]c,(2.7) [
[u, v]c, w

]
c
=

[
u, [v, w]c

]
c
− qαβv[u,w]c + qβγ [u,w]cv,(2.8)

for homogeneous elements u ∈ Rα, v ∈ Rβ , w ∈ Rγ .

In the diagonal setting (2.2) we set as usual Jq = J (V ), Bq = B(V ), B̃q =

B̃(V ), etc. Nichols algebras of diagonal type (i. e. those arising from braided vec-
tor spaces of diagonal type) have been intensively studied. The classification of all
matrices q such that Bq has finite root system was provided in [H1]; the defining
relations of these Nichols algebras are given in [An1,An2]. Clearly, finite dimen-
sional Nichols algebras of diagonal type have finite root system. It was conjectured
that those of finite GK-dim share the same property.

Conjecture 2.6 ([AAH1, Conjecture 1.5]). The root system of a Nichols algebra
of diagonal type with finite GK-dimension is finite.

The validity of Conjecture 2.6 would imply the classification of finite GK-dimen-
sional Nichols algebras of diagonal type. There is strong evidence supporting it.
The conjecture holds when θ = 2 [AAH2, Thm. 4.1], when the braiding is of
affine Cartan type [AAH2, Thm. 1.2], or when q is generic, that is qii /∈ G∞, and
qijqji = 1 or qijqji /∈ G∞, for all i 	= j ∈ I [R,AA1].

We include for completeness proofs of the following well-known results.

Lemma 2.7. Let 0 	= v, w ∈ T (V ) be homogeneous primitive elements with deg v =
α and degw = β. Then (adc v)w is primitive if and only if q̃αβ = 1.

Proof. Using (2.5), compute Δ((adc v)w) = Δ(vw − qαβ wv) =

= (v ⊗ 1 + 1⊗ v)(w ⊗ 1 + 1⊗ w)− qαβ (w ⊗ 1 + 1⊗ w)(v ⊗ 1 + 1⊗ v)

= vw ⊗ 1 + v ⊗ w + qαβ w ⊗ v + 1⊗ vw

− qαβ (wv ⊗ 1 + w ⊗ v + qβα v ⊗ w + 1⊗ wv)

= (adc v)w ⊗ 1 + 1⊗ (adc v)w +
(
1− q̃αβ

)
v ⊗ w.

�

Lemma 2.8. Let R be a graded braided Hopf algebra. If W is any braided subspace
of R contained in P(R) then GK-dimB(W ) ≤ GK-dimR.

Proof. We follow [AS4, Lemma 5.4]. Since the elements ofW are primitive, the sub-
algebra k〈W 〉 is a braided Hopf subalgebra of R; by definition of the Nichols algebra
it follows that gr k〈W 〉 projects onto B(W ), so GK-dimB(W ) ≤ GK-dim gr k〈W 〉.
But GK-dim gr k〈W 〉 ≤ GK-dim k〈W 〉 by [KL, Lemma 6.5], and this proves the
desired inequality. �
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2.9. Pre-Nichols algebras of diagonal type. Let (V, cq) be a braided vector
space of diagonal type associated to the matrix q = (qij)i,j∈I. Recall that q̃ij =

qijqji, i 	= j. We write Pre
Zθ

fGK(V ) for Pre
kZθ

fGK(V ), cf. (2.4).

2.9.1. Pre-Nichols algebras under twist-equivalence. Let p = (pij)i,j∈I be another
braiding matrix such that

qii = pii, q̃ij = p̃ij , i, j ∈ I.

In this case, (V, cq) and the braided vector space (W, cp) with basis (yi)i∈I are said
to be twist-equivalent.

Lemma 2.9. There is an isomorphism of posets Pre
Zθ

fGK(W ) � Pre
Zθ

fGK(V ).

Proof. Let σ : Zθ × Zθ → k× be the bilinear form, hence a 2-cocycle, given by

σ(αi, αj) =

{
pijq

−1
ij , i ≤ j,

1, i > j
. Let T (V )σ be the corresponding cocycle deformation

of T (V ), i. e. with multiplication

u.σv = σ(α, β)uv, u ∈ T (V )α, v ∈ T (V )β, α, β ∈ Zθ.(2.9)

By the proof of [AS3, Prop. 3.9] the linear map ϕ : W → V , ϕ(yi) = xi, i ∈ I,

induces an isomorphism ϕ : T (W ) → T (V )σ of Hopf algebras in Zθ

ZθYD. Let I be

a Hopf ideal of T (V ) that belongs to Zθ

ZθYD; then it is also a Hopf ideal of T (V )σ
and GK-dim T (V )/I = GK-dimT (V )σ/I by Lemma 2.1. �

2.9.2. Pre-Nichols algebras of super symmetric algebras. Assume that q̃ij = 1 = q2ii,
for all j 	= i ∈ I. Then V = V0 ⊕ V1 is a super vector space where Vj is spanned
by those xi’s such that qii = (−1)j , j = 0, 1. Let p = (pij)i,j∈I be the matrix
corresponding to the associated super symmetry. Then

• The pre-Nichols algebras of (V, cp) are the enveloping superalgebras U(n), where
n = ⊕j∈Nn

j is a graded Lie superalgebra generated by n1 � V .
• PrefGK(V, c

p) consists of the enveloping superalgebras U(n), where n = ⊕j∈Nn
j

is a graded Lie superalgebra generated by n1 � V with dim n < ∞.

• Hence Pre
Zθ

fGK(V, c
p) consists of the enveloping superalgebras U(n), where n =

⊕β∈Zθnβ is a finite-dimensional Zθ-graded Lie superalgebra generated by n1 =

⊕i∈In
αi � V . In particular Pre

Zθ

fGK(V, c
p) � PrefGK(V, c

p).

• By Lemma 2.9, Pre
Zθ

fGK(V, c
q) is isomorphic as a poset to the set of isomorphism

classes of finite-dimensional Zθ-graded Lie superalgebras as in the previous point.

3. Quantum linear spaces

In this section we investigate finite GK-dimensional pre-Nichols algebras of quan-
tum linear spaces. These are Nichols algebras of braided vector spaces of diago-
nal type with totally disconnected Dynkin diagram. More precisely, fix a ma-
trix q = (qij)i,j∈I and a vector space V with basis (xi)i∈I and braiding given by
cq(xi ⊗ xj) = qijxj ⊗ xi, i, j ∈ I. In this section we assume that

qijqji = 1, i 	= j ∈ I.(3.1)
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Then Bq is presented by generators (xi)i∈I and relations

xij = 0, if i < j,(3.2)

xNi
i = 0, if qii ∈ G′

∞, where Ni := ord qii ∈ N ∪∞;(3.3)

here we are using the notation (2.1). It has a PBW-basis:

{xa1
1 xa2

2 · · ·xaθ

θ : 0 ≤ ai < Ni if qii ∈ G′
∞; 0 ≤ ai otherwise}.(3.4)

As defined in the Introduction, the distinguished pre-Nichols algebra B̃q of V
is presented by generators (xi)i∈I and relations (3.2); it is a domain of GK-dim θ.
Recall the partition I = I± 
 I3 
 It 
 I∞ where as in (1.1) we set

I∞ = {i ∈ I : qii /∈ G∞}, I± = {i ∈ I : qii = ±1},

IN = {i ∈ I : qii ∈ G′
N}, N ≥ 3, It =

⋃
N>3

IN .

For � ∈ {±, 3, t,∞}, let V � be the subspace of V spanned by (xi)i∈I� and q�

the restriction of q to V �. Then V = V ± ⊕ V 3 ⊕ V t ⊕ V ∞. As we have seen in
§2.9.2 the Zθ-graded pre-Nichols algebras of V ± are twistings of enveloping algebras
of nilpotent Lie superalgebras with suitable properties; in particular, there is no
eminent pre-Nichols algebra of V ±.

3.1. Reduction to order ≤ 3. Below we consider various braided vector spaces
of diagonal type, see §2.8 for the recipe of the Dynkin diagram that encodes the
matrix q that determines the braiding.

Remark 3.1. Let i 	= j ∈ I. Recall that xij := (adc xi)xj = xixj − qijxjxi. The
braiding of the 3-dimensional subspace kxi+kxij+kxj ⊂ T (V ) is easily computed,
and the corresponding Dynkin diagram is either

qii◦
i

q2ii qiiqjj◦
ij

q2jj qjj◦
j

,(3.5)

or it is disconnected if the label of some edge is 1. Indeed,

qi,ij = qiiqij , qij,i = qiiqji, qij,ij = qiiq̃ijqjj , qij,j = qijqjj , qj,ij = qjiqjj

so q̃i,ij = q2iiq̃ij and q̃ij,j = q2jj q̃ij . Since q̃ij = 1 because we are in the quantum
linear space situation, (3.5) is the Dynkin diagram of kxi + kxij + kxj .

Proposition 3.2. Let i, j ∈ I such that 4 < ord qii + ord qjj. Assume that Con-
jecture 2.6 is true. Then xij = 0 holds in any finite GK-dimensional pre-Nichols
algebra of q.

We point out that Conjecture 2.6 is needed only to discard cases (1), (5) and (8)
below, that require the conjecture only for dimension 3.

