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The modeling of living systems composed of many interacting entities is treated in this
paper with the aim of describing their collective behaviors. The mathematical approach
is developed within the general framework of the kinetic theory of active particles. The
presentation is in three parts. First, we derive the mathematical tools, subsequently, we
show how the method can be applied to a number of case studies related to well defined
living systems, and finally, we look ahead to research perspectives.
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1. Aims and Plan of the Paper

This paper is devoted to the presentation and critical analysis about a new class
of mathematical tools which claim to describe some important features of living
systems composed of many interacting entities. The presentation is not limited to
theory, but also to applications due to their contribution to enlighten the bridge
between mathematics and real systems. In addition, a critical analysis is a key
feature of each section looking ahead to further development of the theory.

The main difficulty is that living systems do not relay on a field theory to guide
the mathematical approach. This concept is well understood in biology as critically
analyzed by various authors T2 More in general, the same reasonings can be
addressed to all fields of sciences devoted to the study of living systems. A hint is
given in Chap. 7 of Ref. 23 where the authors replace the definition soft sciences
with that of science of living systems. This vision gives to mathematics an essential
role toward a unified vision of all sciences which goes beyond any classification from
soft to hard. Indeed, it is a first step to develop a strategy to take into account
that, in the case of the living matter, the approach is not supported, as mentioned,
by a field theory 1423

The strategy consists in replacing the field theory by a mathematical structure
(say a mathematical theory) suitable to capture, as far as it is possible, the com-
plexity features of living systems. This structure defines the conceptual framework
for the derivation of models in a broad variety of fields, for instance social dynamics,
financial markets, dynamics of multicellular systems, immune competition, indi-
vidual and collective learning, and the modeling of large systems of self-propelled
particles such as crowds and swarms.

The first part of our paper is devoted to the derivation of theoretical tools in view
of the aforementioned theory which includes some new ideas, with respect to those



Math. Models Methods Appl. Sci. 2021.31:1821-1866. Downloaded from www.worldscientific.com
by 45.71.5.10 on 10/12/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

What is life? A perspective of the mathematical kinetic theory of active particles 1823

proposed in Ref. 23] according to a more general vision of active particle methods.
Subsequently, we present a selection of applications focused on the modeling of
dynamics of living systems which can be modeled by the theoretical tools presented
in the first part of the paper. The selection accounts for different features of models
with special attention to the role of space dynamics by showing how space can
have an influence over the collective behavior of the whole system. Finally, we look
ahead to research perspectives also based by a critical (and self-critical) analysis
which closes each section with the aim of enlightening how far the mathematical
tools proposed in our paper succeed in chasing the mythical objective of designing
a mathematical theory of living systems.

Section [2lis devoted to design a strategy toward the derivation of mathematical
tools to model systems composed of many living interacting entities, where their
collective dynamics are generated by interactions among the said entities and the
external environment. The strategy essentially consists in selecting the key com-
plexity features of living systems to be captured into a general differential structure
suitable to potentially describe them. This structure is further specialized into the
class of systems object of the modeling approach.

In Sec. Bl we transfer the aforementioned strategy into mathematical structures
which are derived within the general framework of the so-called kinetic theory of
active particles, are deemed to take the place of the field theories available to support
the derivation of models for physical systems of the inert matter. These structures
provide the conceptual framework for the derivation of models which are obtained
by insertion of the mathematical description of interactions.

Section M presents a review of applications of the mathematical theory presented
in the preceding sections. The survey refers to the following topics: collective learn-
ing, behavioral crowd dynamics, virus pandemics, and evolutionary economics. This
section also briefly reports about the so-called mathematical theory of behavioral
swarms introduced in Ref. 33 and applied, in Ref. 113 to modeling the dynam-
ics of prices. This approach derives dynamical systems corresponding to pseudo-
Newtonian frameworks. The survey of applications is limited to very recent years
with the aim of enlightening new ideas on the modeling of interactions as a key
step toward the mathematical description of behavioral systems.

Section Blreports a critical analysis focused on challenging research perspectives
toward further development of mathematical tools as well as to modeling complex
systems in real life.

2. A Strategy Toward Modeling Living Systems

This section is devoted to the design of a general strategy toward the modeling
of the collective dynamics of large systems of interacting living entities. The quest
toward this challenging objective is in three steps, each of them treated in the
following subsections. First, we present a general conceptual-philosophical frame-
work, subsequently a strategy is set out in view of mathematical formalizations,
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lastly a critical analysis is proposed, focusing on a suitable interpretation of the
scaling problem, to make operative the strategy toward an appropriate selection of
mathematical tools.

2.1. Conceptual framework

A conceptual framework is proposed in this subsection with the aim of providing a
support toward the derivation of the modeling strategy. This strategy is also based
on some scientific works selected according to the authors’ perspective accounting
for their contribution that help understanding the complex interactions between
mathematical sciences and the dynamics of living systems.

e Erwin Schrédinger (1887-1961) looked for a physical theory, where cells mod-
ify their state due to interactions with other cells 35 Schrodinger’s pioneering ideas
chased a systems approach motivated by the study of mutations (some of them
also induced by external actions such as radiations). We can argue that one of his
intuitions was that the dynamics at the level of cells is driven by the dynamics at
the molecular scale. This concept is nowadays the most important hint of the inter-
actions between mathematics and biology, where understanding the link between
the dynamics at the molecular scale of genes and the functions expressed at the
level of cells is a key passage to achieve the derivation of a bio-mathematical theory.
The following sentence from Ref.

