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SIMPLY TRANSITIVE NIL-AFFINE ACTIONS

OF SOLVABLE LIE GROUPS

JONAS DERÉ AND MARCOS ORIGLIA

Abstract. Every simply connected and connected solvable Lie group G admits a simply tran-
sitive action on a nilpotent Lie group H via affine transformations. Although the existence is
guaranteed, not much is known about which Lie groups G can act simply transitive on which
Lie groups H . So far the focus was mainly on the case where G is also nilpotent, leading to a
characterization depending only on the corresponding Lie algebras and related to the notion of
post-Lie algebra structures.

This paper studies two different aspects of this problem. First, we give a method to check
whether a given action ρ : G → Aff(H) is simply transitive by looking only at the induced
morphism ϕ : g → aff(h) between the corresponding Lie algebras. Secondly, we show how
to check whether a given solvable Lie group G acts simply transitive on a given nilpotent Lie
group H , again by studying properties of the corresponding Lie algebras. The main tool for both
methods is the semisimple splitting of a solvable Lie algebra and its relation to the algebraic hull,
which we also define on the level of Lie algebras. As an application, we give a full description
of the possibilities for simply transitive actions up to dimension 4.
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1. Introduction

An old question by Milnor [17] asked whether or not a simply connected and connected
(hereinafter called 1-connected) solvable Lie group G of dimension n admits a representation
into the group Aff(Rn), letting G act simply transitively on Rn. It is well-known that any
linear Lie group homeomorphic to Rn must be solvable and hence solvable Lie groups are the
only possibility for such an action. The answer on Milnor’s question is negative, with the first
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2 JONAS DERÉ AND MARCOS ORIGLIA

(nilpotent) example exhibited in dimension 11 by Y. Benoist in [2, 3] and later families of
nilpotent examples in dimension 10 by D. Burde and F. Grunewald in [6, 8]. Both constructions
were based on the equivalence between simply transitive affine actions on Rn and the existence
of a complete pre-Lie algebra structure on the corresponding Lie algebra, described in [16].

In order to provide a positive answer to Milnor’s question a more general setting was consid-
ered, namely the one of NIL-affine actions ρ : G → Aff(H) where H is a 1-connected nilpotent
Lie group and Aff(H) = H ⋊ Aut(H) is the group of affine transformations on H. Indeed,
K. Dekimpe showed in [11] that for any 1-connected solvable Lie group G, there exist a 1-
connected nilpotent Lie group H and a NIL-affine action ρ : G → Aff(H) letting G act simply
transitively on H.

This paper studies the related question of determining the pairs (G,H) with G and H 1-
connected Lie groups with G solvable and H nilpotent such that G acts simply transitive on
H. In the case of H = Rn, so the usual affine case, one can translate the problem to the Lie
algebra level where, as we mentioned before, the existence of a simply transitive affine action of
G on Rn is equivalent to the existence of a complete pre-Lie algebra structure on the solvable
Lie algebra g corresponding to G, see [16].

However, in the more general NIL-affine case there is not yet such a correspondence. The
particular case when both G and H are nilpotent was studied in [7] and the main result gives a
complete description on the level of Lie algebras. Note that the action of G on H is completely
determined by the corresponding map on the Lie algebras, namely

ϕ : g → aff(h) = h⋊Der(h)

X 7→ (t(X),D(X))

with t : g → h a linear map and D : g → Der(h) a morphism of Lie algebras.

Theorem 1.1. [7, Theorem 3.1.] Let G and H be 1-connected nilpotent Lie groups and ρ : G→
Aff(H) a representation with corresponding maps t : g → h and D : g → Der(h). The group G
acts simply transitive on H if and only if the map t : g → h is a bijection and D(X) is nilpotent
for every X ∈ g.

This result was used to show that for every n ≤ 5 and all 1-connected nilpotent Lie groups G
and H of dimension n, there exists a simply transitive NIL-affine action ρ : G→ Aff(H).

The purpose of this paper is to fill the gap when the Lie group G is solvable and non-nilpotent.
Specifically, we have the following two questions for which we will provide characterizations in
terms of the corresponding Lie algebras. The first one asks how we can determine, given the
induced map ϕ on the level of Lie algebras, if the corresponding action is simply transitive.

Question 1. Given a Lie algebra morphism ϕ : g → aff(h), determine whether the corresponding

NIL-affine action of Lie groups is simply transitive.

The answer for this question is given in Theorem 3.4, although Example 4.3 shows that we cannot
express it purely in terms of the maps t and D only. The second question is to investigate on
the Lie algebra level whether, given the Lie groups G and H, there exists a simply transitive
NIL-affine action ρ : G→ Aff(H).

Question 2. Given a solvable Lie algebra g and a nilpotent Lie algebra h, determine whether

there exists a simply transitive action of the corresponding 1-connected Lie groups.

For this, we will describe a criterion in Theorem 3.6 depending only on the semisimple splitting
of the Lie algebra g, which is introduced in Section 2. It reduces the study of the solvable case
to the nilpotent case and additionally embedding the semisimple part in a compatible way. As
an application we study the possibilities for dimension ≤ 4 in Sections 5 and 6, based on some
computational properties developed in Section 4.
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2. Background

For proving our main results, we need the theory of linear algebraic groups and the corre-
sponding Lie algebras, which are called algebraic Lie algebras. Since algebraic closures are not
always easy to compute, we also introduce the semisimple splitting of solvable Lie algebras, for
which we will recall a construction in Section 4. To every solvable Lie algebra g, we will hence
associate two different solvable Lie algebras, namely the semisimple splitting g′ and the algebraic
hull h = g, which are related via Theorem 2.3 at the end of this section.

2.1. Linear algebraic groups. We start by recalling the structure of linear algebraic groups,
as introduced in [13]. Let K be any subfield of C, then we define a linear algebraic K-group
G as a subgroup of GL(n,C) which is K-closed, i.e. G is the zero set of a finite number of
polynomials with coefficients in K. A group morphism between two linear algebraic K-groups
is said to be defined over K (or is an algebraic morphism) if the coordinate functions are given
by polynomials over the field K. A torus is a linear algebraic K-group which is isomorphic to a
closed subgroup of diagonal matrices D(n,C).

For our purposes, we will always work with the field of real numbers, so K = R. We denote
by G(R) = G ∩ GL(n,R) the subgroup of real points in G and we call G(R) a real algebraic
group. A real algebraic group automatically has the structure of a Lie group, see [13, Section
35.3], although a Zariski-connected real algebraic group is not necessarily connected as a Lie
group, e.g. the real algebraic group GL(n,R) is Zariski-connected but as a Lie group it has
two connected components. The number of connected components of a Zariski-connected real
algebraic group as a Lie group is always finite.

Let G be a connected solvable Lie group which is given as a subgroup G < GL(n,R). The
real algebraic closure G of G in GL(n,R) is a linear algebraic group which is again solvable and
Zariski-connected. Hence G splits as a semidirect product G = U(G) ⋊ T where U(G) is the
subgroup of G consisting of all unipotent elements in G, called the unipotent radical, and T is a
maximal real torus of G. We will denote UG = U(G) since it only depends on G. The maximal
real torus T is not unique but only unique up to conjugation in G, see [5].

If H is a 1-connected nilpotent Lie group, then H has a unique structure as a unipotent real
algebraic group. Since Aut(H) is isomorphic to the automorphism group of the corresponding
Lie algebra, it carries the structure of a real algebraic group as well. Hence also Aff(H) =
H ⋊Aut(H) can be considered as a real algebraic group and therefore we can also consider the
real algebraic closure of solvable subgroups of Aff(H), as we will often do in the remaining part
of the paper.