Proof. Let B be a pre-Nichols algebra of q, so there is a braided Hopf algebra map
T (V ) → B. Let y1, y2, y3 denote the image of xi, xj , xij , respectively, and consider
W := ky1 + ky2 + ky3. By Lemma 2.7 we have W ⊂ P(B), hence Lemma 2.8
warranties GK-dimB(W ) ≤ GK-dimB.

Assume y3 	= 0, so W is 3-dimensional by a degree argument and its Dynkin
diagram D is (3.5). We show that GK-dimB(W ) = ∞.
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Consider the subspaces V1 = ky1 ⊕ ky3, V2 = ky3 ⊕ ky2 ⊂ W ; denote their
corresponding Dynkin diagrams by D1 and D2, respectively. From qijqji = 1 it
follows xij = −qijxji, so the image of xji in B is not zero.

We split the proof in several cases according to the possibilities for ord qii and
ord qjj .

Case 1 (qii /∈ G∞ or qjj /∈ G∞). This essentially goes back to [R]. Assume first
qii /∈ G∞. If GK-dimB < ∞, it follows from [AAH1, Lemmas 2.6 and 2.7] that

there exists a natural number k such that (k)!qii
∏k−1

h=0(1−qhii) = 0, which contradicts
qii /∈ G∞. The case qjj /∈ G∞ is similar: since the image of xji is not zero, we may
apply the same argument as with qii.

Case 2 (qii = 1 or qjj = 1). We may suppose qjj = 1; if qii = 1, the same
argument applies. By the previous case, we may assume qii is a root of unity, and
by hypothesis its order must be Ni > 3. The diagram D1 is

qii◦
i

q2ii qii◦
ij

, Cartan type

(
2 2−Ni

2−Ni 2

)
.

If GK-dimB(V1) < ∞ then [AAH2] implies that the Cartan matrix is of finite type.
Thus we conclude Ni = 3, a contradiction.

Case 3 (qii = 1 or qjj = −1). Assume that qjj = 1. By Case 1, we may assume that
qii is a root of unity; by hypothesis, its order is ≥ 3. By [AAH2], GK-dimB(V1) =
∞ since the Dynkin diagram of V1 is

qii◦
i

q2ii −qii◦
ij

and this does not appear in [H1, Table 1]; indeed it is of Cartan, but not finite,
type. The case qii = −1 is treated similarly.

Case 4 (qii, qjj ∈ G∞ −G2). Now W has connected Dynkin diagram

D =
qii◦
i

q2ii qiiqjj◦
ij

q2jj qjj◦
j

.

If the Nichols algebra of V1 is finite GK-dimensional, by exhaustion of [H1, Table
1] we conclude that qii, qjj and D1 satisfy one of the following:

(1) qii ∈ G′
3, qiiqjj = −1,

qii◦
i

q2ii −1◦
ij

(2) qii ∈ G′
4, qjj = qii,

qii◦
i

−1 −1◦
ij

(3) qii ∈ G′
3, qjj = ±qii,

qii◦
i

q2ii ±q2ii◦
ij

(4) qii ∈ G′
3, qjj = q2ii,

qii◦
i

q2ii 1◦
ij

(5) qii ∈ G′
6, qiiqjj = −1,

qii◦
i

q2ii −1◦
ij

(6) qii ∈ G′
5, qjj = q2ii,

qii◦
i

q2ii q3ii◦
ij

(7) qjj ∈ G′
9, qii = q3jj ,

q3jj◦
i

q6jj q4jj◦
ij

(8) qii ∈ G′
5, qiiqjj = −1,

qii◦
i

q2ii −1◦
ij

In the rest of the proof, we discard one by one all these possibilities.
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(2) Now W is of Cartan type with Dynkin diagram and Cartan matrix:

D =
qii◦
i

−1 −1◦
ij

−1 qii◦
j
, qii ∈ G′

4;

⎛⎝ 2 −2 0
−1 2 −1
0 −2 2

⎞⎠ .

Since this matrix is of affine type, GK-dimB(W ) = ∞ by [AAH2].
(3) Assume first qjj = −qii. Then

D2 =
−q2ii◦
ij

q2ii −qii◦
j

, qii ∈ G′
3,

which is not arithmetic. By [AAH2] we see that GK-dimB(V2) = ∞. Next, when
qjj = qii, W is of Cartan type with Dynkin diagram and Cartan matrix:

D =
qii◦
i

q2ii q2ii◦
ij

q2ii qii◦
j
, qii ∈ G′

3;

⎛⎝ 2 −1 0
−2 2 −2
0 −1 2

⎞⎠ ,

which is affine, so GK-dimB(W ) = ∞ by [AAH2]. (4) Since q2ii 	= 1, we have
GK-dimB(V1) = ∞ by [AAH1, Lemma 2.8]. (6) In this case

D2 =
q3ii◦
ij

q4ii q2ii◦
j
, qii ∈ G′

5,

is of indefinite Cartan type, so GK-dimB(V2) = ∞ by [AAH2]. (7) Similarly,

D2 =
q4jj◦
ij

q2jj qjj◦
j

, qjj ∈ G′
9,

is indefinite Cartan, so GK-dimB(V2) = ∞. In the remaining cases, D is

(1) D =
ω◦
i

ω2 −1◦
ij

ω −ω2

◦
j

, ω ∈ G′
3.

(5) D =
−ω2

◦
i

ω −1◦
ij

ω2 ω◦
j
, ω ∈ G′

3.

(8) D =
ζ◦
i

ζ2 −1◦
ij

ζ3 −ζ4

◦
j

, ζ ∈ G′
5.

Now (1) and (5) are equal up to permutation of the indexes. Only here we need
to assume the validity of Conjecture 2.6. Indeed, these diagrams do not appear in
[H1, Table 2], so GK-dimB(W ) = ∞ in all cases. �
3.2. A pre-Nichols algebra of type G2. We assume (V, cq) has the following
Dynkin diagram

ω◦
1

1◦
2
, ω ∈ G′

3.

Proposition 3.3. The algebra B̆q := T (V )/〈x11112, x221〉 is an eminent pre-

Nichols algebra of (V, cq) and GK-dim B̆q = 6.

Proof. We first claim that the elements x11112 and x221 are primitive in T (V ). This
is verified by a direct computation, see [S].

Second, we claim that the relations x11112 = 0 and x221 = 0 hold in any finite
GK-dimensional pre-Nichols algebra B of (V, cq).
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Assume first x11112 	= 0 in B. Then also x12 	= 0. From Lemma 2.7 and the
previous claim, we have a braided subspace

W = kx1 + kx12 + kx11112 ⊂ P(B),

so Lemma 2.8 gives GK-dimB(W ) ≤ GK-dimB. By a degree argument, W has
dimension three; from direct computation its Dynkin diagram is

ω◦
1

ω2

��
��

��
��

�

ω2

��
��
��
��

ω◦
12

ω2 ω◦
11112

,

Cartan type

⎛⎝ 2 −1 −1
−1 2 −1
−1 −1 2

⎞⎠ .(3.6)

Since the Cartan matrix is of affine type A1
2, we have GK-dimB(W ) = ∞ by

[AAH2, Theorem 1.2(a)]. Thus GK-dimB = ∞.
Assume now x221 	= 0 in B. Then x21 	= 0, and since q12q21 = 1, we have

x12 = −q12x21 	= 0. Consider W ′ = kx1 + kx12 + kx221. We may now use the
same argument as above. Indeed, W ′ ⊂ P(B) has Dynkin diagram (3.6) replacing
x11112 by x221, so GK-dimB(W ′) = ∞ by the same reason as GK-dimB(W ) = ∞.

Hence GK-dimB = ∞. Thus B̆q � B.

The verification of GK-dim B̆q = 6 is postponed to Proposition 4.5. �

3.3. A further reduction. Let B be a finite GK-dimensional pre-Nichols algebra
of Bq. We are naturally led to consider

E := {(i, j) : i ∈ I3, j ∈ I1, xij 	= 0 in B}.(3.7)

That is, (i, j) ∈ E means that ord qii = 3, qjj = 1 and xij 	= 0 in B.

Remark 3.4. If (i, j) ∈ E, the braided vector space kxi ⊕ kxij ⊂ B is of Cartan
type A2 by Remark 3.1.

Lemma 3.5. If (i, j1), (i, j2) ∈ E then j1 = j2.

Proof. Since xij1 and xij2 are Zθ-homogeneous,

c(xij1 ⊗ xij2) = q(αi + αj1 , αi + αj2) xij2 ⊗ xij1 = qiiqij2qj1iqj1j2 xij2 ⊗ xij1 .

Assume j1 	= j2. Then xi, xij1 and xij2 have pairwise different Zθ-degrees, so they
span a 3-dimensional braided subspace W = kxi + kxij1 + kxij2 ⊂ P(B). Now the
Dynkin diagram of W is

qii◦
i

q2ii

��
��

��
��

q2ii

��
��
��
��

qii◦
ij1

q2ii qii◦
ij2
,

qii ∈ G′
3, Cartan type

⎛⎝ 2 −1 −1
−1 2 −1
−1 −1 2

⎞⎠ .

Since the Cartan matrix is of affine type A
(1)
2 , we have GK-dimB(W ) = ∞ by

[AAH2, Theorem 1.2(a)]. Thus GK-dimB = ∞, a contradiction. �
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4. Cartan type

In this section we determine the finite GK-dimensional pre-Nichols algebras of
braided vector spaces of finite Cartan type under some restrictions.