Living systems have the ability to extract entropy to keep their own at low
levels

identifies ability of living systems to develop a their own strategy. Hence the concept
of active particles was already introduced.

e Lee Hartwell (born 1938), Nobel Laureate in 2001, firmly indicates?® that
the mathematical approach to the description of the dynamics of the inert matter
cannot be straightforwardly applied to living systems:

Biological systems are very different from the physical or chemical systems
of the inanimate matter. In fact, although living systems obey the laws
of physics and chemistry, the notion of function or purpose differentiate
biology from other natural sciences. Indeed, cells are not molecules, but have
a living dynamic induced by the lower scale of genes and is organized into
organs.

This statement, in Ref.[98] directly looks forward a challenging research perspective
whose first step consists in acknowledging that the mathematics used for the inert
matter fails when applied to the living matter.

Between these two milestones, some specific models have been proposed to
describe the dynamics of the aforementioned class of dynamical systems by methods
somehow inspired by the mathematical kinetic theory and by the Boltzmann equa-
tion in particular ¥ For instance, Prigogine and Hermann developed an approach
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to describe the dynamics of vehicular traffic on highways128 An important fea-
ture of this model is that the car-driver subsystem is viewed as an active particle
whose ability is heterogeneously distributed, while the overall state of the system
is defined by a probability distribution over micro-scale state. A deep study of the
heterogeneity properties has been clearly identified by the structures proposed in
Ref.

Methods from the kinetic theory have been subsequently developed by various
authors, for instance on the modeling of the social dynamics of families of insects in
Ref. [105, or of the immune competition between cancer and immune cells2? These
pioneering papers have been followed by a vast literature mainly developed in this
century. A review and a critical analysis on kinetic theory methods is postponed to
the next section specifically devoted to transfer the concepts of this section into a
mathematical theory. Here, we simply indicate the sharp critical analysis presented
in Ref. 11 which enlightens the conceptual differences between the classical kinetic
theory and that referred to active particles.

Living systems are evolutionary in that first they are subject to dynamic change,
deriving from both internal and external forces, or interactions, second they are
subject to some form of selection, weak or strong according to the configuration of
the system. Notably, selection is not necessarily efficient because it might also select
on the ground of other attributes distinct from efficiency. This pseudo-darwinian
feature does not belong, as we shall see, to biology only, but it characterizes all living
systems. These include systems in economics and sociology, where the dynamic,
driven by learning, includes mutations and selection.

The awareness of Hartwell’s legacy motivates a quest toward the search of a
rational to chase the objective of the derivation of a mathematical theory of living
systems by going far beyond the classical methods valid for the inert matter. A
preliminary contribution to this challenging objective is delivered by the answer to
three key questions presented in the following.

e KQ1: What is complexity? Complezity viewed as a barrier. Imagine a world
correctly described in mathematical and logical terms. That would make realistic
the Leibniz dream (free translation from Latin language):

In the future, when an issue is controversial, it will not be mecessary to
dispute between two philosophers but between two subjects able in compu-
tations. It will suffice them to keep the abacus into their hands, sit down,
and say each other — in a friendly way — start making calculations 40

Unfortunately (or luckily?), two hard constraints preclude the actual achieve-
ment of a world so entirely known to allow such exciting solutions.

e The so-called chaos in dynamical systems, whose apparently-random states of
disorder and irregularities are often governed by deterministic laws (that are
highly sensitive to initial conditions).
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e The phenomenon of complexity, namely the emergence of entirely new properties
at any new level of aggregation.

Arguably, Leibnitz was not aware of the existence of them. Therefore, we might
pose to ourself the following question: from where to start understanding complex-
ity? In Aristotle, complexity seems opposed to simplicity as a matter of lifestyle.
In Latin, the world complerus means what is woven together.

In the 40s of the last century, von Neumann was working with automata and
their complexity, but: he described his own concept of complexity as “vague, unsci-
entific and imperfect” 11

If we jump to the 60s of the last century, we have the Kolmogorov complexity,
defined as a measure: given an object, e.g. a piece of text, the length of the shortest
computer program (in a predetermined programming language) that produces the
same object as output.

Beautiful, but again it is not a reply to our search about what complexity is.
The concept was there, but missing a clear interpretation and definition, confused
with the a-scientific and anti-reductionist holism, i.e. the idea that we should view
many systems (physical, biological, social, our body, etc.) as wholes, not merely as
collections of parts. Sure, but then what? So, neither holism nor simple reduction-
ism, but with Nobel Laureate Philip Anderson (born 1923), in 1972 the “More is
different” clarification™®:

(p- 393) The reductionist hypothesis may still be a topic for controversy
among philosophers, but among the great majority of active scientists 1
think it is accepted without questions. The workings of our minds and
bodies, and of all the animate or inanimate matter of which we have any
detailed knowledge, are assumed to be controlled by the same set of funda-
mental laws (...) The main fallacy in this kind of thinking is that the reduc-
tionist hypothesis does mot by any means imply a “constructionist” one
(...) The constructionist hypothesis breaks down when confronted with the
twin difficulties of scale and complexity. The behavior of large and complex
aggregates of elementary particles, it turns out, is not to be understood in
terms of a simple extrapolation of the properties of a few particles. Instead,
at each level of complexity entirely new properties appear (...).

Often, complexity is related to biological systems, however this is a narrow vision
as complexity is everywhere in our world ™ In particular, the focus of our paper
goes over various topics including evolutionary economics referring to the concep-
tual framework in Ref. [78, where it is given evidence of the role of complexity in
economical systems. The following quotation from Nobel Prize in economy Herbert
Simon has been extracted from Ref. 138 and reported in Ref. [78 to enlighten the
initial step toward linking economy to the theory of complexity.