2.2. Algebraic Lie algebras. As was the case for linear algebraic groups, we are mainly in-
terested in Lie algebras over the real numbers R. We call a Lie algebra g ⊂ gl(n,R) algebraic if
there is a real linear algebraic group G < GL(n,R) such that g is the Lie algebra corresponding
to G. If h ⊂ gl(n,R) is any subalgebra, then we call the smallest algebraic Lie algebra g contain-
ing h the algebraic closure of h and denote this by g = h. We say that a Lie algebra morphism
between algebraic Lie algebras is algebraic if it corresponds to an algebraic morphism of real
algebraic groups. Note that our terminology deviates from the one in [10], where the algebraic
closure is called an algebraic hull. In this paper, the algebraic hull has another distinct meaning,
corresponding to the notion of algebraic hulls for solvable Lie groups as introduced in [19], see
Definition 2.1 below.

Every element X ∈ gl(n,R) can be uniquely written as X = Xn +Xs where Xn ∈ gl(n,R)
is nilpotent, Xs ∈ gl(n,R) is semisimple and such that Xn and Xs commute. We call this the
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(additive) Jordan decomposition of X and Xn,Xs are called the nilpotent and semisimple part
of X, respectively. Note that if g is an algebraic Lie algebra, then g contains the nilpotent and
semisimple part of all its elements. Moreover, for every solvable algebraic Lie algebra g, the set
of nilpotent elements of g forms a subalgebra. It is exactly the Lie algebra corresponding to the
unipotent radical U(G), where G is the real algebraic group corresponding to g, and hence we
denote this subalgebra as u(g).

Let g ⊂ gl(n,R) be any solvable Lie algebra and denote by g the algebraic closure of g in
gl(n,R). The Lie algebra g can be decomposed as a semi-direct product g = u(g)⋊ t where u(g)
is the subalgebra containing all nilpotent elements of g and t is an abelian subalgebra consisting
of semisimple elements, see [10, Theorem 4.3.20.]. Since u(g) depends only on the Lie algebra
g, we will often denote it by ug. Recall that the Lie bracket in the semidirect product ug ⋊ t is
given by

[(uX , tX), (uY , tY )] = ([uX , uY ] + tX(uY )− tY (uX), 0) .

If the Lie algebra g is abelian (or even nilpotent), the natural maps X 7→ Xn and X 7→ Xs

are algebraic morphisms, see [5, Theorem 4.7]. At this point, we want to emphasize that being
semisimple or nilpotent is not a property of the Lie algebra itself, but depends on the embedding
into gl(n,R). The abelian Lie algebra of dimension 1 can both be embedded as semisimple or as
nilpotent elements, corresponding to the multiplicative and the additive linear algebraic group
of dimension 1.

Since for every 1-connected nilpotent Lie group H the affine group Aff(H) is a real algebraic
group, the corresponding Lie algebra aff(h) = h⋊Der(h) is hence an algebraic Lie algebra. We
will also consider the algebraic closure of subalgebras in aff(h) lateron.

2.3. Algebraic hull. One of the main tools for studying simply transitive actions of solvable
Lie groups G is the notion of the algebraic hull as introduced in [19]. Since we focus on Lie
algebras here, we will rephrase the definition in terms of Lie algebras.

Definition 2.1. Let g be a solvable Lie algebra. We call an algebraic Lie algebra h the algebraic
hull of g if it satisfies the following conditions:

(1) There is an injective Lie algebra morphism i : g → h such that h is equal to the algebraic
closure of i(g);

(2) dim(u(h)) = dim(g);
(3) The centralizer of u(h) is contained in u(h).

When talking about the algebraic hull of a Lie algebra g, we will slightly abuse notations and
consider g as a subalgebra of its own algebraic hull, hence taking i as the inclusion map. In
particular, since every algebraic Lie algebra is implicitly embedded in gl(n,R), we will identify
g to a subalgebra of gl(n,R) in this case.

Note that the algebraic hull of a Lie algebra g is exactly the Lie algebra corresponding to the
algebraic hull of the solvable 1-connected Lie group G as introduced in [19]. The existence of the
algebraic hull follows from [19], see also the discussion in [12, Section 7] for more details. The
inequality dim(ug) ≤ dim(g) always holds, see also Theorem 3.1 in the next section, so condition
(2) means that the nilpotent elements ug of g have maximal dimension. By [19, Lemma 4.41.], it
follows that every Lie algebra morphism ϕ : g → h uniquely extends to an algebraic morphism
ϕ : g → h between the algebraic hulls, implying that the algebraic hull is unique up to algebraic
isomorphism. The ideal ug of nilpotent elements is equal to the nilradical of h in this case.

2.4. Semisimple splitting and nilshadow. Although [10] gives an algorithm to compute the
algebraic closure of a given algebra g, it in general takes some time to find the full description.
Hence for the applications we will focus on the semisimple splitting which is enough to decide
whether there exists a simply transitive action.
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Definition 2.2. Let g be a solvable Lie algebra. We call a solvable Lie algebra g′ a semisimple

splitting of g if and only if it satisfies the following conditions.

(1) g′ = n⋊ t with n the nilradical of g′ and t an abelian subalgebra;
(2) t acts on n via semisimple derivations;
(3) g is an ideal of g′ such that g ∩ t = 0 and g′ = g+ t = g+ n;
(4) n = n ∩ g+ c where c is the centralizer of t in n.

If G and G′ are the unique 1-connected solvable Lie groups associated to g and g′, then we call
G′ the semisimple splitting of G.

Condition (3) implies that g′ is equal to the semidirect product g ⋊ t. The nilradical of the
semisimple splitting of g is called the nilshadow of g.

There are many connections between the definitions of the semisimple splitting and the alge-
braic hull. The following result gives an exact relation between them.

Theorem 2.3. Let g be a solvable Lie algebra with algebraic hull h, then the semisimple splitting

is equal to the subalgebra g′ = g+ u(h) of h.

Although formulated slightly different, this follows from [15, Proposition 2.4.]. This propo-
sition only gives this result for a concrete example, but since both the algebraic hull as the
semisimple splitting are unique up to isomorphisms, the statement holds in general. In partic-
ular, the Lie algebra u(h) corresponding to the unipotent radical of the algebraic hull of g is
isomorphic to the nilradical of the semisimple splitting g′, so sometimes we will also refer to the
former as the nilshadow. We will recall the construction of the semisimple splitting in Section
4 which is dedicated to all computations.

3. Main results

In this section, we formulate our main results, which answer both Question 1 and 2 in a
general way. The practicalities and applications then follow in later sections.

Let us start by fixing some notation for the whole section. Note that if the map ρ : G→ Aff(H)
is not injective, the action cannot be simple. So by identifying G with its image ρ(G), we can
assume that G < Aff(H) is a subgroup, or g ⊂ aff(h) is a subalgebra. We will assume that G
is a connected solvable Lie group with algebraic closure G and unipotent radical UG = U(G).
Since G is connected, the group G is Zariski-connected, but it is not necessarily connected as a
Lie group, although it only has a finite number of connected components.

It is well-known that the dimension of UG is bounded above by the dimension of G, see for
example [19, Lemma 4.36.]. The following theorem gives a new proof of this fact, including a
precise formula for the dimension of UG depending on the intersection G∩ T with T a maximal
torus of G. Since the dimension of a Lie group and the corresponding Lie algebra are the same,
we have an equivalent formulation in terms of Lie algebras g with ug the subalgebra consisting
of all nilpotent elements of g and the Lie algebra t corresponding to a maximal torus.

Theorem 3.1. Using the notations of above, we have that

dim (UG) + dim(T ∩G) = dim(G)

or equivalently

dim (ug) + dim(t ∩ g) = dim g.