We fix a matrix q = (qij)i,j∈I of non-zero scalars such that qii 	= 1 for all i ∈ I

and a braided vector space (V, cq) with braiding given by cq(xi ⊗ xj) = qijxj ⊗ xi,
i, j ∈ Iθ, in a basis {x1, . . . , xθ}. Let Ni = ord qii ∈ N ∪∞.

Recall that q, or (V, cq), is of Cartan type if there exists a Cartan matrix a =
(aij)i,j∈I such that qijqji = q

aij

ii for all i, j. Let i ∈ I. If Ni = ∞, then aij are
uniquely determined. Otherwise, we impose

−Ni < aij ≤ 0, j ∈ I.(4.1)

In this way we say that (V, cq), is of Cartan type a.
We follow the terminology of [K]. Cartan matrices are arranged in three families,

namely: finite, affine and indefinite. We say that q, or (V, cq), belongs to one of
these families if the corresponding a does.

In this section we assume that q is of connected finite Cartan type and that
dimBq < ∞. Thus the possible Dynkin diagrams of q have the following form,
where q is a root of unity in k of order N > 1:

Aθ :
q◦ q−1 q◦ q◦ q−1 q◦ , Bθ :

q2◦ q−2 q2◦ q2◦ q−2 q◦

Cθ :
q◦ q−1 q◦ q−1 q◦ q◦ q−2 q2◦ ,

Dθ :

q◦

q◦ q−1 q◦ q◦ q−1 q◦
q−1

q−1 q◦
,

Eθ :

q◦

q◦ q−1 q◦ q◦
q−1

q−1 q◦ q−1 q◦
, θ ∈ I6,8,

F4 :
q◦ q−1 q◦ q−2 q2◦ q−2 q2◦ , G2 :

q◦ q−3 q3◦ .

We refer to the survey[AA2] for restrictions on N and other features of Bq in each
case. The quantum Serre relations are the following elements of T (V ):

(adc xi)
1−aijxj , i, j ∈ I, i 	= j.(4.2)

By [AS2, Lemma A.1] these are primitive in any pre-Nichols algebra. Let B̃q =
T (V )/Iq be the distinguished pre-Nichols algebra of (V, cq), see §1.1.3.

Remark 4.1. From the detailed presentation in [AA2, §4] we see that the quantum
Serre relations (4.2) generate Iq in the following cases:

• when a is of type A2 or B2 [AA2, pp. 397, 399, 400],
• when a is of type G2 and N 	= 4, 6 [AA2, pp. 410, 411],
• when a is simply-laced and N > 2 [AA2, pp. 397, 404, 407],
• when a is of type B, C, or F and N > 4 [AA2, pp. 399, 402, 409].
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4.1. Quantum Serre relations. Let a = (aij)i,j∈I be a symmetrizable inde-
composable generalized Cartan matrix and d ∈ GLθ(Z) diagonal such that da
is symmetric. The datum (a,d) is equivalent to an irreducible Cartan datum as in
[Lu, 1.1.1] by setting

· : I× I → Z, i · j = diaij , i, j ∈ I.

Let g = g(a) be the associated Kac-Moody algebra which has a triangular decom-
position g(a) = g+ ⊕ h⊕ g−.

Let q ∈ k× and consider the Dynkin diagram

qdi◦
i

qdiaij qdj◦
j

(4.3)

Let q be any matrix with Dynkin diagram (4.3) and (V, cq) be the corresponding
braided vector space with basis (xi)i∈I. Notice that q is of Cartan type but it is
not necessarily of type a as (4.1) may not hold.

Let B̆q = T (V ) modulo the ideal Kq generated by the quantum Serre relations
(adc xi)

1−aij (xj), i 	= j ∈ I, which is a pre-Nichols algebra of V .

Proposition 4.2. GK-dim B̆q ≥ dim g+.

Proof. If ξ ∈ k, ξ2 = q, then p = (ξdiaij ) has Dynkin diagram (4.3). Let (W, cq) be
the corresponding braided vector space with basis (x̂i)i∈I.

Claim 1. GK-dim B̆q = GK-dim B̆p.

Proof. By the proof of [AS3, Proposition 3.9] (or the proof of Lemma 2.9) there is
a homogeneous linear isomorphism ψ : T (V ) → T (W ) determined by ψ(xi) = x̂i

for all i ∈ I and satisfying [AS3, Remarks 3.10]. Hence ψ(Kq) = Kp and ψ induces

a homogeneous linear isomorphism ψ : B̆q → B̆p. Then apply Lemma 2.1. �
Let now f be the Q(v)-algebra defined in [Lu, 1.2.5], where v is an indeterminate

and let Af be the A := Z[v, v−1]-subalgebra spanned by the quantum divided
powers of the generators of f [Lu, 1.4.7]. By [Lu, 14.4.3], Af is a free A-module and

PAf = Pf .(4.4)

Consider k as A-module via v �→ ξ. Then we have the algebras kf = k⊗AAf and kf̃

defined in [Lu, 33.1.1] (which is nothing else than B̆p). By [Lu, 1.4.3], the quantum

Serre relations hold in kf , hence we have a surjective algebra map B̆p = kf̃ � kf .
Thus

GK-dim B̆p ≥ GK-dim f .(4.5)

On the other hand, let k0 be k as A-module via v �→ 1. Then k0 f̃ � U(g+) by

[Lu, 33.1.1] and dimQ(v) fν = dimk0(k0 f̃ν) by [Lu, 33.1.3]; that is

GK-dim f = GK-dim(k0 f̃) = dim g
+,(4.6)

where the first equality holds by Lemma 2.1. The Proposition follows. �

Example 4.3. Let a =

(
2 −5
−1 2

)
. Then (4.3) takes the form

q◦
1

q−5 q5◦
2

with

q ∈ k×. If q12 ∈ k× and q21 := q−1
12 q

−5, then q =

(
q q12
q21 q5

)
has the Dynkin
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diagram above. Here B̆q = k〈x1, x2〉 modulo the relations

x2
2x1 − q21(2)q x2x1x2 + qq221 x1x

2
2,

x6
1x2 − 3q212 x4

1x2x
2
1 + 3q412 x2

1x2x
4
1 − q612 x2x

6
1.

In this setting Proposition 4.2 gives GK-dim B̆q = ∞.

Example 4.4. Let a =

(
2 −3
−1 2

)
. Then (4.3) takes the form

q◦
1

q−3 q3◦
2

with

q ∈ k×. If q12 ∈ k× and q21 := q−1
12 q

−3, then q =

(
q q12
q21 q3

)
has the Dynkin

diagram above. Here B̆q = k〈x1, x2〉 modulo the relations

x2
2x1 − q21(2)q3 x2x1x2 + q221q

3 x1x
2
2,

x4
1x2 − q12(4)q x

3
1x2x1 + q212q

(
4

2

)
q

x2
1x2x

2
1 − q312(4)q x

3
1x2x1 + q412q

6 x2x
4
1.

In this situation Proposition 4.2 establishes GK-dim B̆q ≥ 6.

This last example gains more relevance when the parameter q ∈ k× specializes
to a root of unity with small order.

Proposition 4.5. Let a and q ∈ k× as in Example 4.4.

(a) If q ∈ G′
3 then GK-dim B̆q = 6.

(b) If q ∈ G′
2 then x2

112 = 0 in B̆q.

Proof. Let q ∈ k×. Put x1322 = [x112, x12]. By direct computation, in B̆q the
following relations hold:

x12x2 = q12q
3x2x12,

x112x2 = q212q
3x2x112 + q12q

2(q − 1)(2)qx
2
12,

x1112x2 = q312q
3x2x1112 + q12q(q

2 − q − 1)x1322 + q212q
2(q − 1)(3)qx12x112,

x1322x2 = q312q
6x2x1322 + q212q

3(q − 1)2(2)qx
3
12,

x1x1322 = q212q
3x1322x1 + x1112x12 − q212q

3x12x1112,

(2)qx1112x12 = q212q
3(2)qx12x1112 + q12q(q − 1)(3)qx

2
112.

(a) Here q ∈ G′
3, so the last relation above becomes

x1112x12 = q212x12x1112.

Substituting this in the penultimate equation we get

x1x1322 = q212x1322x1.

These equalities imply more commutations:

x1322x12 = q12x12x1322 , x112x1322 = q12x1322x112,

x1112x112 = q12x112x1112, x1112x1322 = q312x1322x1112.

Now we claim that B̆q is linearly spanned by

B = {xn1
2 xn2

12x
n3

1322x
n4
112x

n5
1112x

n6
1 : 0 ≤ n1, . . . , n6}.

Denote by I the linear span of B. Since 1 ∈ I, it is enough to show that I is

left ideal of B̆q. If we multiply xn1
2 xn2

12x
n3

1322x
n4
112x

n5
1112x

n6
1 by x1 on the left, we
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can use the previously deduced commutations between the (powers of the) xα’s to
successively rearrange the terms until we get a linear combination of elements in B.
The claim follows. Let K = {2, 12, 1322, 112, 1112, 1} be ordered by

2 > 12 > 1322 > 112 > 1112 > 1.

This order is convex, that is for α, β ∈ K with α > β, the braided commutator
[xα, xβ]c is a sum of monomials in the letters γ such that β < γ < α. Indeed this
follows from the equalities above.