Roughly by a complex system I mean one made up of a large number of
parts that interact in a non-simple way. In such systems, the whole is more
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than the sum of the parts, not in an ultimate metaphysical sense, but in the
important pragmatic sense that, given the properties of the parts and the
laws of their interaction, it is not a trivial matter to infer the properties of
the whole.

At this end, as a key milestone toward the development of a mathematical the-
ory, it is necessary to transfer the aforementioned general concepts to an assessment
of the relevant complexity features by answering to the second key question.

KQ2: Which are the main complexity features of living system? A mathe-
matical theory of living system should arguably attempt to capture the complexity
feature of living systems ™23 Therefore, the answer to this question aims at con-
tributing to the key objective of our paper. Without naively claiming that our reply
can be exhaustive, our proposal for a selection of five key features is as follows:

(1) Ability to express an activity: Living entities are capable to develop specific
strategies and organization abilities that depend on the state of the surrounding
entities and environment.

(2) Heterogeneity: The ability to express a strategy is not the same for all entities
as expression of heterogeneous behaviors is a common feature of a great part of
living systems.

(3) Nonlinearity of interactions: Interactions are nonlinearly additive and non-
local as they may involve entities that are not immediate neighbors.

(4) Learning ability: Living systems receive inputs from the environments and
have the ability to learn from past experience. Accordingly, the strategy they
develop evolves in time.

(5) Darwinian mutations and selection: All living systems are evolutionary,
as interactions can generate, by birth of aggregations, new entities that are
increasingly fitted to the environment, who in turn generate new entities again
more fitted to the environment.

KQ3: What is the black swan? The expression black swan has been introduced
to denote unpredictable events which are far away from those generally observed
by repeated empirical evidence. Let us report the definition by Taleb4L:

A Black Swan is a highly improbable event with three principal character-
istics: It is unpredictable; it carries a massive impact; and, after the fact,
we concoct an explanation that makes it appear less random, and more
predictable, than it was.

Actually, the concept of the black swan is associated to the concept of not
predictable event or, negatively not predicted event, but we wish to stress that we
want to refer this concept to the ability of mathematical models to provide all
possible scenarios including events which are unlikely to be anticipated. This vision
has a well-defined implication on the modeling approach which should not include,
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in the model, any artificial relaxation term suggested by observed data rather than
by interactions. Indeed, this is a key issue toward the derivation of a mathematical
theory of living systems to be carefully tackled in the following.

2.2. From philosophical thoughts to figurative fantasy

Let us now leave the various concepts presented until now and give some space to
our fantasy. A free interpretation in Ref. suggests that the Metamorphosis-I11
by Cornelis Escher:

https : [/arthive.com/it/escher/works/200075 Metamorphosis

depicts most of the aforementioned complexity features, for instance the collective
strategy by which a village with houses with almost uniform shapes is gradually
transformed into an heterogeneous village which includes architectures with differ-
ent shapes.

We can observe that the evolution is selective as shown by the transition from
essential shapes to an organized village, where all available spaces are exploited to
include an increasing population. The presence of a church, that takes an important
part of the space and a somehow key position, indicates the presence of a cultural
evolution. This might even reflect a multiscale dynamic. In fact, it results from the
interplay between the micro-scale of individuals and the macro-scale of the village.

In addition, the last part of Metamorphosis-IIT shows a sudden change from a
peaceful village to a chess plate which represents a battle between two antagonist
armies. If we hide this part, we should admit that it is a sudden change which
is not predicted by early signal. The third key question specifically refers to this
topic. We firstly notice that the village exists in reality (it is in the Mediterranean
coast immediately on the south of the village of Amalfi), then we pose the following
question: Does the tower truly exist?

The answer is that the real village looks at the sea, while the tower cannot be
observed looking at it from right to left by an observer who faces the sea from the
village, as shown on the upper picture of Fig. [[l On the other hand, an observer
placed on the rear of the village can observe a tower on the cape in the lower picture
of Fig. [

The Metamorphosis represents a figurative example of the practice of tessel-
lation primarily used for architecture and decoration. Tessellation has also been
used in mathematical applications since it is a case in which the gradual move-
ment from one regular geometric form to the subsequent one can create a cascade
effect. Indeed regular over-imposed behaviors or patterns, when moving, can cre-
ate a complex multidimensional artefact, such us in the Metamorphosis. Complex
multi-dimensionality out of regular geometric structures is common also in biology:
take the case of beehives or Roman cauliflower.

So far, the Metamorphosis teaches us that different visions of the same object
can be represented into one unified collective representation. Indeed, this is one of
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Fig. 1. Different visions of the village Atrani on Amalfi-coast.

the specific features of complex systems. If now we leave some additional freedom
to our fantasy, the tower can be interpreted as an early signal that an extreme
event is going to happen. The various changes in the picture can be interpreted
as predictable emerging behaviors, while the last one appears as a non-predictable
event. Escher has gone through the experience of two world wars, where peaceful
villages transformed into a battlefield between the two armies of the chess plate.

2.3. On a strategy toward modeling living systems

This subsection proposes a modeling strategy that copes with the absence of a
field theory when dealing with living matter. This strategy motivates replacing
the definition soft sciences by science of living systems. Indeed, the strategy we
propose consists in replacing the field theory by a mathematical structure (say a
mathematical theory) suitable to capture, as far as it is possible, the complexity
features of living systems. This structure defines the conceptual framework for the
derivation of models which are obtained by inserting models of interactions into
the structure itself. In more details, the sequential steps of the strategy can be
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summarized as follows:

(1)
(2)

(3)

(4)

(5)

Understanding the links between the dynamics of living systems and their com-
plexity features.