Proof. We prove this theorem on the level of Lie algebras, which implies the statement for Lie
groups. Write g = n ⋊ t with n = ug and consider the commutator subalgebra m = [g, g] ⊂ n

which is also equal to the commutator subalgebra of g by [10, Lemma 4.3.17]. Take the natural
quotient map

π : g → g�m = n�m⋊ t = n�m⊕ t
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which is an algebraic morphism. From π we define the linear maps

ϕ1 : g → n�m

which is the restriction of the projection on the first component and

ϕ2 : ker(ϕ1) → t

which is the restriction of the projection on the second component. For every element X ∈ g,
we have that ϕ1(X) = (X +m)n, so ϕ1 is the restriction of an algebraic morphism g → n�m
since g�m is an abelian Lie algebra.

Because g is the algebraic closure of g, we get that the algebraic closure of ϕ1(g) is n�m.
Since n�m is abelian and consists only of nilpotent elements, every subspace is equal to its own
algebraic closure, see [10, Lemma 4.3.1.] and [10, Corollary 4.3.7.]. Thus we get ϕ1(g) = n�m.
Moreover ker(ϕ2) = m holds and using m ⊂ g, we show that ϕ2(ker(ϕ1)) = t ∩ g. Indeed, the
inclusion t∩g ⊆ ϕ2(ker(ϕ1)) is immediate. For the second inclusion assume n+ t ∈ ker(ϕ1) with
n ∈ n and t ∈ t, then by the assumption n + m = ϕ1(n + t) = m, so n ∈ m ⊂ g and hence also
t = ϕ2(n+ t) ∈ g ∩ t.

The dimension theorem for linear maps implies that

dim(g) = dim(n�m) + ker(ϕ1)

= dim(n)− dim(m) + dim(g ∩ t) + dim(m)

= dim(n) + dim(g ∩ t),

which is exactly the stament of the theorem. �

For proving our main results, we will mainly need the following consequence.

Corollary 3.2. Using the notations of above, if G is connected and dim(G) = dim(UG), then
G is torsion-free and every semisimple element in G is trivial.

Proof. To show that G is torsion-free, we will show that both [G,G] and G�[G,G] are torsion-

free. The first statement is immediate since [G,G] is a subgroup of UG, which is torsion-free.

For the second, we write G�[G,G] =
UG�[G,G] ⊕ T for any maximal torus T of G exactly as

in Theorem 3.1 and consider the restriction of the projection ϕ1 : G�[G,G] →
UG�[G,G] on

the first component. Theorem 3.1 shows that this map is an isomorphism of groups and hence
G�[G,G] is torsion-free.

If g ∈ G is semisimple, then also g+ [G,G] is semisimple in G�[G,G]. This would imply that

ϕ1(g) = 0, or thus that g ∈ [G,G] ⊂ UG, leading to g = e. �

In particular, Corollary 3.2 holds for the algebraic hull of a solvable Lie algebra. We will return
to this remark in Example 4.4, where we consider the algebraic hull of a Lie algebra R2⋊DR with
a semisimple derivation D, which will hence not be semisimple as an element of the algebraic
hull.

Note that under the assumptions of Corollary 3.2 the group G must be 1-connected. It is a
well-known fact that if G acts simply transitive on H via affine transformation, then UG also
acts simply transitive on H, see for example [4]. We prove a converse of this statement from
Corollary 3.2.

Theorem 3.3. Let G < Aff(H) be a connected solvable Lie group with dim(G) = dim(H) such
that UG acts simply transitive on H, then also G acts simply transitive on H.
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Proof. First we show that the action is simple. Take any x ∈ H and g ∈ G such that gx = x.
Write T for the stabilizer of x in G, so with g ∈ T . Since the action of UG is simply transitive,
T ∩ UG = {e}. We show that UGT = G, or thus that T is a maximal torus of G. Take any
h ∈ G, then hx = ux for some u ∈ UG because the action is transitive. Hence h = uu−1h with
u−1h ∈ T by definition of the stabilizer T , so the claim follows. Now g, as element of T , is
semisimple and by Corollary 3.2 we get g = e. We conclude that the action is simple.

Next, we show that the action is transitive. Take any maximal torus T of G, so with G = UGT ,
then we first show that GT = G. It suffices to show that UG ⊂ GT , or thus, since UG is
connected, that ug ⊂ g+ t with t the Lie algebra of T . Note that t ∩ g = 0 by Theorem 3.1 and
the fact that dim(g) = dim(h) = dim(ug). Since g+ t ⊂ g and dim(g+ t) = dim(g) + dim(t) =
dim(ug) + dim(t) = dim(g), we conclude that g + t = g and thus ug ⊂ g + t. Because T is a

maximal torus, it has a fixed point in H, see [12, Lemma 5.3.]. Since the action of G is transitive,
this implies that the action of G is transitve. �

We are now ready to give an answer to Question 1. Recall that we assume ϕ : g → aff(h) to
be injective and identify g with its image.

Theorem 3.4. Let h be a nilpotent Lie algebra and g ⊂ aff(h) a solvable subalgebra with algebraic

closure g. The corresponding solvable Lie group G acts simply transitive on H if and only if

dim(g) = dim(h) and the restriction ug ⊂ aff(h) → h of the natural projection on the first

component is a bijection.

Note that the second condition implies that the unipotent subgroup corresponding to ug acts
simply transitive by Theorem 1.1.

Proof. First assume that G acts simply transitive on H via affine transformations. The equality
dim(g) = dim(G) = dim(H) = dim(h) is immediate since G and H are diffeomorphic. By [7,
Proposition 2.4.] we know that UG acts simply transitive on H. The Lie algebras corresponding
to UG is equal to ug and hence by Theorem 1.1 the restriction map ug → h is a bijection. This
concludes the first direction of the proof.

For the other direction, assume that the map ug → h is a bijection, where again ug is the Lie
algebra corresponding to UG. Theorem 1.1 implies that UG acts simply transitive on H. By
Theorem 3.3 we have that G acts simply transitive on H, as we need. �

On how to apply this result for concrete computations, we refer to Section 4 which gives
methods to compute the subalgebra ug starting from some special basis for g. Note that we
don’t have to compute t for applying this theorem, which in general is the hardest part of the
algebraic closure, we only need to know ug.

The next part of this section is dedicated to answering Question 2. A first result in this
direction uses algebraic embedding of the algebraic hull. In this context, an embedding means
that the Lie algebra morphism is injective.

Theorem 3.5. A 1-connected solvable Lie group G acts simply transitive on a nilpotent Lie

group H via affine transformations if and only if the algebraic hull g embeds in aff(h) as an

algebraic subalgebra such that the map t : ug → h is a bijection. Moreover, if there exists a

simply transitive action, we can assume that g ∩ Der(h) is the Lie algebra corresponding to a

maximal torus of the algebraic hull.

Proof. First assume the action ρ : G → Aff(H) is simply transitive. In particular the map ρ is
injective and we can identify G and ρ(G). If G acts simply transitive on H, [12, Theorem 5.2.]
implies that G < Aff(H) is the algebraic hull for G, where U(G) acts simply transitive. Hence
the Lie algebra of G is a subalgebra of aff(h) such that t : ug → n is a bijection by Theorem 1.1.
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For the last part of the theorem, take T the stabilizer of the identity element e ∈ H in G, so
T ⊂ Aut(H). Just as in Theorem 3.3, we have that T is a maximal torus for the group G. Its
Lie algebra t is hence a subalgebra of Der(h).

For the other direction, assume that the conditions of the theorem hold. Since g is an algebraic
subalgebra of aff(h), we also have an embedding ϕ : g → aff(h) such that the algebraic closure
of ϕ(g) is equal to g. By Theorem 3.4 we get that the action of the corresponding Lie group
on H is simply transitive. In particular, the corresponding Lie group is simply connected and
hence isomorphic to G, leading to a simply transitive action of G on H. �

Since the semisimple splitting and the algebraic hull have the same nilradical which is the
nilshadow of g, one can check the conditions of Theorem 3.4 from the semisimple splitting. This
avoids all difficulties for computing the algebraic hull and the condition of being an algebraic
embedding.