Consider next the lexicographical order on B induced by the order of K and

the corresponding N0-filtration F on B̆q. Let grF (B̆q) be the associated graded
algebra. By the convexity of the order, there is a natural projection from a quantum

polynomial algebra kq[y1, . . . , y6] � grF (B̆q), hence GK-dim grF (B̆q) ≤ 6. By [KL,

Proposition 6.6] and Example 4.4 we also have GK-dim grF (B̆q) = GK-dim B̆q ≥ 6,
so the equality holds.

(b) This follows by specialization at q = −1 in the relation

(2)qx1112x12 = q212q
3(2)qx12x1112 + q12q(q − 1)(3)qx

2
112.

�

Remark 4.6. Let us point out the relevance of (b). By Kharchenko’s theory [Kh],

B̆q has a PBW-basis. By Proposition 4.2 we know GK-dim B̆q ≥ 6 but, when

q ∈ G′
2, the root 2α1 +α2 will not contribute to GK-dim B̆q by (b) above. So even

if a is of type G2, one should not expect that the PBW generators are just those
related to the six positive roots of G2, as was the case in the proof of (a).

4.2. Type A2. In this and the next subsections we seek eminent (families of) pre-
Nichols algebras in order to determine finite GK-dim pre-Nichols algebras of braid-
ings of finite Cartan type. The distinguished pre-Nichols algebra will serve as the
principal guide in our exploration.

4.2.1. Type A2 with N > 3.

Lemma 4.7. Assume a is of Cartan type A2 with N > 3. If B is a finite GK-
dimensional pre-Nichols algebra of q, then x112 = 0 and x221 = 0 in B, i. e. the

distinguished pre-Nichols algebra B̃q is eminent, cf. Definition 2.3.

Proof. Assume xiij 	= 0 for some i 	= j ∈ I2; the 3-dimensional braided subspace
W := kxj ⊕ kxi ⊕ kxiij ⊂ P(B) has GK-dimB(W ) < ∞.

Consider the braided subspace W1 = kxi ⊕ kxiij ⊂ W . By direct computation,
the braiding onW1 is of Cartan type with the following Dynkin diagram and Cartan
matrix:

qii◦
i

q3ii q3ii◦
iij

, A1 =

(
2 3−N

1−M 2

)
, M =

{
N/3, if 3|N,

N, otherwise.

If either N = 5 or N > 6, it is evident that the Cartan matrix A1 is not finite, so
GK-dimB(W1) = ∞ by [AAH2, Theorem 1.2 (b)]. This contradicts GK-dimB <
∞.

For the remaining cases (i. e. N = 4 and N = 6), we consider the whole W .
Since q̃(αj , 2αi + αj) = (qjiqij)

2q2jj = 1, the braiding on W is of Cartan type with
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the following Dynkin diagram and Cartan matrix

qii◦
j

q−1
ii qii◦

i

q3ii q3ii◦
iij

, A =

⎛⎝ 2 −1 0
−1 2 3−N
0 1−M 2

⎞⎠ .

Now it is straightforward to verify that if N = 4 or 6, then A is of affine type,
which contradicts GK-dimB(W ) < ∞ by [AAH2, Theorem 1.2 (b)]. �
4.2.2. Type A2 with N = 3. Here is the first restriction.

Lemma 4.8. Assume a is of Cartan type A2 with N = 3. Let B ∈ PrefGK. Then
xiiij = 0 and xjiij = 0 in B for all i 	= j ∈ I2.

Proof. Since xiij is primitive, using that q̃(αi, 2αi+αj) = q4q−1 = 1 and q̃(αj , 2αi+
αj) = q2q−2 = 1, we get xiiij , xjiij ∈ P(B) by Lemma 2.7. Assume first xiiij 	= 0
in B. The braided subspace kxi ⊕ kxj ⊕ kxiiij ⊂ P(B) has finite GK-dim Nichols
algebra. The Dynkin diagram is

q◦
iiij

q−1

��
��

��
��

q−1

��
��
��
��

q◦
i

q−1 q◦
j
,

Cartan type

⎛⎝ 2 −1 −1
−1 2 −1
−1 −1 2

⎞⎠ .

The Cartan matrix is of affine type A
(1)
2 , and by [AAH2, Theorem 1.2(a)] this

contradicts GK-dimB < ∞.
If xjiij 	= 0, the same argument leads to a contradiction. Indeed, by direct

computations, the Dynkin diagram of U = kxi ⊕ kxj ⊕ kxjiij is

q◦
jiij

q−1

��
��

��
��

q−1

��
��
��
��

q◦
i

q−1 q◦
j
.

so GK-dimB(U) = ∞ by [AAH2, Theorem 1.2(a)]. �

Remark 4.9. Denote B̂ = T (V )/〈x1112, x2221, x2112, x1221〉. The defining ideal of B̂

is a Hopf ideal by the proof of Lemma 4.8. Let π : B̂ → B(V ) denote the natural

projection. Let Ẑ be the subalgebra of B̂ generated by

z1 := x3
2, z2 := x221, z3 := x112, z4 := x3

1, z5 := x3
12.

The next results are devoted to prove that B̂ is eminent.

Lemma 4.10.

(a) Given i 	= j ∈ I2, the following relations hold in B̂:

[xij , xiij ]c = 0 = [xij , xjji]c; [xiij , xjji]c = 0.

(b) Ẑ is a normal braided Hopf subalgebra of B̂.

(c) The zi’s q-commute; B = {zn1
1 zn2

2 zn3
3 zn4

4 zn5
5 : ni ∈ N0} is a basis of Ẑ.

(d) Ẑ = coπB̂.
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Proof.
(a) Just compute using (2.8):[

xij , xiij

]
c
=

[
xi, [xj , xiij ]c

]
c
− qijxj

[
xi, xiij

]
c
+ qjjq

2
ji

[
xi, xiij

]
c
xj = 0;[

xij , xjji

]
c
=

[
xi, [xj , xjji]c

]
c
− qijxj

[
xi, xjji

]
c
+ qiiq

2
ij

[
xi, xjji

]
c
xj = 0;[

xiij , xjji

]
c
=

[
[xi, xij ]c, xjji

]
c

=
[
xi, [xij , xjji]c

]
c
− qiiqijxij

[
xi, xjji

]
c
+ q2iiqij

[
xi, xjji

]
c
xij

=
[
xi, [xij , xjji]c

]
c
= 0.

(b) We claim that the generators of Ẑ are annihilated by the braided adjoint

action of B̂. Fix i ∈ I2. By definition (adc xi)z2 = 0 = (adc xi)z3. In T (V ) we have
(adc xi)x

3
i = x4

i − q3iix
4
i = 0, and if j 	= i then

xjjji = (adc xj)
3xi =

3∑
k=0

(−1)kqkjiq
k(k−1)/2
jj

(
3

k

)
qjj

x3−k
j xix

k
j

= x3
jxi − q3jixix

3
j = −q3ji(adc xi)x

3
j .

(4.7)

Thus adc xi annihilates z1 and z4. Finally, we proceed with z5. From (a) we get

the commutation x112x12 = q211q12x12x112 in B̂. Then using (2.6)

(adc x1)z5 = x112x
2
12 + q11q12x12x112x12 + q211q

2
12x

2
12x112

= q212(q
4
11 + q311 + q211)x

2
12x112 = 0.

(4.8)

For (adc x2)z5, notice that on the one hand[
x12,−

]3
c
x2 =

3∑
k=0

(−1)k(q12q22)
kq

k(k−1)/2
22

(
3

k

)
q22

x3−k
12 x2x

k
12

= x3
12xi − q312xix

3
12 = −q312(adc x2)x

3
12.

(4.9)

On the other hand, using [x12, x2]c = q212q22x221 and (a) we get[
x12,−

]3
c
x2 =

[
x12,

[
x12, [x12, x2]c

]
c

]
c

= q212q22

[
x12, [x12, x221]c

]
c
=

[
x12, 0

]
c
= 0,

(4.10)

so (adc x2)z5 = 0. This shows that Ẑ is a normal subalgebra.

Next we verify that Δ(zi) ∈ Ẑ ⊗ Ẑ for i ∈ I5. This is clear for i ∈ I4, because
those elements are primitive in T (V ); for i = 5 we compute in T (V ):

Δ(x3
12) =x3

12 ⊗ 1 + 1⊗ x3
12

+ (q−1 − q−2)x112 ⊗ x221 + (1− q−1)3q321x
3
1 ⊗ x3

2

+ (1− q)2q321x1112 ⊗ x2
2 − (1− q−1)2q−1x2

1 ⊗ x2221

+ (q − 1)x1 ⊗ [x12, x221]c − (1− q−1)q21[x12, x112]c ⊗ x2.

(4.11)

Using (a) and the defining relations of B̂ we see that Ẑ is a Hopf subalgebra.

(c) We show that any pair of generators of Ẑ q-commute. By definition of B̂,
both x1 and x2 q-commute with z2 and z3, so z4 and z1 q-commute with z2 and
z3. Secondly, (4.7) implies that z1 and z4 q-commute. Thirdly, (a) shows that
z5 q-commutes with z3 and z2, and also that z2 and z3 q-commute. Lastly, z5
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q-commutes with z4 by (4.8), and with z1 by (4.9) and (4.10). Hence B linearly

generates Ẑ.
The linear independence is proven by steps.

Step 1. The set {zn1
1 zn2

2 zn3
3 zn4

4 : ni ∈ N0} is linearly independent.