Subdivision into subsystems: The overall system can be divided into so-called
functional subsystems, in short FSs, which share common objectives and
strategy.

Deriwvation of a general mathematical structure, consistent with the aforesaid
features, with the aim of offering the conceptual framework toward the deriva-
tion of specific models.

Design of specific models corresponding to well-defined classes of systems by
implementing the said structure with suitable models of individual-based,
micro-scale, interactions.

Validation of models by quantitative comparison of the dynamics predicted by
them against empirical data. Models are required to reproduce qualitatively
emerging behaviors.

This strategy, which leads to a modeling rationale, is represented in Fig. 2l which

indicates, by a flow-chart, how the observation of the real system moves to models,

Phenomenological
interpretation

Complexity features
of living systems

Interaction Mathematical External
dynamics structures actions

p
Mathematical C ti

. Derivation of models . ompu. e

topics ) simulations

Model validation

Fig. 2. Modeling strategy.
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which only approximate, physical reality and, consequently, need to be validated.
Some additional remarks contribute to further enlightening the flowchart.

o Multiscale aspects: Modeling must be multiscale, as the dynamic at the large scale
depends on the dynamics at the low scales. For instance, the functions expressed
by a cell are determined by the dynamics at the molecular (genetic) level.

e Role of the environment: The environment evolves in time, in several cases also
due to interactions with the internal living system.

e Large deviations: Emerging behaviors may present large deviations. In this case,
small deviations in the input create large deviations in the output.

o Individuals within a certain FS can aggregate into groups of affinity: Communi-
cations and subsequent dynamics can take advantage (or disadvantage) from the
said aggregation by creating a new communication network.

2.4. The scaling problem

The representation and modeling of dynamical systems can be developed at three
representation scales, namely microscopic (individual based), macroscopic (hydro-
dynamical), and at the intermediate mesoscopic (kinetic) scales. In the kinetic the-
ory approach, the dependent variable is a distribution function over the microscopic
state of the individuals.

Our study refers to the collective dynamics of several heterogeneous interacting
individuals. Heterogeneity, which affects interactions, motivates the selection of
the kinetic theory approach as the most appropriate toward modeling. In fact,
it can naturally account for heterogeneity and stochastic interactions23 On the
other hand, the number of interacting entities is not, in most cases, large enough
to justify continuity assumption of the aforementioned distribution function. This
key difficulty cannot be hidden and has to be carefully treated in the derivation
of the mathematical structure, bearing in the mind that technical developments
of models of the classical kinetic theory cannot be straightforwardly applied to
living systems. For instance, the celebrated Boltzmann equation is based on the
assumption of a rarefied flow where only binary, short range, interactions occur,
while interactions in the Vlasov equations are distributed in the whole space which
is not the case of living systems, where the domain of interactions refers both to
sensitivity and visibility of individuals. In addition, interactions of classical particles
preserve mechanical quantities, namely mass, momentum, and energy, while these
properties are often lost in the case of living systems.

The mathematical theory reported in the next section is grounded on methods
of the kinetic theory consistently with the strategy proposed in this section, but,
considering the developments imposed by the complexity features of living systems.
This selection should be critically examined as none of the scales, standing alone,
is sufficient to depict the dynamics of the class of systems under consideration.
Indeed, a multiscale vision is necessary and it is a key feature of a mathematical
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theory of living systems. Therefore, various reasonings on this vision are going to
be a constant presence in the next sections.

The contents of the next sections is mainly focused on the kinetic theory of
active particles, in short the KTAP approach. However, we are aware that the
rationale proposed in the following can be referred to other formal structures, for
instance, Fokker Plank approach 83123 agent methods®? statistical physics of living
particles T00U eyolutionary dynamics 121

3. Toward a Mathematical Theory of Living Systems

We show, in this section, how the strategy proposed in Sec.[2lcan be transferred into
a mathematical theory, where this term is used to refer to mathematical structures
suitable to capture, as far as it is possible, the complexity features of living sys-
tems. The study is mainly focused on the kinetic theory of active particles, where
individual entities, called active particles (in short a-particles), interact across net-
worked populations. The micro-scale state of a-particles includes, in addition to
mechanical variables, also a variable, called activity, which models the behavioral
ability of the individual entities. According to the authors’ perspective, the kinetic
theory approach appears to be the most appropriate to be selected without hiding
the key difficulty consisting in that the number of interacting entities is not large
enough to fully justify the continuity assumption of the distribution function.

As mentioned, there exists a well-established literature on this topic which starts
from those we have indicated as pioneering research works 2052628 e specif-
ically refer to the book?¥ and, in addition, we include some recent developments
mainly motivated by specific applications. In more details, the theory is presented
in Sec. 3.1l additional reasonings on modeling interactions and networks are pro-
posed in Sec. referring also to the key problems posed in Ref. 47, while a critical
analysis is proposed in Sec. B3] to enlighten how much the theory is consistent
with the conceptual approach of Sec. 2] and how further research activity should be
developed.

3.1. The mathematical theory of active particles

We focus on the collective dynamics of large systems of a-particles. Living entities,
at each interaction, play a game with an output that depends on their strategy
often related to surviving and adaptation abilities. Interactions are modeled by
theoretical tools of stochastic game theory which are characterized as follows:

e Stochastic game theory deals with entire populations of players, where strate-
gies with higher payoff might spread over each population by learning triggered
individual based interactions and between each individual and the collectivity.

e The strategy expressed by individuals, i.e. a-particles, is heterogeneously dis-
tributed over the micro-states of players which include both mechanical and
activity variables.
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e Players are modeled as stochastic variables linked to a distribution function over
the micro-state. The payoff is heterogeneously distributed over players as well,
and it might be motivated by “rational” or even “irrational” strategies.

e The payoff depends on the actions of the co-players as well as on the frequencies
of interactions. Both quantities can depend on the probability state of the system.

e Interactions are nonlocal and nonlinearly additive in a way that the dynamics of
the whole system is not straightforwardly determined by the dynamics of a few
entities.