Corollary 3.6. A 1-connected solvable Lie group G acts simply transitive on a nilpotent Lie

group H via affine transformations if and only if the semisimple splitting g′ = n ⋊ t embeds in

aff(h) such that n consists of nilpotent elements, t of semisimple elements and the map t : n → h

is a bijection. Moreover, a simply transitive action exists, we can assume that the semisimple

part t of g′ is a subalgebra of Der(h).

Proof. One direction, namely if the group G acts simply transitive on H, then the semisimple
splitting embeds in aff(h) with the conditions of the corollary, is immediate from a combination
of Theorem 2.3 and Theorem 3.5.

For the other direction, consider the semisimple splitting g′ as a subalgebra of aff(h) and
hence also g as a subalgebra of aff(h). First we show that g is also the algebraic closure of g′,
where the latter is equal to n⋊ t by [10, Theorem 4.3.6.]. For this it suffices to show that n ⊂ g,
because n+ g = g′. By condition (4) of the semisimple splitting it is enough to show that c ⊂ g

with c the centralizer of t in n. This is immediate, since if X ∈ c, we can write X = Y +Z with
Y ∈ g and Z ∈ t and thus also Y = X − Z. This is exactly the Jordan decomposition of Y
because X and Z commute and are respectively nilpotent and semisimple. Since g is algebraic
it contains the nilpotent and semisimple parts of every element and thus X ∈ g. The statement
now follows by applying Theorem 3.4. �

We will call a Lie algebra morphism as in Corollary 3.6 simply transitive, as it corresponds
to a simply transitive action between the corresponding Lie groups.

Note that this result does not provide us with extra tools to check whether there exists a
simply transitive NIL-affine action of one nilpotent Lie group on another. It does show that the
study of NIL-affine actions of solvable Lie groups starts with studying the case of nilpotent Lie
groups and applying this to the nilshadow ug of the semisimple splitting. Afterwards one needs
to check whether the semisimple part t can also be embedded in Der(h), compatible with the
embedding of ug.

In the special case where h is the nilshadow of g, we always have a simply transitive action.

Corollary 3.7. Let G be a 1-connected solvable Lie group, then G acts simply transitive via

affine transformations on its nilshadow.

Proof. This follows immediately from Corollary 3.6 since if g′ = n ⋊ t embeds directly into
aff(n) by considering t as derivations of n. The map t : n → n is the identity map and hence a
bijection. �

For concrete applications, the following lemma about the eigenvalues of derivations will be
useful. It will be the main tool for ruling out possibilities lateron.

Lemma 3.8. Let n ⋊ t be a subalgebra of aff(h) as in Corollary 3.6 with t ⊂ Der(h), then for

every S ∈ t it holds that S and adS
∣
∣
n
have the same eigenvalues with the same multiplicities.
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Here we consider the eigenvalues of D as a derivation on h and adS is the adjoint of S as an
element of n⋊ t.

Proof. By extending the scalars to C we can assume that the element S is diagonalizable, so
from now on we work with Lie algebras over C. Let t : n → h and D : n → Der(h) be the natural
projections on the first and second component. Now for every eigenvector X = t(X)+D(X) ∈ n

for eigenvalue λ ∈ C of adS , we have that

λ(t(X) +D(X)) = [S, t(X) +D(X)] = S(t(X))
︸ ︷︷ ︸

∈n

+ [S,D(X)]
︸ ︷︷ ︸

∈t

by the definition of the bracket on the semidirect product. This implies that t(X) is an eigen-
vector of S for the same eigenvalue λ. Since we can do this for every eigenvector and t is an
isomorphism by assumption, the statement follows. �

4. Computing the nilshadow and the semisimple splitting

In this section, we give some comments about how to compute the nilshadow of a solvable
Lie algebra, which will be convenient for the applications in the following sections.

Recall that we denote by Xn the nilpotent part in the additive Jordan decomposition of
X ∈ gl(n,R). For applying Theorem 3.4 it is crucial to compute the algebra ug of a given
solvable Lie algebra g. Unfortunately, ug is not given by the nilpotent parts Xn of all its
elements X ∈ g.

Example 4.1. Consider the solvable subalgebra

g =











0 0 x
0 x y
0 0 0





∣
∣
∣
∣
∣
∣

x, y ∈ R






⊂ gl(n,R),

which is isomorphic to the solvable non-abelian Lie algebra of dimension 2. Note that the
additive Jordan decomposition of every element X = Xn +Xs ∈ g is given by

X =





0 0 x
0 x y
0 0 0



 =





0 0 x
0 0 0
0 0 0



+





0 0 0
0 x y
0 0 0



 = Xn +Xs

for x 6= 0, and X = Xn otherwise. Hence the algebraic closure g is equal to

g =











0 0 x
0 z y
0 0 0





∣
∣
∣
∣
∣
∣

x, y, z ∈ R







with

ug =











0 0 x
0 0 y
0 0 0





∣
∣
∣
∣
∣
∣

x, y ∈ R






.

This shows that the map N : g → ug : X 7→ Xn is in general not injective nor surjective.
Moreover, for a general basis X1, . . . ,Xk for g, one does not have the property that (Xi)n spans
ug.

The previous example demonstrated that in order to compute ug we need some extra tools.

Proposition 4.2. Let g ⊂ gl(n,R) be a solvable subalgebra with l = dim([g, g]). Consider a

basis X1, . . . ,Xk of g such that the vectors X1, . . . ,Xl span the commutator subalgebra [g, g] of
g, then the elements (Xi)n span the ideal ug of all nilpotent elements in the algebraic closure g

of g.
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Proof. Write m = [g, g] for the commutator subalgebra of g, then the map m → ug : X 7→ Xn

is a linear map since m is nilpotent. In particular, the vectors (X1)n , . . . , (Xl)n span the vector
space m. It suffices to show that the projections of (Xl+1)n , . . . , (Xk)n span the vector space
ug�m.

Consider g = ug ⋊ t with t the Lie algebra corresponding to a maximal torus. The ideal m is
also the commutator subalgebra of g by [10, Lemma 4.3.17]. Just as in the proof of Theorem
3.1, we consider the projection ϕ1 : g�m → ug�m on the first component, which is surjective.
Since ϕ1(Xi) = (Xi)n +m, the result now follows. �

In the light of Theorem 3.4 this gives us a method for checking whether a given morphism
ϕ : g → aff(h) corresponds to a simply transitive action. Note that the information does not lie
in the seperate maps t and D, but in how they interact, as is clear in the following example.

Example 4.3. Consider the map ϕ : R → aff(R) = R ⋊ R : x 7→ (x, x). Note that ϕ(x) is
semisimple for every x ∈ R and hence uϕ(R) = 0 by Proposition 4.2. This implies that the
corresponding affine action of R is not simply transitive. Note that t : ϕ(R) → h is bijective for
this example.

For many low-dimensional examples the semisimple splitting g′ is isomorphic to the algebraic
hull g. We give an example in dimension 3 where this is not the case. This illustrates why
Corollary 3.6 is easier to use than Theorem 3.5, since one only needs to compute the nilshadow.

Example 4.4. Consider the solvable Lie algebra g = R2 ⋊D R where D is the derivation D given
by the matrix

D =

(
1 0
0 α

)

with α ∈ R. The semisimple splitting of g is equal to g ⊕ R, but it is algebraic if and only if
α ∈ Q, see [10, Section 4.4]. If α /∈ Q, then its algebraic hull is isomorphic to

(
R2 ⋊D1,D2 R

2
)
⊕R

with

D1 =

(
1 0
0 0

)

D2 =

(
0 0
0 1

)

.

Note that, although the derivation D is semisimple, it is not semisimple as an element of the
algebraic hull, see Corollary 3.2.