Proof. Consider the Hopf algebra B̂#kZ2; let A denote the subalgebra generated by
z1, . . . , z4 and Z2. Since all the generators of A are either skew-primitives or group-

likes, it follows that A itself is a pointed Hopf algebra. Notice that z1, . . . , z4 ∈ P(Ẑ)
are linearly independent. Indeed, they are non-zero because their Z-degree is 3, so
they are linearly independent since their Z2-degrees are pairwise different (here we

are using that the defining ideal of B̂ is a Hopf ideal generated by Z2-homogeneous
elements of Z-degree 4). Hence the infinitesimal braiding of A contains the braided
vector space kz1 ⊕ · · · ⊕ kz4, which is quantum linear space with all points labeled
by 1. Thus

{
zn1
1 zn2

2 zn3
3 zn4

4 g : ni ∈ N0, g ∈ Z2
}
⊂ A is linearly independent. �

Step 2. The element z5 does not belong to the left ideal B̂〈z1, z2, z3, z4〉.

Proof. We verify this using [GAP]. �

The ideal B̂〈z1, z2, z3, z4〉 is a Hopf ideal because the generators are primitive.

Denote the quotient by R and consider the projection πR : B̂ � R.

Step 3. The set {πR(z5)
n : n ∈ N0} is linearly independent.

Proof. Consider the Hopf algebra R#Z2. The subalgebra generated by πR(z5) and
Z2 is a pointed Hopf algebra. Moreover, its infinitesimal braiding contains πR(z5),
which is a non-zero point by Step 2 and is labeled by 1. Now proceed as in the
proof of Step 1. �

Step 4. We have (id⊗πR)Δ(zn5 ) =
∑n

k=0

(
n
k

)
zk5 ⊗ πR(z5)

n−k for all n ∈ N0.

Proof. The case n = 0 is obvious, and n = 1 follows from (4.11). An standard
inductive argument for braided comultiplication yields the desired result. �

Step 5. The set B is linearly independent.

Proof. Let
∑

n1,...,n5∈N0
λn1,...,n5

zn1
1 zn2

2 zn3
3 zn4

4 zn5
5 = 0. Assume there exists n5 such

that λn1,...,n5
	= 0 for some n1, . . . , n4 ∈ N0; take N as the maximal one. By Step

3 there is a linear map f : R → k such that f(πR(z5)
n) = δn,N for all n ∈ N0. Now

using Step 4 we compute

0 = (id⊗f)(id⊗πR)Δ

⎛
⎝ ∑

n1,...,n5∈N0

λn1,...,n5z
n1
1 zn2

2 zn3
3 zn4

4 zn5
5

⎞
⎠

=
∑

n1,...,n5∈N0

λn1,...,n5(id⊗f)(id⊗πR)

((
4∏

i=1

ni∑
j=0

(
ni

j

)
zji ⊗ zni−j

i

)
Δzn5

5

)

=
∑

n1,...,n4∈N0, n5≤N

λn1,...,n5(id⊗f)

(
n5∑
j=0

zn1
1 zn2

2 zn3
3 zn4

4 zj5 ⊗ πR(z
n5−j
5 )

)

=
∑

n1,...,n4∈N0

λn1,...,n4,Nzn1
1 zn2

2 zn3
3 zn4

4 ⊗ 1.

This contradicts Step 1. �
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(d) Since Δ(zi) ∈ Ẑ ⊗ Ẑ and Ẑ is normal, the right ideal B̂Ẑ+ is a Hopf ideal.

By [A+, Proposition 3.6 (c)] we get that the equality Ẑ = coπB̂ is equivalent to

Bq � B̂/B̂Ẑ+. This last isomorphism holds because the diagram

Jq
� � ��

����

T (V )

���� �� ��	
		

		
		

		

B̂Ẑ+ � � �� B̂
π �� �� Bq

commutes. �

Proposition 4.11.

(a) There is an extension of braided Hopf algebras

k → Ẑ ↪→ B̂ � Bq → k.

(b) The pre-Nichols algebra B̂ is eminent and GK-dim B̂ = 5.

Proof.
(a) Follows from Lemma 4.10 (d).

(b) We know that B̂ covers all elements of PrefGK by Lemma 4.8; it remains to

show that B̂ itself belongs to PrefGK. By [A+, Proposition 3.6 (d)] there is a right

Ẑ-linear isomorphism Bq ⊗ Ẑ � B̂. Since Bq is finite dimensional, this implies

that B̂ is finitely generated as a Ẑ-module. Now [KL, Proposition 5.5] provides

GK-dim B̂ = GK-dim Ẑ = 5. �

4.3. Type B2.

Lemma 4.12. Assume that a is of Cartan type B2. Then the distinguished pre-

Nichols algebra B̃q is eminent.

Proof. Here N > 2. We may fix a braiding matrix q such that q11 = q222, so q = q22
and q̃12 = q−2. Let B be a finite GK-dimensional pre-Nichols algebra of V . It is
enough to prove that x112 = 0 = x2221 in B.

Assume first x112 	= 0, and consider the 3-dimensional braided subspace W :=
kx1 ⊕ kx2 ⊕ kx112 ⊂ P(B). Then GK-dimB(W ) < ∞ from Lemma 2.8. We split
the proof according to the several possibilities for N .

♥ N = 3. Now the braiding on W is of Cartan type

q2◦
1

q−2 q◦
2

q−2 q2◦
112

, A =

⎛⎝ 2 −1 0
−2 2 −2
0 −1 2

⎞⎠ .

Since A is of affine type C
(1)
2 , this contradicts [AAH2, Theorem 1.2(a)].

♥ N = 6. In this case the braiding on W2 := kx2 ⊕ kx112 ⊂ W is

q◦
2

q−2 q5◦
112

, Cartan type

(
2 −2
−4 2

)
.

The Cartan matrix is of indefinite type, and by [AAH2, Theorem 1.2(b)] this con-
tradicts GK-dimB(W ) < ∞.
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♥ N 	= 3, 6. The Dynkin diagram of W1 := kx1 ⊕ kx112 ⊂ W is

D1 =
q2◦
1

q6 q5◦
112

.

Since GK-dimB(W1) < ∞, it follows from [AAH2, Theorem 1.2(b)] that the as-
sociated root system is finite. Now D1 is connected; by exhaustion on [H1, Table
1], we deduce that we must have N = 4 or N = 8. We turn again to W2, whose
Dynkin diagram is easily computed in each case:

♥♥N = 4 :
q◦
2

q−2 q◦
112

, Cartan type

(
2 −2
−2 2

)
,

♥♥N = 8 :
q◦
2

q−2 q5◦
112

, Cartan type

(
2 −2
−2 2

)
.

In any case the Cartan matrix is of affine type A
(1)
1 , so GK-dimB(W2) = ∞ by

[AAH2, Theorem 1.2(b)].
Assume x2221 	= 0 in B. The subspace U := kx1 ⊕ kx2 ⊕ kx2221 ⊂ P(B) has

dimension 3 and GK-dimB(U) < ∞. Now U1 := kx1 ⊕ kx2221 ⊂ U has connected
Dynkin diagram

q2◦
1

q2 q5◦
2221

,

and it is finite by [AAH2, Theorem 1.2(b)]. By exhaustion on [H1, Table 1] we
deduce that N = 4. Then the Dynkin diagram of U is of Cartan type

q◦
2

−1 −1◦
1

−1 q◦
2221

, A =

⎛⎝ 2 −2 0
−1 2 −1
0 −2 2

⎞⎠ .

Since A is of affine type C
(1)
2 , this contradicts [AAH2, Theorem 1.2(a)]. �

4.4. Type G2.

Lemma 4.13. Assume that a is of Cartan type G2. Then the quantum Serre
relations hold in any B ∈ PrefGK. In particular, the distinguished pre-Nichols

algebra B̃q is eminent if N 	= 4, 6.

Proof. Here N > 3. Let B ∈ PrefGK(V ); we show first that the quantum Serre
relations x11112 = 0 = x221 hold in B.

Start assuming x11112 	= 0. Then the 3-dimensional subspace W := kx1 ⊕ kx2 ⊕
kx11112 ⊂ P(B) satisfies GK-dimB(W ) ≤ GK-dimB by Lemma 2.8. The Dynkin
diagram of W1 := kx1 ⊕ kx11112 ⊂ W is

D1 =
q◦
1

q5 q7◦
11112

.

Since GK-dimB(W1) < ∞, it follows from [AAH2, Theorem 1.2(b)] that the root
system of D1 is finite. We split the proof according to the several possibilities for
N .

♥ N = 5. The diagram D1 is disconnected, but we might consider instead
W2 := kx11112 ⊕ kx2 ⊂ W , that satisfies GK-dimB(W2) < ∞ as well. By direct
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computation W2 is of indefinite Cartan type:

q2◦
11112

q−6 q3◦
2
,

(
2 −3
−2 2

)
,

which is in contradiction with [AAH2, Theorem 1.2(a)].
♥ N 	= 5. Now D1 is connected and finite; by inspection on [H1, Table 1], we

must have N = 4 or N = 6.
♥♥N = 4. In this case W2 is of Cartan type

q3◦
11112

q−6 q3◦
2
,

(
2 −2
−2 2

)
,

which is of affine type A
(1)
1 , now contradicting [AAH2, Theorem 1.2(b)].