A qualitative description of phenomenological examples of interactions is as
follows:

(1) Competitive (dissent): One of the interacting a-particles increases its status by
taking advantage of the other which is forced to decrease its status. Competition
brings advantage to only one of them.

(2) Cooperative (consensus): The interacting a-particles exchange their status, i.e.
a-particles with higher state decrease it, while the others with lower state
increase it. All a-particles show a trend to share their micro-state.

(3) Learning: One of the two a-particles modifies, independently from the other,
the micro-state. It learns by reducing the distance between them.

(4) Hiding-chasing: One of the two attempts to increase the overall distance from
the other, which in turn tries to reduce it.

(5) Mized competitive-cooperative: A-particles do not share the same strategy, but
some of them act competitively whereas some others cooperatively.

If the dynamics of interaction depends on space, the following geometrical quan-
tities, and related properties, must be introduced:

o Visibility domain: €, which is the domain within which an a-particle can see the
other a-particles.

o Sensitivity domain: s which is the domain within which an a-particle can feel
the presence of the other a-particles. If Q5 C €, then interactions occur within
Q. If Q, C Qg, then interactions occur within §2,. The interaction domain €2 is
defined as the intersection between €2, and .

e The size of the sensitivity domain: 25 depends on the amount of information
which can be received by an a-particle, hence 2 depends on the distribution
function. The theory proposed in Ref. suggests that the size of )5 depends
on a critical density, namely a critical number of particles. The mathematical
formalization in Ref. 32l indicates how € is related to the velocity direction and
visibility angle of each a-particle.

The overall system is subdivided into n FSs whose state is defined by the dis-
tribution function

fi=filt,z,v,u) : [0, T] x E X Dy x Dyy =Ry, i=1,...,nm, (3.1)
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where ¥ is the domain where a-particles are located, and D,, and D, denote the
domains of the variables uw and v, respectively. The following a-particles are sup-
posed to be involved, for each functional subsystem, in the interactions:

e Test particles of the ith functional subsystem with microscopic state, at time ¢,
delivered by the variable (z,v,u), whose distribution function is f; = fi(¢, «,
v, u). The test particle is assumed to be representative of the whole system.

e Flield particles of the kth functional subsystem with microscopic state, at time
t, defined by the variable (x*,v*, u*), whose distribution function is f; =
fe(t,z* v*, u*).

e (Candidate particles, of the hth functional subsystem, with microscopic state,
at time ¢, defined by the variable (., v.,u.), whose distribution function is

fh = fh(t;w*;v*7u*).

Let us now consider short range interactions, when particles interact within an
interaction domain 2 generally small with respect to the domain ¥ containing the
whole system; and let us use the term i-particle to denote a particle in the ith
functional subsystem. Bearing in mind that a precise definition and computing of
Q still needs to be given, the theory states that the modeling of interactions is
delivered by the following quantities:

e Interaction rate for conservative dynamics: npi|f](@, Vi, wy, *, v*, w*), which
models the frequency of the interactions between a candidate h-particle with
state @, vy, u, and a field k-particle with state *, v*, u*. Analogous expression
is used for interactions between test and field particles.

e Interaction rate for non-conservative dynamics: ppi[f](@, vy, U, *, 0*, w), is
analogous to nyr, but corresponding to proliferative and destructive interactions.

e Transition probability density: Ci,[fl(ve — v, ux — uw|x, v, U, x*, V", u*),
which denotes the probability density that a candidate h-particle, with state
T, V4, Uy, ends up into the state of the test particle of the ith F'S after an inter-
action with a field k-particle.

e Proliferative term: P}, [fl(ve — v, ux — u|@, vy, us, x*, v*, u*), which models
the proliferative events for a candidate h-particle, with state x, v, u., into the ith
functional subsystem after interaction with a field k-particle with state *, v*, u*.

e Destructive term: D[ f](x, v, u, x*, v*, u*), which models the rate of destruction
for a test i-particle in its own functional subsystem after an interaction with a
field k-particle with state ™, v*, u*.

These quantities can be viewed in terms of rates by multiplying their interac-
tion rate with the terms modeling transition, proliferative, and destructive events.
Hence we have transition rate: nni[f]Ci,[f], proliferation rate: pnk[f] Pi.[f], and
destruction rate: pi|f] Dik[f]-
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Mathematical structures are obtained by number balance of a-particles within
an elementary volume of the space of microscopic states, mechanics and activity, of
particles

Variation rate of the number of active particles
= Inlet flux rate by conservative interactions
— Outlet flux rate by conservative interactions
+ Inlet flux rate by proliferative interactions and mutations
— Qutlet flux rate by destructive interactions and mutations.
This balance relation corresponds to the following general structure:
(O +v-0g)fi(t,x,v,u) = (C; — Li + Py — Dy)[f](t, &, v,u), (3.2)

where the various terms C;, £;,P; and D; can be formally expressed, consistently
with the definition of the interaction terms.

Remark 3.1. A commonly applied assumption is that the terms Pﬁk and Dy
depend, in addition to f, only on the activity variables, namely P; [f](u. —
u|uy, u*) and Dyi[f](w, w*). This assumption is used in the equations below.