In many cases, the semisimple splitting is easier to compute, since one does not have to take
the algebraic closure of a maximal torus. Also, we don’t have to worry about embeddings being
algebraic as is needed for Theorem 3.4. Therefore Corollary 3.6 is the version which is most
applicable in practice.

We recall now a direct construction of the semisimple splitting and the nilshadow associated to
a given Lie algebra, which we will apply in the next sections. The nilshadow can be determined
in two slightly different ways according to [18, page 73] (see also [9, 15]).

Let g be a solvable Lie algebra, and n its nilradical. Each derivation adX with X ∈ g has
a Jordan decomposition adX = (adX)s + (adX)n with both endomorphisms (adX)s , (adY ))n ∈
Der(g). According to [18, Proposition III.1.1.], there exists a vector space b of g such that
g = b⊕ n is the direct sum of vector spaces and for any X,Y ∈ b, it holds that (adX)s(Y ) = 0.
Moreover, the bracket between the semisimple parts satisfies [ad(b)s, ad(b)s] = 0.

By considering b as an abelian Lie algebra, the semisimple splitting of g is the semidirect
product

g′ = b⋉ad(... )s
g,
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with Lie brackets

[(A,X), (B,Y )] = (0, [X,Y ] + (adA)s(Y )− (adB)s(X)).

The nilshadow of g, i. e. the nilradical of g′, is

n = {(−Xb,X) | X ∈ g},

where Xb denotes the component of X in b. One can also see the semisimple splitting of g as

g′ = Imads⋉g,

where ads : g → Der g. In this case the nilshadow, which we denote as u from now on, can be
written as

u = {X − (adX)s ∈ g′ : X ∈ g}.

It follows from [14, Proposition 2.3] that

g′ = Imads⋉u,

where u is the nilradical of g′.
From the latter characterization of the semisimple splitting we can obtain its relation with

the algebraic hull as in Theorem 2.3. We take the Lie group homomorphism Ads : G→ Aut(u)
which corresponds to the Lie algebra homomorphism ads. Let U the nilpotent Lie group with
Lie algebra u, then we have have Ads(G) ⊂ Aut(U) where Aut(U) is an algebraic group. It
follows from [15, Proposition 2.4.] that T ⋉ U is the algebraic hull of G, where T is the Zariski
closure of Ads(G) in Aut(U).

We demonstrate how to compute the semisimple-splitting g′ and the nilshadow for a given
Lie algebra. These methods will be implicitly used in the following sections.

Example 4.5. Consider the 4-dimensional Lie algebra rr3 with basis e1, e2, e3, e4 and structure
constants given by [e1, e2] = e2, [e1, e3] = e2+ e3 in a basis {e1, e2, e3, e4}. Clearly, the nilradical
of g is n = span{e2, e3, e4} and the Jordan decomposition of ade1 |n is

ade1 =





1 1
1

0



 =





1
1

0



+





0 1
0

0



 .

Therefore, the semisimple splitting of rr3 can be written as g′ = R ⋉S (R ⋉T R3) where S =
diag(0, 1, 1, 0) and T is the nilpotent part of ade1 . The structure constants are [e0, e2] = e2,
[e0, e3] = e3, [e1, e3] = e2 in a basis {e0, e1, e2, e3, e4}. It is clear that the nilradical of g′, which
is the nilshadow of g, is n(g′) = rh3, and g′ = R ⋉ rh3 with Lie brackets in the renamed basis
{e1, e2, e3, e4, e5} given by [e1, e3] = e3, [e1, e4] = e4, [e2, e3] = e4.

5. Simply transitive NIL-affine actions in dimension 3

In this section we determine whether there exists a simply transitive action for all pairs (g, h)
of 3-dimensional solvable Lie algebras where g is solvable and h is nilpotent.

As we mentioned before, if g is nilpotent it falls into Theorem 1.1 and so it was shown in [7]
that every possibility occurs up to dimension 5. If h is abelian, then we have the usual affine
case and these possibilities, equivalent to the existence of complete pre-Lie algebra structures,
were studied in several papers, see for instance [16]. Therefore we focus on pairs (g, h) where
g is solvable non-nilpotent and h is nilpotent non-abelian. Note that in dimension 2, the only
nilpotent Lie algebra is in fact the abelian one and hence there are no new cases. There is
only one nilpotent non-abelian Lie algebra in dimension 3, the Heisenberg Lie algebra h3, so in
the remainder of this section we focus on actions on the Heisenberg group H3. We will only
consider the canonical basis {f1, f2, f3} of h3 such that [f1, f2] = f3. In Table 1 we introduce
other notations for the 3-dimensional solvable non-abelian Lie algebras.
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Lie algebra Lie bracket

h3 [e1, e2] = e3

r3 [e1, e2] = e2, [e1, e3] = e2 + e3

r3,λ [e1, e2] = e2, [e1, e3] = λe3

r′3,λ [e1, e2] = λe2 − e3, [e1, e3] = e2 + λe3

Table 1. The 3-dimensional solvable non-abelian Lie algebras.

As a start, we give four examples of simply transitive actions of solvable Lie groups on the
3-dimensional Heisenberg group. Afterwards, we show that these are in fact the only possibilities.

Example 5.1. Consider the Lie algebra g = r′3,0, which is also known as the Lie algebra e(2) of
the group of rigid motions of Euclidean 2-space. Using the construction mentioned before, it is
easy to check that the semisimple splitting of g is isomorphic to g′ = R⋉R3 = 〈e1〉⋉ 〈e2, e3, e4〉
with Lie brackets

[e1, e2] = −e3, [e1, e3] = e2 and e4 ∈ z(g′).

The Lie algebra g′ forms a subalgebra of aff(h3) = h3 ⋊ Der(h3), by considering the map ϕ :
g′ → aff(h3), where

ϕ(x1, x2, x3, x4) =



(x2, x3, x4),





0 −x1 0
x1 0 0
x3
2 −x2

2 0







 .

The nilradical of g′ is the abelian ideal R3 = 〈e2, e3, e4〉 and the restriction of the map ϕ to the

nilradical is given by ϕ
∣
∣
n(g′)

(x2, x3, x4) =



(x2, x3, x4),





0 0 0
0 0 0
x3
2 −x2

2 0







 . By Corollary 3.6 the

corresponding 1-connected Lie group acts simply transitive on H3.

Example 5.2. Consider the Lie algebra g = r3,−1, which is also known as the Lie algebra e(1, 1) of
the group of rigid motions of Minkowski 2-space. Using the construction mentioned before, it is
easy to check that the semisimple splitting of g is isomorphic to g′ = R⋉R3 = 〈e1〉⋉ 〈e2, e3, e4〉
with Lie brackets

[e1, e2] = e2, [e1, e3] = −e3 and e4 ∈ z(g′).

The Lie algebra g′ forms a subalgebra of aff(h3) = h3⋊Der(h3) by considering the map ϕ : g′ →
aff(h3), where

ϕ(x1, x2, x3, x4) =



(x2, x3, x4),





x1 0 0
0 −x1 0
x3
2 −x2

2 0







 .

The nilradical of g′ is the abelian ideal R3 = 〈e2, e3, e4〉 and the restriction of the map ϕ to the

nilradical is given by ϕ
∣
∣
n(g′)

(x2, x3, x4) =



(x2, x3, x4),





0 0 0
0 0 0
x3
2 −x2

2 0







 . By Corollary 3.6 the

corresponding 1-connected Lie group acts simply transitive on H3.

Example 5.3. Consider the Lie algebra g = r3,1. Using the construction mentioned before, it is
easy to check that the semisimple splitting of g is isomorphic to g′ = R⋉R3 = 〈e1〉⋉ 〈e2, e3, e4〉
with Lie brackets

[e1, e2] = 0, [e1, e2] = e2 and [e1, e3] = e3.
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It is easy to check that g′ forms a subalgebra of aff(h3) = h3 ⋊Der(h3) by considering the map
ϕ : g′ → aff(h3), where

ϕ(x1, x2, x3, x4) =



(x2, x3, x4),





0 0 0
0 x1 0
x3
2 −x2

2 x1







 .