♥♥N = 6. In this case the Dynkin diagram of W is of Cartan type

q◦
11112

q−1 q◦
1

q−3 q3◦
2
, A =

⎛⎝ 2 −1 0
−1 2 −3
0 −1 2

⎞⎠ .

By [AAH2, Theorem 1.2(b)] this contradicts GK-dimB(W ) < ∞, since A is of

affine type G
(1)
2 .

Assume now x221 	= 0 in B. The subspace U := kx1 ⊕ kx2 ⊕ kx221 ⊂ P(B) has
dimension 3 and GK-dimB(U) < ∞. Consider two possibilities for N .

♥N 	= 4. Now U1 := kx1 ⊕ kx221 ⊂ U has connected Dynkin diagram

q◦
1

q−4 q7◦
221

.

By exhaustion on [H1, Table 1] we conclude that this diagram is never finite, which
contradicts [AAH2, Theorem 1.2(b)], as GK-dimB(U1) < ∞.

♥N = 4. In this case the braiding on U is of Cartan type

q◦
1

q−3 q3◦
2

q−3 q3◦
221

, A =

⎛⎝ 2 −3 0
−1 2 −1
0 −1 2

⎞⎠ .

Since A is of affine type G
(1)
2 , this contradicts [AAH2, Theorem 1.2(a)].

Thus the quantum Serre relations hold in B. By Remark 4.1 this proves the
assertion regarding N 	= 4, 6. �
4.5. Type A3.

Lemma 4.14. If a is of Cartan type A3 with N > 2, then B̃q is eminent.

Proof. As N > 2, the ideal Iq is generated by the quantum Serre relations x13 = 0
and xiij = 0 for |j − i| = 1, cf. [AA2, p. 397]. Let B ∈ PrefGK(q). Then x13 = 0
holds in B since the braided vector space kx1 ⊕ kx3 satisfies the hypothesis in
Proposition 3.2.

Turn to xiij for some fix i, j ∈ I3 with |j − i| = 1; in this case kxi ⊕ kxj is
of Cartan type A2. If N > 3, then xiij = 0 in B by Lemma 4.7. Only the case

N = 3 remains. Now we have q(2αi+αj , 2αi+αj) = q4iiq̃ij
2qjj = q5q−2 = 1. Using

[AAH1, Lemma 2.8], in order to guarantee xiij = 0 in B it is enough to find k ∈ I3
such that q̃(αk, 2αi+αj) 	= 1. It is straightforward to verify that the unique k ∈ I3
different from i and j does the trick. �
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4.6. Types B3 and C3.

Lemma 4.15. The distinguished pre-Nichols algebra B̃q is eminent if either

(i) a is of type B3, or (ii) a is of type C3.

Proof. Let B ∈ PrefGK(q). Then x13 = 0 holds in B. Indeed, the braided vector
space kx1⊕kx3 satisfies the hypothesis in Proposition 3.2. Similarly, since kx2⊕kx3

is of type B2, it follows from Lemma 4.12 that the quantum Serre relations involving
x2 and x3 hold in B.

Step 1. If a is of Cartan type B3, then the quantum Serre relations hold in any
finite GK-dim pre-Nichols algebra.

Proof. Here kx1⊕kx2 has Dynkin diagram
q2◦ q−2 q2◦ , type A2. Hence, if ord q2 >

3, we know from Lemma 4.7 that the quantum Serre relations between x1 and x2

hold in B. Let us show that in the cases ord q2 = 2, 3 the same happens.
♥ ord q2 = 2. If x112 	= 0 in B, we get a subspace kx2 ⊕ kx3 ⊕ kx112 ⊂ P(B) of

dimension 3 with the following Dynkin diagram

−1◦
2

−1 q◦
3

−1 −1◦
112

, Cartan type

⎛⎝ 2 −1 0
−2 2 −2
0 −1 2

⎞⎠ .

This matrix is of affine type C
(1)
2 , hence GK-dimB = ∞, a contradiction.

Similarly, the assumption x221 	= 0 yields a subspace of P(B) with braiding

−1◦
221

−1◦
1

−1 −1◦
2

−1

−1 q◦
3
,

Cartan type

⎛⎜⎜⎝
2 −1 0 0
−1 2 −1 −1
0 −2 2 0
0 −1 0 2

⎞⎟⎟⎠ .

The Cartan matrix is of affine type B
(1)
3 , and again GK-dim(B) = ∞.

♥ ord q2 = 3. Notice that

q(2α1 + α2, 2α1 + α2) = q6 = 1, q̃(2α1 + α2, α3) = q−2 	= 1;

q(α1 + 2α2, α1 + 2α2) = q6 = 1, q̃(α1 + 2α2, α3) = q−4 	= 1.

Assuming x112 	= 0 in B we get kx3 ⊕ kx112 ⊂ P(B) with Dynkin diagram

q◦ q−2 1◦ . Then by [AAH1, Lemma 2.8] it follows that GK-dimB = ∞, a con-
tradiction. By the same argument, we can not have x221 	= 0 in B. �

The assertion (i) for N > 4 follows since, in that case, B̃q is presented by the
quantum Serre relations, cf. Remark 4.1.

Step 2. If a is of Cartan type B3 with N = 3, then B̃q is eminent.

Proof. By [AA2, pp. 399, 400], B̃q is presented by the quantum Serre relations and
[x3321, x32]c = 0. Given B ∈ PrefGK, let us show that [x3321, x32]c ∈ P(B). Using
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x13 = 0 a straightforward computation gives

Δ(x3321) =x3321 ⊗ 1 + 1⊗ x3321 + (1− q33)x332 ⊗ x1

+ (1− q33)q33x3 ⊗ x321 + (1− q33)(1− q22)x
2
3 ⊗ x21.

With this we compute

Δ([x3321, x32]c) =[x3321, x32]c ⊗ 1 + 1⊗ [x3321, x32]c

− (1− q33)
2(1− q22)q12 x

2
3 ⊗ x221

− (1− q33)q12q13q23q33 x3332 ⊗ x21

+ (1− q33)q
2
33q12q13 x332 ⊗ (x321 − [x32, x1]c)

− (1− q33)q23q13 x33321 ⊗ x2

+ (1− q33)q13q12 [x332, x32]c ⊗ x1

+ (1− q33)q33 x3 ⊗ (q13q23q33[x3321, x2]c + [x321, x32]c)

The third and fourth terms vanish in B by Step 1. For the fifth term, a straight-
forward computation involving x13 = 0 shows that x321 = [x32, x1]c. The last three
terms also vanish, but they require a more detailed analysis.

♥ x33321 = 0 in B. Notice that

Δ(x33321) =x33321 ⊗ 1 + 1⊗ x33321

+ (1− q33)x3332 ⊗ x1 − (1− q233)q32x332 ⊗ x31,

so this element is primitive in B by Step 1. Assuming x33321 	= 0 we get a subspace
kx1 ⊕ kx33321 ⊂ P(B) where the braiding is given by

q2◦
1

q−1 q2◦
33321

, Cartan type

(
2 −2
−2 2

)
, affine type A

(1)
1 .

this contradicts GK-dimB < ∞ by [AAH2, Theorem 1.2].
♥ [x332, x32]c = 0 in B. Now we have

Δ([x332, x32]c) =[x332, x32]c ⊗ 1 + 1⊗ [x332, x32]c

− (1− q33)
2q23 x

2
3 ⊗ [x32, x2]c − (1− q33)q33q23 x3332 ⊗ x2.

The element [x32, x2]c is primitive in B, so it vanishes by the same reason that x223

does (cf. proof of Lemma 4.12). So [x332, x32]c ∈ P(B) by Step 1. If it is non-zero,
consider kx1 ⊕ k[x332, x32]c ⊂ P(B) where the braiding is

q2◦
x1

q−1 q2◦
[x332,x32]

, Cartan type

(
2 −2
−2 2

)
, affine type A

(1)
1 ,

thus we get the same contradiction as with x33321.
♥ q13q23q33[x3321, x2]c + [x321, x32]c = 0. Denote this element by r. Then

Δ(r) =r ⊗ 1 + 1⊗ r + (1− q33)q22q12q13 x32 ⊗ (x321 − [x32, x1])

+ (1− q33)q33q12q13q23
[
x3, [x32, x2]

]
⊗ x1

− (1− q33)q22q12q13q23 x3 ⊗
[
[x32, x2], x1

]
.
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Since [x32, x2] = 0 and x321 − [x32, x1] = 0 in B, it follows that r is primitive. If
r 	= 0 we consider kx2 ⊕ kr ⊂ P(B). The Dynkin diagram is computed:

q2◦
2

q−1 q2◦
r
, Cartan type

(
2 −2
−2 2

)
, affine type A

(1)
1 ,

thus we get the same contradiction as before.
Using these three ♥ we get [x3321, x32]c ∈ P(B). If this element is non-zero,

consider U = kx3 ⊕ k[x3321, x32]c ⊂ P(B). We compute the braiding:

q(α1 + 2α2 + 3α3, α1 + 2α2 + 3α3) = 1, q̃(α1 + 2α2 + 3α3, α3) = q−1 	= 1.

From [AAH1, Lemma 2.8] it follows that GK-dimB(U) = ∞, but this contradicts
GK-dimB < ∞. Then [x3321, x32]c = 0 in B and Step 2 holds. �

Step 3. If a is of Cartan type B3 with N = 4, then B̃q is eminent.