In the spatially homogeneous case, the mathematical structure is specialized as
follows:

O fit,w) = (Cilf] = Lilf] + Pilf] = Dilf])(t, w)
S [ e G e )

hok=1 7 DuxDu

X fn(t wa) fi(t, w” ) dus du — fit,u) > / ik [f](w, w*) fi(t, w*)
k=1 7/ Du

x du* + Z /D b th[f](u*v"-”*)lpfik[f](u*%ulu*aU*)fh(t;u*)

hk=1
<ltwdudu = it Y [l )
k=1 w

X Dy (w, w*) fr. (t, u*)du”. (3.3)

The same calculations, in the spatially inhomogeneous case, correspond to
Eq. (32), where the interaction terms are given by:
n

Ci = i [ (ws, w)Chi [l (v = v, s = ulw,, w)

hk=1 /Q><Du><Du><D1,><DU

X fn(t, @, v, us) fi(t, ", v*, u*)de” dv, dv* du, du”, (3.4)
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L= filt,z,v, i ,w”
f(thU)kz:/QxDvxDunk[f]WW)

=1

< fult, @ v u)da dv* du, (3.5)
Pi= ) / ok [F1 (s, W) P F] (s — wltns, w®)

b k=1 2% D X D, X Doy X Doy

X fh(t’ L) Vs, 'U/*)fk(t, iB*, ’U*7 U*)dil?* d’U* dv”* du* du*7 (36)
Di = fi(tvwvvau)Z/ ,ulk[f](w,w*)le[f](u,u*)

k=1 QX Doy X Dy,
X [r(t,x*, v*, u")de” dv* du”, (3.7)

where w, w, and w* denote the microscopic states (x,v,u), (x,v., u.) and
(x*,v*,u*), respectively. Detailed calculations, which are not repeated here, indi-
cate how {2 can be computed when the sensibility area ) is given by an arc of circle,
with radius R, around the velocity direction. Then, if the visibility arc, symmetric
or non-symmetric, is known, Ry is referred to the critical number of a-particles
necessary to provide a sufficient information.

Further developments of the structures [B2)—(B7) will be outlined in the next
two subsections referring to a critical analysis on the limits and possible exten-
sions of these structures. Here, we just anticipate some technical remarks that can
contribute to enlighten the properties of these mathematical structures in view of
derivation of models:

e The use of distribution functions, rather than probability densities, as dependent
variables accounts for a dynamics with a variable number of a-particles due to
birth and loss processes.

e Mutations can be modeled by birth processes which can generate entities (gain)
more fitted to the environment, who in turn might generate new entities again
more fitted to the outer environment. Selection can be modeled by death (loss)
of entities less fitted to the environment.

e Two types of interactions are taken into account: micro—micro or micro—
macro, where the term macro corresponds to macroscopic quantities obtained by
weighted averaging of the distribution function.

Some explicative figures can enlighten the role of interactions by distinguishing
the differences between the case of space homogeneity and that of space dynamics.
In more details.

Figure Bl represents two a-particles moving with velocity v that define the visi-
bility domain, while the sensitivity domain depend on the local density. The figure
“A” on the left shows the case of a visibility domain (blue contour) greater than the
sensitivity domain (red contour), so that visibility is sufficient to allow to acquire
the full necessary information. The figure “B” on the left shows the opposite case,
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Fig. 3. (Color online) Sensitivity and interaction domains.

namely a visibility domain (blue contour) smaller than the sensitivity domain (red
contour), so that lack of visibility reduces the necessary information.

Figuredshows various models of interaction dynamics related to a scalar activity
variable. It is shown how the activity variable can be modified by interaction with
an other a-particle cooperative and competitive interactions are considered, while
in the chasing-hiding dynamics both a-particles modify their state toward the same
direction by attempting to keep the distance.

ok eooelor

{a) Competition

SIS

(b) Cooperation

(c) Hiding-chasing

‘O—Q—O—O—O—O—O—b

(d) Learning

Fig. 4. Cooperation, dissent, hiding chasing, learning.
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Remark 3.2. Dimensionless variables are used, where the Cartesian components
of the position = are referred to a characteristic length ¢ of the system, while v;
has been referred to the limit velocity vy, which can be reached by the fastest
particle. In particular, if the system is localized in a bounded domain ¥, the positive
constant ¢ is the diameter of the circle containing 3, while if the system moves in an
unbounded domain, ¢ is simply referred to the domain ¥y containing the particles
at t = 0.

Remark 3.3. Simulations need the statement of mathematical problems by defin-
ing initial and boundary conditions to be properly referred to the general structure
[B2), specialized into specific models. The mathematical structure includes first
order derivative with respect to both time and space. Therefore, the initial condi-
tions are defined by f; at t = 0 and @ € ¥, namely f;(t = 0,2 € X, v € Dy, u € D,,),
while boundary conditions might be defined by a model suitable to describe how
a-particle leave the wall 0% after having reached it. In addition, the presence of the
wall modifies the trajectories of the a-particles as these try to avoid the wall, see
the study of human crowds in Ref.

3.2. On the modeling of interactions and dynamical networks

The mathematical formalization of the interaction terms which appear in Egs. (3.1)—
(3.7) is the key passage to derive models of real world applications. Hence, it is worth
developing further reasonings on the rationale to be followed in their modeling.
In doing so, we will also refer to the contents of the book#? where the authors
propose, in the closing section, six key problems which are brought to the attention
of scientists, as challenging research perspectives. We will quote three of them
referring to some aspects of the modeling of interactions and networks.

BL1: We know that people are affected by their positions in networks, but
we do not have a variety of models of how people create their networks. We
also do not have good models for network’s change and evolution.