The nilradical of g′ is the abelian ideal R3 = 〈e2, e3, e4〉 and the restriction of the map ϕ to the

nilradical is given by ϕ
∣
∣
n(g′)

(x2, x3, x4) =



(x2, x3, x4),





0 0 0
0 0 0
x3
2 −x2

2 0







 . By Corollary 3.6 the

corresponding 1-connected Lie group acts simply transitive on H3.

Example 5.4. If g = r3, the semisimple splitting is g′ ≈ R ⋉ h3 = 〈e1〉⋉ 〈e2, e3, e4〉 with action
given by the diagonal derivation diag(0, 1, 1). This case follows immediately from Corollary 3.7,
but for completeness we write down the embedding itself. The Lie brackets on g′ are

[e1, e2] = 0, [e1, e3] = e3 and [e3, e4] = e4.

It is easy to check that g′ forms a subalgebra of aff(h3) = h3 ⋊ Der(h3), where h3 denotes the
3-dimensional Heisenberg Lie algebra, by considering the map ϕ : g′ → aff(h3), where

ϕ(x1, x2, x3, x4) =



(x2, x3, x4),





0 0 0
0 x1 0
0 0 x1







 .

The nilradical of g′ is isomorphic to h3 = 〈e2, e3, e4〉 and the restriction of the map ϕ to the
nilradical is given by ϕ

∣
∣
n(g′)

(x2, x3, x4) = ((x2, x3, x4), 0) . By Corollary 3.6 the corresponding

1-connected Lie group acts simply transitive on H3.

We now prove that the Lie algebras in the previous examples are the only possibilities by
discarding the other examples. The strategy is to study the derivations of the Lie algebra on
which we act and apply Lemma 3.8.

Proposition 5.5. Let G be a solvable non-nilpotent Lie group acting simply transitively on

H3 via affine transformations, then the Lie algebra of G is isomorphic to either r3, r3,λ with

λ ∈ {±1} or r′3,0.

Proof. Let g be the Lie algebra of G, and we assume that G acts simply transitive on H3.
According to Corollary 3.6 there exists a Lie algebra morphism ϕ : g′ → aff(h3) with

ϕ = (t,D) : g′ = n⋊ t → h3 ⋊Der(h3)

such that t
∣
∣
n
: n → h3 is a bijection. For solvable non-nilpotent Lie algebras of dimension 3 it

holds that dim(t) = 1.
It follows from Lemma 3.8 that we can take ϕ such that for every S spanning t we have

Spec(adS
∣
∣
n
) = Spec(D) with D some derivation of h3. It is known that D has the form

D =





a b 0
c d 0
m n a+ d



 ,

see for example [1]. Then the eigenvalues of D are {a+d, a+d±
√
∆

2 }, where ∆ = (a+d)2−4(ad−
bc).

First we assume g = r′3,λ. It can be seen that the semisimple splitting g′ ≈ R ⋉ R3 where

the action of the semisimple element has eigenvalues {0, λ + i, λ − i}. Since these have to be
eigenvalues of D, the only possibility is λ = 0.
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We assume now g = r3,λ. In this case the semisimple splitting g′ ≈ R ⋉ R3 where the action
of the semisimple element has eigenvalues {0, 1, λ}. In the same way as above we have that
λ ∈ {±1}. �

This proposition shows the strength of Lemma 3.8, since any example which is not excluded
by it corresponds to a simply transitive action.

6. Simply transitive NIL-affine actions in dimension 4

In this section we study the existence of maps from g → aff(h) with g solvable and h nilpotent
and dim(g) = dim(h) = 4, letting G act simply and transitively on H by affine transformations.
There are three 4-dimensional nilpotent Lie algebras, namely, rh3, n4 and R4. The latter cor-
responds to the usual affine case, already studied in [16], therefore we focus on the other two
cases. Note, if g is nilpotent it falls into Theorem 1.1 and so it was studied in [7]. Therefore we
focus on pairs (g, h) where g is solvable non-nilpotent and h is either rh3 or n4.

We introduce in Table 2 some notation of 4-dimensional solvable Lie algebras with basis
e1, e2, e3, e4. We computed the semisimple splitting of every 4-dimensional solvable non-abelian

g Lie bracket on basis

rh3 [e1, e2] = e3

n4 [e1, e2] = e3, [e1, e3] = e4

rr3 [e1, e2] = e2, [e1, e3] = e2 + e3

rr3,λ [e1, e2] = e2, [e1, e3] = λe3, |λ| ≤ 1

rr′3,λ [e1, e2] = λe2 − e3, [e1, e3] = e2 + λe3, λ ≥ 0

r2r2 [e1, e2] = e2, [e3, e4] = e4

r′2 [e1, e3] = e3, [e1, e4] = e4, [e2, e3] = e4, [e2, e4] = −e3

r4 [e1, e2] = e2, [e1, e3] = e2 + e3, [e1, e4] = e3 + e4

r4,λ [e1, e2] = e2, [e1, e3] = λe3, [e1, e4] = e3 + λe4

r4,µ,λ [e1, e2] = e2, [e1, e3] = µe3, [e1, e4] = λe4, µλ 6= 0, −1 < µ ≤ λ ≤ 1 or −1 = µ ≤ λ < 0

r′4,γ,δ [e1, e2] = γe2, [e1, e3] = δe3 − e4, [e1, e4] = e3 + δe4, γ > 0

d4 [e1, e2] = e2, [e1, e3] = −e3, [e2, e3] = e4

d4,λ [e1, e2] = λe2, [e1, e3] = (1− λ)e3, [e1, e4] = e4, [e2, e3] = e4, λ ≥ 1
2

d′4,λ [e1, e2] = λe2 − e3, [e1, e3] = e2 + λe3, [e1, e4] = 2λe4, [e2, e3] = e4, λ ≥ 0

h4 [e1, e2] = e2, [e1, e3] = e2 + e3, [e1, e4] = 2e4, [e2, e3] = e4

Table 2. The 4-dimensional solvable non-abelian Lie algebras

Lie algebra in the same way as we did in Example 4.5. We summarize the result in Table 3, where
we exhibit the Lie brackets of the semisimple splitting and also the nilshadow is indentified. In
every case, the basis for g′ is {e1, . . . , e5} except when g is r2r2 or r′2 where the semisimple
splitting has dimension 6 and the basis is denoted by {e1, . . . , e6}. Note that to go from Table
2 to Table 3, we sometimes renamed our basis, similarly as in Example 4.5.
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g Lie brackets of g′ n(g′)

rh3 [e1, e2] = e3 rh3

n4 [e1, e2] = e3, [e1, e3] = e4 n4

rr3 [e1, e3] = e3, [e1, e4] = e4, [e2, e3] = e4 rh3

rr3,λ [e1, e3] = e3, [e1, e4] = λe4 R4

rr′3,λ [e1, e3] = λe3 − e4, [e1, e4] = e3 + λe4 R4

r2r2 [e1, e4] = e4, [e2, e6] = e6 R4

r′2 [e1, e5] = e5, [e1, e6] = e6, [e2, e5] = e6, [e2, e6] = −e5 R4

r4 [e1, e3] = e3, [e1, e4] = e4, [e1, e5] = e5, [e2, e3] = e4, [e2, e4] = e5 n4

r4,λ [e1, e3] = λe3, [e1, e4] = λe4, [e1, e5] = e5, [e2, e3] = e4 rh3

r4,µ,λ [e1, e3] = e3, [e1, e4] = µe4, [e1, e5] = λe5 R4

r′4,γ,δ [e1, e3] = γe3, [e1, e4] = δe4 − e5, [e1, e5] = e4 + δe5 R4

d4 [e1, e2] = e2, [e1, e3] = −e3, [e2, e3] = e4 rh3

d4,λ [e1, e2] = λe2, [e1, e3] = (1− λ)e3, [e1, e4] = e4, [e2, e3] = e4 rh3

d′4,λ [e1, e2] = λe2 − e3, [e1, e3] = e2 + λe3, [e1, e4] = 2λe4, [e2, e3] = e4 rh3

h4 [e1, e2] = e2, [e1, e4] = e4, [e1, e5] = 2e5, [e2, e3] = e4, [e2, e4] = e5 n4

Table 3. Semisimple splitting and nilshadow of 4-dimensional solvable Lie algebras

6.1. The case h = rh3. We first consider h = rh3 and study the existence of a Lie algebra
morphism ϕ : g′ → aff(h), ϕ = (t,D) satisfying the properties of Corollary 3.6, where g′ is the
semisimple splitting associated to a 4-dimensional solvable Lie algebra g.