Proof. By [AA2, pp. 399, 400], B̃q is presented by the quantum Serre relations
and [x123, x2]c = 0. We claim that this element is primitive in any B ∈ PrefGK.
Indeed, using that x13 = 0 in B, we get

Δ([x123, x2]c) =[x123, x2]c ⊗ 1 + 1⊗ [x123, x2]c

− (1− q̃12)q32x1 ⊗ x223 + (1− q̃23)q32[x12, x2]c ⊗ x3.

By straightforward computations, [x12, x2]c ∈ P(B) and it vanishes by the same
reason that x221 does (cf. proof of Lemma 4.7). Since x223 = 0, the claim follows.

Assume [x123, x2]c 	= 0. Inside P(B) we have the 2-dimensional subspace U =
kx3 ⊕ k[x123, x2]c where the braiding is given by

q◦
x3

−1 −q◦
[x123,x2]

, Cartan type

(
2 −2
−2 2

)
.

Since this matrix is of affine type A
(1)
1 , from [AAH2, Theorem 1.2(b)] it follows

GK-dimB(U) = ∞, contradicting B ∈ PrefGK. �

Step 4. If a is of Cartan type C3, then the quantum Serre relations hold in any
finite GK-dim pre-Nichols algebra.

Proof. Now kx1 ⊕ kx2 has Dynkin diagram
q◦ q−1 q◦ , type A2. If N > 3, then

the quantum Serre relations in x1 and x2 hold by Lemma 4.7. For the case N = 3,
let i, j such that {i, j} = {1, 2} and suppose xiij 	= 0 in B. Since q(2αi + αj , 2αi +

αj) = q5q−2 = 1 and q̃(2αi + αj , α3) = q̃i3
2
q̃j3 	= 1, we get GK-dimB = ∞ by

[AAH1, Lemma 2.8]. �

The assertion (ii) for N > 4 follows since, in that case, B̃q is presented by the
quantum Serre relations, see Remark 4.1.

Step 5. If a is of Cartan type C3 with N = 3, then B̃q is eminent.

Proof. Following [AA2, pp. 401, 402]) we see that B̃q is presented by the quantum
Serre relations and

[
[x123, x2]c, x2

]
c
= 0. Given B ∈ PrefGK, let us show that this
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element is primitive in B. Using x13 = 0 it follows that

Δ([x123, x2]c) =[x123, x2]c ⊗ 1 + 1⊗ [x123, x2]c + (1− q̃12)x123 ⊗ x2

+ (1− q2)x12 ⊗ x32 + (1− q̃12)x1 ⊗ (x23x2 − q32x2x23)

+ (1− q̃23)q32[x12, x2]c ⊗ x3.

By straightforward computations, [x12, x2]c = q212qx221 in T (V ), and so [x12, x2]c
vanishes in B by Step 4. Then we obtain

Δ
([
[x123, x2]c, x2

]
c

)
=

[
[x123, x2]c, x2

]
c
⊗ 1 + 1⊗

[
[x123, x2]c, x2

]
c

+ (1− q2)q32q22[x12, x2]c ⊗ x32 + (1− q̃12)q22q
2
32x1 ⊗ x2223,

and now the claim follows from Step 4.
If

[
[x123, x2]c, x2

]
c
	= 0, consider U = kx1 ⊕ k

[
[x123, x2]c, x2

]
c
⊂ P(B). By

[AAH1, Lemma 2.8], since q(α1 + 3α2 + α3, α1 + 3α2 + α3) = q12q−9 = 1 and
q̃(α1 + 3α2 + α3, α1) = q2q−3 	= 1, we have GK-dimB(U) = ∞. This contradicts
B ∈ PrefGK. �

Step 6. If a is of Cartan type C3 with N = 4, then B̃q is eminent.

Proof. By [An1, Theorem 3.1], B̃q is presented by the quantum Serre relations
and [x123, x23]c = 0. Let us show that this element is primitive in any pre-Nichols
algebra B of finite GK-dim.

First we claim that [x123, x3]c = 0 in B: using that x13 = 0 we compute

Δ
(
[x123, x3]c

)
=[x123, x3]c ⊗ 1 + 1⊗ [x123, x3]c

+ (1− q̃12q23q33)x13 ⊗ x23 + (1− q̃12)x1 ⊗ [x23, x3]c.

Since [x23, x3]c ∈ P(B), it vanishes in B by the same reason that x332 does (cf.
proof of Lemma 4.12). So [x123, x3]c ∈ P(B). Hence, if it is non-zero we get a
subspace U = kx1 ⊕ [x123, x3]c ⊂ P(B) where the braiding is given by

q◦
x3

q−3 q◦
[x123,x3]

, indefinite Cartan type

(
2 −3
−3 2

)
.

But then GK-dimB(U) = ∞ by [AAH2, Theorem 1.2(b)], a contradiction.
Next we compute

Δ
(
[x123, x23]c

)
= [x123, x23]c ⊗ 1 + 1⊗ [x123, x23]c

+ (1− q̃23)q12q22q32x2 ⊗ [x123, x3] + (1− q̃23)
2q32x1 ⊗ [x12, x2]c.

Using the previous claim and the fact [x12, x2]c = q212qx221 = 0 (by Step 4), we get
[x123, x23]c ∈ P(B). If [x123, x23]c 	= 0, consider the subspace W = kx1 ⊕ kx2 ⊕
k[x123, x23]c ⊂ P(B), where the braiding is

q◦
1

q−1 q◦
2

q−1 q3◦
[x123,x23]

, Cartan type

⎛⎝ 2 −1 0
−1 2 −1
0 −3 2

⎞⎠ .

Since the Cartan matrix is of affine type G
(1)
2 , it follows GK-dimB(W ) = ∞ by

[AAH2, Theorem 1.2(a)]. This contradicts B ∈ PrefGK. �

The result follows. �
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4.7. Some cases in rank > 3. Here we assume that θ ≥ 4.

Lemma 4.16. In any of the following cases, B̃q is eminent.

(a) a is of Cartan type with simply laced Dynkin diagram and N > 2.
(b) a is of type Bθ, Cθ (θ ≥ 4) or F4, and N > 4.

Proof. By Remark 4.1 and the restrictions on N , B̃q is presented by the quantum
Serre relations. Let B ∈ PrefGK(q). If aij = 0, then xij = 0 holds in B by
Proposition 3.2. If aij 	= 0, then there is k ∈ I such that {i, j, k} span a subdiagram
of type A3, B3 or C3. Then (adxi)

1−aij (xj) = 0 by Lemmas 4.14 or 4.15. Thus

B̃q � B. �
In the next subsections we treat some remaining cases with small N .

4.8. Types Bθ, Cθ, F4, θ > 3, N = 3, 4.

Lemma 4.17. If a is of types Bθ, Cθ, with θ > 3, or F4, and N = 3 or 4, then

B̃q is eminent.

Proof. We split the proof according to the type. Let B ∈ PrefGK.

♥ Type F4. Here B̃q is presented by the quantum Serre relations and

[x123, x23]c = [x432, x3]c = 0 if N = 4; [x2234, x23]c = 0 if N = 3.(4.12)

Since N > 2 we get x14 = 0 in B from Proposition 3.2. The subdiagram spanned
by {1, 2, 3} is of type C3 thus the quantum Serre relations involving these indices
hold in B by Lemma 4.15 (ii). Finally, {4, 3, 2} span a diagram of type B3 so
the quantum Serre relations involving these indices hold in B by Lemma 4.15 (i).
Moreover (4.12) are defining relations of the distinguished pre-Nichols algebra of
type B3 or C3 for the corresponding N , hence Lemma 4.15 implies that these also
vanish in B.

♥ Type Bθ. Here B̃q is presented by the quantum Serre relations and

[x(i i+2), xi+1]c, i < θ − 1, if N = 4; [xθθ(θ−1)(θ−2), xθθ−1]c, if N = 3.(4.13)

The relations involving the indices {θ − 2, θ − 1, θ} hold in B by Lemma 4.15 (i);
also xiθ = 0 for any i < θ − 1 by Proposition 3.2. We are left to treat the relations
involving {1, . . . , θ− 1}. If N = 3 we only have the quantum Serre relations, which
hold by Lemma 4.14. Turn to N = 4. Now {1, . . . , θ − 1} form a subdiagram of
type Aθ−1 at a root of order 2. If θ−1 ≥ 4 we apply Lemma 5.6 to get all the Serre
relations except for x221 and xθ−2 θ−2 θ−1. The last one holds by Lemma 4.15 (i).
For the first one, we apply [AAH2, Theorem 1.2] since the diagram

−1◦
221

−1◦
1

−1 −1◦
2

−1

−1










 −1◦

3

−1◦
θ−1

−1 q◦
θ

is of affine Cartan type. Now [x(i i+2), xi+1]c = 0 for i < θ − 2 hold by Lemma 5.6
(e). We treat separately the last case standing.

♥♥ Type B4 with N = 4. The relations x221 and xθ−2 θ−2 θ−1 hold by the same
reason as above. Moreover, we also have x13 = 0. This follows from [AAH1, Lemma
2.8] since q(α1 + α3, α1 + α3) = 1 and q̃(α1 + α3, α4) 	= 1. Finally, using (5.1) and
the relations deduced so far, we get that [x(13), x2]c is primitive in B. Notice that
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q(α1+2α2+α3, α1+2α2+α3) = 1 and q̃(α1+2α2+α3, α4) 	= 1, so [AAH1, Lemma
2.8] applies again.