BL2: There are lots of models that show how groups arrive at consensus
but no generally accepted model of how groups become polarized or how two
groups can become more and more different and possibly hostile.

BL3: Regarding networks and homophily, birds of a feather flock together,
but people are influenced by those they like. Both these processes result in the
same outcome (similar people together in groups), but there is no standard
accepted way of separating these two processes.

We do claim that the mathematical tools reviewed in this section provide a
definite answer to these key problems which also refer to the modeling of social
interactions and to the dynamics of endogenous networks. Therefore, some indica-
tions are given in the following, that may be properly developed within a specific
future research program.
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e The key problem by BL1 focuses on endogenous, dynamical, networks 18139
Exogenous, time independent, networks have been studied in Refs. [111] and 112
within the framework of the KTAP theory by a modeling approach that includes
migration dynamics across nodes. Interactions consider not only the dynamics
within each node, but also between active particles in the nodes and the network
viewed as a whole. A different approach is required to develop the dynamics of model
aggregation in endogenous networks, where nodes are created by affinity features.
Some perspective ideas in Ref. [14lsuggest that, in the case of space homogeneity, the
dynamics is driven by the distance between the interacting entities for both micro—
micro and micro—macro interactions. Some reasonings are here proposed focusing
on space dependent systems.

Let us consider interactions within the same F'S, and let us call dp, the metric
distance between a p-particle and a g¢-particle and ¢, the corresponding social
distance, where the notations p and ¢ correspond, respectively, to state p and ¢,
respectively. The metric distance can be taken as a weighted sum of all specific
distances, namely mechanical ||z, — x4|| and ||v, — v4]|, activity [|u, — u,||, and
probability state ||f, — fy||, where || - || denotes a selected norm in a linear space.
Then, we can introduce the concept of social state as a weighted sum of the norm
of all components of the state of a-particles. This calculation is meaningful if all
components of the state variable are in a dimensionless form with values in a finite
range.

The technical problem consists in modeling, firstly d,, and subsequently the
decay rule of ¢pq. A simple way of modeling d;}f; is that suggested in Ref. [14] namely
by a weighted sum of all metric distance of the components of the micro-state and
of the metric distance between the distribution functions of the interacting pairs,
while a simple way of referring ¢ to d is as follows:

Ppq = po(—exp(—ady)), o >0,

as the link between the two distances is that ¢ decays as d increases. Interactions
are significant if the g-particle is placed in the sensitivity domain of the p-particle,
while ¢ = 0 if the position of the g-particle does not belong to this sensitivity
domain.

A conjecture worth to be studied is that the overall FS creates an endogenous
network nodes obtained by discrete values of the aforementioned social distance.
Then each node of the endogenous network acts as a functional subsystem.

e Focusing on the key problems BL2 and BL3, the remark in Ref. [47 that a great
part of the literature is devoted to modeling consensus dynamics 2?7 however hetero-
geneous@ On the other hand, different types of interactions should be considered, is
definitely correct. This problem was already considered in Ref. 5l Therein, it is sug-
gested that both consensus and dissent are present in an heterogeneous population
depending on a social distance between interacting a-particles. More in general, we
can argue that different types of coexistence should be investigated as an additional
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heterogeneity feature of behavioral systems. The key problem also refers to the
behavioral way by which individuals interact.

Some models to describe social dynamics in populations have been developed
under the assumption that either consensus or opposition take place depending on
the social distance B#70T This dynamics explains how radicalization phenomena
mentioned in BL2 show up. Further, it is a feature to be taken into account in crowd
dynamics, where rational (leaders) and irrational behaviors might be contextually
present. However, a systematic study has not yet been carried out. A more general
approach might be developed by assuming that the interaction term Cj, [f] in (3.4)
is not modeled by only one of the qualitative interactions reported in Fig. 4, but by
a convex combination of two different types of interactions, for instance consensus
and dissent,

Chulfns i = 0Ly Frl Ak lfns i) + (L= 0 fns f)) Bhglfns fr]- (3.8)

Indeed, further study would be necessary toward the modeling of the term ¢ which
separates the two different of dynamic.

3.3. Critical analysis

The structures defined in (3.2)—(3.7) permit one to derive mathematical mod-
els once the various interaction terms 7, u,C, P, D are modeled on the basis of a
phenomenological-theoretical interpretation of each specific system object of the
study. However, a detailed analysis of the qualitative properties of these structures
is necessary to verify their ability to capture the complexity features identified by
answering to the key question KQ2, posed in Sec. Pl within the modeling framework
depicted in the flowchart of Fig. [I1

Bearing all above in the mind, let us focus on each of the selected key features,
and discuss to what extend the mathematical theory can account for them. The
study of this problem refers also to specific applications.

o Ability to express a strategy: This ability is modeled by the activity variable,
which is a behavioral variable. If the activity is a vector, then all components may
affect each other. When the model includes both behavioral and mechanical vari-
ables, a commonly shared opinion is that the mechanical dynamic is influenced
by individual behaviors. An example of the first case is given by the dynamic of
idiosyncratic learning which affects the skill in market sharing28 while an example
of the second case appears in crowd dynamics3L as the strategy by which walkers
move and select trajectories depends on their emotional state. The motion of cells
follows analogous rules, namely the motion is often a function of biological, in some
case heterogeneous, properties.m

e Heterogeneity: The use of the distribution function over the activity, that is the
dependent variable of the model, naturally accounts for the heterogeneous behavior
of a-particles within each FS. Subdivision into different FSs can also be referred to
certain types of heterogeneity as in the case of endogenous frameworks.
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e Nonlinear interactions: The output of interactions is generally nonlinearly addi-
tive with respect to the inputs. In addition, it can also depend on the distribution
functions of the interacting a-particles. As an example, models of opinion formation
include the sensitivity of a-particles not only to individual a-particles, but also to
first-order moments. This type of dynamic characterizes, for instance, aggregation
into political opinions as individual attitudes are modified not only by individual
based interactions, but also by groups

e Learning ability: Individual entities learn from past experience 2258 Ag a conse-
quence, the rules by which a-particles interact is modified by the level of learning
heterogeneously acquired by each individual. The applications treated in Sec. [
include this type of interactions.