Proposition 6.1. Let h be the nilpotent Lie algebras rh3 and let g be a solvable Lie algebra with

semisimple splitting g′ and nilshadow n(g′) = R4 as in Table 3. There exists a simply transitive

NIL-affine action ϕ : g → aff(h) if and only if g is isomorphic to either rr3,λ with λ ∈ {0,±1},
r′4,γ,δ with either δ = 0 or γ = 2δ, rr′3,0, r2r2, r

′
2 or r4,µ,λ with the following possibilities for the

parameters (µ, λ): (µ, λ) = (−1, λ) with −1 ≤ λ < 0, (µ, µ) with −1 < µ ≤ 1 and µ 6= 0, (µ,−µ)
with −1 < µ < 0, (µ, 1) with −1 < µ < 1 and µ 6= 0, (µ, 1 − µ) with 0 < µ < 1

2 or (µ, 1 + µ)

with −1 < µ < 0 and µ 6= −1
2 .

Proof. According to Corollary 3.6 there exists a Lie algebra morphism ϕ : g′ → aff(rh3) with

ϕ = (t,D) : g′ = n⋊ t → rh3 ⋊Der(rh3)

such that t : n → rh3 is a bijection. For most possibilities t is spanned by one element which we
write as e1, otherwise we write a basis as e1, e2. It follows from Lemma 3.8 that we can take ϕ
such that Spec(ade1

∣
∣
n
) = Spec(D), where D is a derivation of rh3. It can be shown that D has

the form

D =







a b 0 0
c d 0 0
m n a+ d u
p q 0 v






.
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Then, eigenvalues of D are {a + d, a+d±
√
∆

2 , v}, where ∆ = (a + d)2 − 4(ad − bc). We check

when the eigenvalues of ade1
∣
∣
n
coincide with the eigenvalues of D for any Lie algebra in Table

2 whose the nilshadow is R4. From now on, we will just write ade1 when actually referring to
the restriction to n.

If g = rr3,λ, the eigenvalues of ade1 are {0, 0, 1, λ}. Comparing this set with the eigenvalues
of D we have that λ ∈ {0,±1}.

If g = r′4,γ,δ, the eigenvalues of ade1 are {0, γ, δ± i}. Comparing this set with the eigenvalues
of D we obtain two possibilities, namely δ = 0 or γ = 2δ.

If g = rr′3,λ, the eigenvalues of ade1 are {0, 0, λ± i}. Comparing this set with the eigenvalues
of D we have that λ = 0.

If g = r2r2, then g′ = R2 ⋉ R4 with the actions given by ade1 = diag(0, 1, 0, 0) and ade2 =
diag(0, 0, 0, 1). A computation shows that there cannot be two different commuting derivations
with these eigenvalues on h.

If g = r′2, then g′ = R2 ⋉ R4 with the actions given by ade1 = diag(0, 0, 1, 1) and ade2 =






0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0






. Again, a computation shows that there do not exist two different commuting

derivations with these eigenvalues on h.
If g = r4,µ,λ, the eigenvalues of adS are {0, 1, µ, λ}. In this case there are many possible

combinations of µ and λ, namely the pairs (−1, λ) with −1 ≤ λ < 0, (µ, µ) with −1 < µ ≤ 1 and
µ 6= 0, (µ,−µ) with −1 < µ < 0, (µ, 1) with −1 < µ < 1 and µ 6= 0, (µ, 1 − µ) with 0 < µ < 1

2

or (µ, 1 + µ) with −1 < µ < 0 and µ 6= −1
2 .

We exhibit morphisms D : g′ → aff(h) for the possible cases in Table 4 and Table 5, such that
combined with the map t : g′ → h given by t(x0, x1, x2, x3, x4) = (x1, x2, x3, x4) these satisfy the
properties of Theorem 3.5. We leave it to the reader to check that these are indeed Lie algebra
morphisms. �

We continue with the case h = rh3, but now we consider Lie algebras in Table 3 whose the
nilshadow is rh3. By Corollary 3.7 there is a trivial action in these cases, in Table 6 we show
the semisimple part for these examples.

The last part of the subsection h = rh3 consists of Lie algebras in Table 3 whose nilshadow is
equal to n4, namely r4 and h4. In both cases a morphism exists, of which we present an example
in Table 7.

6.2. The case h = n4. We assume from now on h = n4, the filiform 4-dimensional Lie algebra
with Lie brackets given by [e1, e2] = e3, [e1, e3] = e4 in the basis {e1, e2, e3, e4}. A direct
computations shows that a general derivation of h can be writen as

D =







a 0 0 0
b e 0 0
c f a+ e 0
d g f 2a+ e






,

and thus has eigenvalues {a, e, a+ e, 2a+ e}. Note that no derivation of h has eigenvalue 0 with
exactly multiplicity 2 or 3.

Proposition 6.2. Let h be the nilpotent Lie algebras n4 and let g be a solvable Lie algebra with

semisimple splitting g′ and nilshadow n(g′) = R4 as in Table 3. There exists a simply transitive

action ϕ : g → aff(h) if and only if g is isomorphic to r4,µ,λ with µ = λ ∈ {−1, 12 , 1} or µ = −1
2

and λ = 1
2 .



SIMPLY TRANSITIVE NIL-AFFINE ACTIONS OF SOLVABLE LIE GROUPS 17

Proof. Assume first that there exists a simply transitive action, then according to Corollary 3.6
there exists a Lie algebra morphism ϕ : g′ → aff(h) with

ϕ = (t,D) : g′ = n⋊ t → h⋊Der(h)

such that t : n → h is a bijection. It follows from Lemma 3.8 that we can take ϕ such that
Spec(ade1

∣
∣
n
) = Spec(D), where e1 is an element of t and D is a derivation of h. Therefore the

eigenvalues of D are of the form {a, e, a + e, 2a+ e}.
We check when the eigenvalues of ade1 are equal to the eigenvalues of D for any Lie algebra in

Table 2 whose the nilshadow is R4. A small computation shows that the only option is g = r4,µ,λ
with µ = λ ∈ {−1, 12 , 1} or µ = −1

2 and λ = 1
2 . We exhibit an example of a map ϕ : g′ → aff(h)

for these possible cases in Table 5. �

We continue with the case h = n4, but now we consider Lie algebras in Table 2 whose the
nilshadow is rh3.

Proposition 6.3. Let h be the nilpotent Lie algebras n4 and let g be a solvable Lie algebra with

semisimple splitting g′ and nilshadow n(g′) = rh3 as in Table 3. There exists a simply transitive

action ϕ : g → aff(h) if and only if g is isomorphic to r4,λ with λ ∈
{
−1, 12 , 1

}
, or d4,λ with

λ ∈
{
1
2 , 2

}
.