♥ Type Cθ. Here B̃q is presented by the quantum Serre relations and

[x(θ−2 θ), xθ−1 θ]c, if N = 4;
[
[x(θ−2 θ), xθ−1]c, xθ−1

]
, if N = 3.(4.14)

As before, Proposition 3.2 gives xiθ = 0 for any i < θ−1; all the relations involving
the indices {θ − 2, θ− 1, θ} hold in B by Lemma 4.15 (ii). It remains to verify the
relations involving {1, . . . , θ− 1}. Here we only have the Serre relations. But these
indices span a subdiagram of type Aθ−1, θ− 1 ≥ 3, at a root of unity of order 3 or
4, so they hold by Lemma 4.14. �

4.9. Types E6, E7 and E8 with N = 2. By [AA2, p. 407] the distinguished
pre-Nichols algebra is presented by the quantum Serre relations and

[xijk, xj ]c = 0 if i, j, k are all different and q̃ij , q̃jk 	= 1.

Lemma 4.18. Assume that Conjecture 2.6 is true. If a is of type E6, E7 or E8

with N = 2, then B̃q is eminent.

We point out that Conjecture 2.6 is needed only for a 5-dimensional braided
vector space of indefinite Cartan type.

Proof. Let B ∈ PrefGK(q). First we deal with the quantum Serre relations, which
are always primitive. Fix i 	= j ∈ Iθ. Consider two possibilities.

♥ q̃ij = 1. In this case choose k ∈ Iθ different from i and j such that q̃i = 1 but
q̃ik 	= 1. We get q(αi+αj , αi+αj) = 1 and q̃(αi+αj , αk) 	= 1. By [AAH1, Lemma
2.8], this warranties xij = 0 in B.

♥ q̃ij 	= 1. In this case i and j are consecutive vertices in a subdiagram of type
A4 with N = 2. By Lemma 5.6 (b) below, it follows that xiij = 0 except in the
following cases: (i, j) ∈ {(2, 1), (θ − 3, θ), (θ − 2, θ − 1)}. Fix such (i, j), assume
xiij 	= 0 and consider kx1 ⊕ · · · ⊕ kxθ ⊕ kxiij ⊂ P(B). Then the Dynkin diagram
of this braided vector space is of indefinite Cartan type. We illustrate the case
(i, j) = (θ − 3, θ), the other cases being similar.

−1◦
θ

−1◦
θ−3 θ−3 θ

−1◦
1

−1 −1◦
2

−1◦
θ−3

−1

−1

−1

������������ −1◦
θ−2

−1 −1◦
θ−1

.

Thus Conjecture 2.6 and Lemma 2.8 imply GK-dimB = ∞.
Finally, fix i, j, k different such that q̃ij , q̃jk 	= 1. These are consecutive vertices

in a suitable chosen subdiagram of type A4. The Serre relations hold in B, so by
Lemma 5.6 (c) below we get that also [xijk, xj ]c = 0 in B. �

5. On the open cases

This section contain partial results towards those braidings of finite Cartan type
which are still open. The detailed proofs can be found in [S].
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5.1. Type A2 with N = 2.

Lemma 5.1. Assume a is of Cartan type A2 with N = 2. Let B be a finite
GK-dimensional pre-Nichols algebra of q. The following hold:

(a) if B ∈ Pre
Z2

fGK, then either x112 = 0 or x221 = 0 in B;
(b) for different i, j ∈ I2, (adc xi)

4xj = 0 in B. �

Question 5.2. Let B̂1 = k〈x1, x2|x221, x11112〉. By Lemma 5.1 any B ∈ Pre
Z2

fGK(V )

is a quotient of either B̂1 or B̂2 := k〈x1, x2|x112, x22221〉. Clearly B̂1 � B̂2 as al-

gebras. Is GK-dim B̂1 < ∞?

5.2. Type A3 with N = 2.

Lemma 5.3. Assume a is of Cartan type A3 with N = 2. Let B be a finite
GK-dimensional pre-Nichols algebra of q. Then the following hold in B:

(a) x112 = 0 = x332, x213
�
= 0,

(b) x22221 = 0 = x22223, x11113 = 0 = x33331,

(c) if B ∈ Pre
Z3

fGK, then at most one of x113, x331, x221, x223 is non-zero. �
Remark 5.4. The relation � is relevant because in the tensor algebra

Δ([x(13), x2]c) = [x(13), x2]⊗ 1 + 1⊗ [x(13), x2]− 2q32x1 ⊗ x223

−2q212q32x221 ⊗ x3 − 2q212q32x2 ⊗ x213 + 4q212q32x
2
2 ⊗ x13.

(5.1)

Question 5.5. By Lemma 5.3 every B ∈ Pre
Z3

fGK is covered by one of

B̂ = k〈x1, x2, x3|x112, x332, x22221, x22223, x11113, x33331, x213〉,

B̂1 = B̂/〈x113〉, B̂2 = B̂/〈x331〉, B̂3 = B̂/〈x221〉, B̂4 = B̂/〈x223〉.

Are GK-dim B̂1 or GK-dim B̂3 < ∞? (B̂1 � B̂2 and B̂3 � B̂4 as algebras).

5.3. Type Aθ, θ ≥ 4 with N = 2. In this setting B̃q is presented by

xij = 0, |i− j| > 1; xiij = 0, |i− j| = 1; [x(ii+2), xi+1]c = 0, i ∈ Iθ−2.

Lemma 5.6. Assume a is of Cartan type Aθ, θ ≥ 4, with N = 2. The following
hold in any finite GK-dimensional pre-Nichols algebra B of q:

(a) xij = 0 for any |i− j| > 1;
(b) xiij = 0 for |i− j| = 1 and (i, j) 	= (2, 1), (θ − 1, θ);
(c) xiiiij = 0 for (i, j) = (2, 1), (θ − 1, θ);

(d) if B ∈ Pre
Zθ

fGK, then either x221 = 0 or xθ−1θ−1θ = 0;
(e) if (i, j) ∈ {(2, 1), (θ − 1, θ)} and xiij = 0, then [x(i−1 i+1), xi]c = 0. �

Question 5.7. Let B̂1 denote the quotient of T (V ) by the relations

xij = 0, |i− j| > 1; (adc xθ−1)
4xθ = 0;

xiij = 0, |i− j| = 1, (i, j) 	= (θ − 1, θ); [x(13), x2]c = 0.

Similarly, define B̂2 by the relations

xij = 0, |i− j| > 1; (adc x2)
4x1 = 0;

xiij = 0, |i− j| = 1, (i, j) 	= (2, 1); [x(θ−2 θ), xθ−1]c = 0.

(Clearly B̂2 � B̂1 as algebras). Is GK-dim B̂1 < ∞?
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5.4. Type Dθ with N = 2. Here (cf. [AA2, p. 404]) the distinguished pre-Nichols

algebra B̃q is presented by the quantum Serre relations and a bunch of q-brackets
coming from the several subdiagrams of type A3, namely:

[x(i i+2), xi+1]c, i ≤ θ − 3; [xθ−3 θ−2 θ, xθ−2]c; [xθ θ−2 θ−1, xθ−2]c.(5.2)

Lemma 5.8. Assume a is of Cartan type D4 with N = 2. The following relations
hold in any B ∈ PrefGK:

(a) if i 	= j and q̃ij = −1, then xiij = 0;
(b) if i 	= j and q̃ij = 1, then xkij = 0 for all k ∈ I4;
(c) if r is one of the elements in (5.2), then (adc xk)r = 0 for all k ∈ I4. �

Question 5.9. Let B̂ denote the quotient of T (V ) by the relations (a), (b) and

(c) . Is GK-dim B̂ < ∞?

Lemma 5.10. Assume a is of Cartan type Dθ with θ > 4 and N = 2. The following
relations hold in any B ∈ PrefGK(V ):

(a) all the defining relations of B̃q except xθ θ−1 and [xθ θ−2 θ−1, xθ−2]c;
(b) the relations xk θ θ−1 and (adc xk)[xθ θ−2 θ−1, xθ−2]c for all k ∈ Iθ. �

Question 5.11. Let B̂ denote the quotient of T (V ) by the relations

xij = 0, q̃ij = 1, (i, j) 	= (θ, θ − 1); [xθ−3 θ−2 θ, xθ−2]c = 0;

xiij = 0, q̃ij = −1; [x(i i+2), xi+1]c = 0, i ≤ θ − 3;

xk θ θ−1 = 0, k ∈ Iθ; [xk, [xθ θ−2 θ−1, xθ−2]] = 0, k ∈ Iθ.

Is GK-dim B̂ < ∞? We conjecture that GK-dim B̂ = GK-dim B̃q + 2. This will
be treated in a subsequent paper.
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64, DOI 10.1007/978-3-7643-8742-6 3. MR2742620

[AA2] Nicolás Andruskiewitsch and Iván Angiono, On finite dimensional Nichols algebras of
diagonal type, Bull. Math. Sci. 7 (2017), no. 3, 353–573, DOI 10.1007/s13373-017-0113-x.
MR3736568

[A+] Nicolás Andruskiewitsch, Iván Angiono, Agust́ın Garćıa Iglesias, Akira Masuoka, and
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