Proof. Assume first that there exists a simply transitive action, so there exists a map ϕ : g′ →
aff(h) of the semisimple splitting satisfying the conditions of Corollary 3.6. It follows from
Lemma 3.8 that we can take ϕ such that Spec(ade1

∣
∣
n
) = Spec(D), where e1 is an element of t

and D is a derivation of h3. Therefore the eigenvalues of D are of the form {a, e, a+ e, 2a+ e}.
We check when the eigenvalues of ade1 are equal to the eigenvalues of D for any Lie algebra

in Table 2 whose the nilshadow is rh3. It can be proved that the only options are r4,λ with

λ ∈
{
−1, 12 , 1

}
, or d4,λ with λ ∈

{
1
2 , 2

}
. We exhibit an example of a map ϕ : g′ → aff(h) for the

possible cases, see Table 6. �

The last part of the case h = n4 consists of Lie algebras in Table 2 whose the nilshadow is n4.
In this case there is a trivial Lie algebra morphism by Corollary 3.7. For completeness we give
the compatible derivation DX for X ∈ t in Table 7.

We gave existence results of simply transitive actions from g to h for all possible 4-dimensional
Lie algebras g and h, where g is solvable and h is nilpotent. An overview is given in Table 8,
where we list all possibilities. From the explicit morphisms from g′ to h exhibited in Tables 4,
5, 6 and 7 we can obtain morphisms from g to h. As an example, let us recall notation from
Example 4.5. Consider the Lie algebra g = rr3 with basis e1, e2, e3, e4 and structure constants
given by [e1, e2] = e2, [e1, e3] = e2+e3 in a basis {e1, e2, e3, e4}. From Table 6 we have a morphism
ϕ : g′ → aff(h3⊕R) given by ϕ(x0, x1, x2, x3, x4) = ((x1, x2, x3, x4),diag(0, x0, x0, 0)) in the basis
f1, f2, f3, f4 of rr3 with constant structures given by [f1, f2] = f3. Then, by composing with the
inclusion of g into its semisimple splitting g′, we get a Lie algebra morphism ψ : rr3 → aff(h3⊕R)
given by

ψ(x1, x2, x3, x4) = ((x1, x3, x2, x4),diag(0, x1, x1, 0))

which induces a simply transitive action between the corresponding 1-connected Lie groups.
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g Der(h3 ⊕ R) Der(n4)

rr3,−1











x0 0 0 0

0 −x0 0 0

x2
2 −x1

2 0 0

0 0 0 0











×

rr3,1











0 0 0 0

0 x0 0 0

x2
2 −x1

2 x0 0

0 0 0 0











×

rr3,0











0 0 0 0

0 0 0 0

x2
2 −x1

2 0 0

0 0 0 x0











×

r′4,γ,0











0 x0 0 0

−x0 0 0 0

x2
2 −x1

2 0 0

0 0 0 γx0











×

r′4,2δ,δ











δx0 x0 0 0

−x0 δx0 0 0

x2
2 −x1

2 2δx0 0

0 0 0 0











×

rr′3,0











0 x0 0 0

−x0 0 0 0

x2
2 −x1

2 0 0

0 0 0 0











×

Table 4. Simply transitive actions for g with nilshadow n(g′) = R4, part I.
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g = r4,µ,λ Der(h3 ⊕ R) Der(n4)

r4,−1,λ −1 ≤ λ < 0











x0 0 0 0

0 −x0 0 0

x2
2 −x1

2 0 0

0 0 0 λx0











only λ = −1:











−x0 0 0 0

0 x0 0 0

0 −x1 0 0

0 0 −x1 −x0











r4,µ,µ −1 < µ ≤ 1, µ 6= 0











0 0 0 0

0 µx0 0 0

x2
2 −x1

2 µx0 0

0 0 0 x0











only µ = 1
2 :











x0
2 0 0 0

0 0 0 0

0 −x1
x0
2 0

0 0 −x1 x0











and µ = 1:











0 0 0 0

0 x0 0 0

0 −x1 x0 0

0 0 −x1 x0











r4,µ,−µ, −1 < µ < 0











µx0
2 0 0 0

0 −µx0
2 0 0

x2
2 −x1

2 0 0

0 0 0 x0











µ = −1
2 :











−x0
2 0 0 0

0 x0 0 0

0 −x1
x0
2 0

0 0 −x1 0











r4,µ,1 −1 < µ < 1, µ 6= 0











x0 0 0 0

0 0 0 0

x2
2 −x1

2 x0 0

0 0 0 µx0











×

r4,µ,1−µ 0 < µ < 1
2











µx0 0 0 0

0 (1− µ)x0 0 0

x2
2 −x1

2 x0 0

0 0 0 0











×

r4,µ,1+µ −1 < µ < 0 µ 6= −1
2











x0 0 0 0

0 µx0 0 0

x2
2 −x1

2 (1 + µ)x0 0

0 0 0 0











×

Table 5. Simply transitive action for g with nilshadow n(g′) = R4, part II.
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g Der(h3 ⊕ R) n4 ⋊Der(n4)

rr3 diag(0, x0, x0, 0) ×

λ = −1:










(x2, x4, x1, x3),










−x0 0 0 0

0 x0 0 0

0 −x2 0 0

x1 0 −x2 −x0



















r4,λ diag(0, λx0, λx0, x0) λ = 1
2 :










(x2, x1, x3, x4),










x0
2 0 0 0

0 0 0 0

cx1 (c− 2)x2
x0
2 0

(c− 1)x3 0 (c− 2)x2 x0



















with c ∈ R, c2 − c− 1 = 0

λ = 1:










(x1, x4, x2, x3),










0 0 0 0

0 x0 0 0

x4 0 x0 0

0 0 0 x0



















d4 diag(x0,−x0, 0, 0) ×

λ = 1
2 :










(x1, x4, x2, x3),










x0
2 0 0 0

0 0 0 0

0 −x1
x0
2 0

−x2 0 −x1 x0



















d4,λ diag(λx0, (1− λ)x0, x0, 0)

λ = 2:










(x2, x1, x3, x4),










−x0 0 0 0

0 2x0 0 0

cx1 (c− 2)x2 x0 0

(c− 1)x3 0 (c− 2)x2 0



















with c ∈ R, c2 − c− 1 = 0

d′4,λ










λx0 x0 0 0

−x0 λx0 0 0

0 0 2λx0 0

0 0 0 0










×

Table 6. Simply transitive actions for g with nilshadow n(g′) = h3 ⊕ R
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g h3 ⊕ R⋊Der(h3 ⊕ R) Der(n4)

r4












(x1, x2, x4, x3),












0 0 0 0

0 x0 0 0

0 −x1 x0 x1

0 x1 0 x0


































0 0 0 0

0 x0 0 0

0 0 x0 0

0 0 0 x0












h4












(x1, x3, x4, x2),












x0 0 0 0

−x2 x0 0 0

0 0 2x0 0

0 0 0 0


































x0 0 0 0

0 0 0 0

0 0 x0 0

0 0 0 2x0












Table 7. Simply transitive actions for g with nilshadow n(g′) = n4

g n(g′) h3 ⊕ R n4

rh3 rh3 X X

n4 n4 X X

rr3 rh3 X ×

rr3,λ R4 λ ∈ {±1, 0} ×

rr′3,λ R4 λ = 0 ×

r2r2 R4
× ×

r′2 R4
× ×

r4 n4 X X

r4,λ rh3 X λ ∈
{
±1, 12

}

r4,µ,λ R4 for specific values of (µ, λ) for specific values of (µ, λ)

r′4,γ,δ R4 δ = 0 or γ = 2δ ×

d4 rh3 X ×

d4,λ rh3 X λ ∈
{
1
2 , 2

}

d′4,λ rh3 X ×

h4 n4 X X

Table 8. Overview of existence of simply transitive actions from g to h3 ⊕ R and n4
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