e Darwinian mutations and selection: All living systems are evolutionary, as birth
processes can generate entities more fitted to the environment. These, in turn, may
generate new entities again more fitted to the outer environment. An immediate
application appears in the immune competition in cancer dynamics, where sev-
eral mutations generate cancer cells 50 while the immune system evolves by
learning to produce selection 20

The general structure of all interaction terms can potentially model all features
that have been reported above. However, although we have verified that the math-
ematical structures derived by the kinetic theory of active particles can capture
the complexity features of living systems, additional key problems have to be con-
sidered to validate the mathematical theory. Some of the said key problems may
be suggested by the applications treated in Sec. @l Here, we simply mention some
topics which deserved further reasonings.

Collective behaviors may present large deviations that might lead to
non-predictable events i.e. to the so-called black swan. A critical issue consists in
understanding how large deviations can be considered a black swan or simply a
consequence of the fragility of the system.13

Individual entities often show a trend to aggregate into groups of affinity which
generate endogenous networks modifying the rules of interaction and, consequently,
the interactions’ outcome.

The assumption of continuity of the distribution function is justified only by
the involvement of a very large number of a-particles. Discrete distributions can be
used as shown in Ref. 23], but also pseudo Newtonian frameworks can be developed
as shown in Sec. @l

Different types of dynamics can be captured by the activity variable. A model-
ing approach might search for a hierarchy as in the case of crowd dynamics, where
pedestrians firstly exchange their emotional state and subsequently develop a walk-
ing strategy.

Non-symmetric interactions and lack of information: Figure Bl shows that visi-
bility domain can reduce the sensitivity domain, whenever 2, C €2,,. In this case,
the a-particles receives a limited, in some cases even asymmetric information. As
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a consequence the strategy by which the a-particle expresses one’s activity might
not be sufficient to achieve rationality.

Various other key problems are suggested by the applications reported in Sec. [}
where the cornerstone of all application is the search for a multiscale vision which
is the key passage toward a mathematical theory of living systems.

4. Applications Looking Ahead to Modeling Perspectives

This section presents a review and critical analysis of the mathematical theory
proposed in Sec. Bl with special emphasis on applications. In that section, it has
been shown how mathematical models can be derived by inserting specific models
of micro-scale interactions into differential structures specifically selected for each
system under consideration.

This paper goes beyond®? as in these recent years important developments of
the theory have been proposed spurred by applications. We select five topics which,
according to the authors’ perspective, present features that deserve attention in
view of future extensions of the theory. In more details, the presentation consider
the following applications: collective learning, human crowds, immune competition
and diseases spreading, evolutionary economics, and behavioral swarms. The pre-
sentation includes some sample simulations.

As we shall see, the survey of applications already includes some reasonings
on possible modeling perspectives which are not simply technical developments,
but need to be viewed as motivations and hints toward furthers steps in the quest
toward a mathematics for living systems. Accordingly, this section motivates the
contents of the last section which looks forward to further steps along the complex
path proposed in our paper.

4.1. Collective learning dynamics

The definition collective learning is used to denote the dynamics by which an indi-
vidual learns a well-defined knowledge, or even a well-defined skill, from a popula-
tion of interacting individuals. In more details, the following definition can guide
the modeling approach®s:

Collective learning is a social process of cumulative knowledge, based on
a set of shared rules and procedures which allow individuals to coordinate
their actions in search for problem solutions.

Within this framework we stress that collective learning is an interactive pro-
cess, where the transfer of knowledge is induced by interactions which occur in
the individual’s mind as a social and participatory process and that increases his
mental knowledge 1274147
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In addition, collective learning is lastly cumulative, as it accumulates over time.
A specific example is the social learning, originated with the development of psy-
chology sciences, which occurs when the individual learns new behaviors (as specific
skills) and concepts from others 21034 gee also Ref.

The collective learning process, that takes place within a system of interacting
individuals, is characterized by the following sequential steps:

(1) Perception: Each individual possesses a perception domain defined in the
space of the microscopic states. It is the domain within which the presence of
other individuals is perceived with a different intensity that can depend, for
instance, on a social distance, namely the distance between the activity variables
of the test and field a-particles. Accordingly, the modeling approach should first
define the interaction domain and, subsequently, a metrics to estimate the said
distance.

(2) Interactions and learning: Individuals may increase, by interactions, the
level of their knowledge, that is a positive defined quantity. Both binary and
multiple interactions should be considered. Networks, both exogenous and
endogenous, can enhance the learning dynamics. Also in this respect a suitable
metric should be chosen in order to quantify the amount of learning acquired
over time.

(3) From learning to behavioral dynamics: Learning can act as a prepara-
tory step preceding and conditioning other dynamics53 For instance, collective
learning followed by a specific social dynamic. In this case, the activity variable
is a vector defined by two components: w = {u,v}, where u is the component
that characterizes the level of learning and v is the social component whose
dynamic is also induced by wu.

Methods of the kinetic theory of active particles have been proposed in Refs. [54]
and [56/ with application to modeling scholar learning #8 Further developments have
been treated in Ref. 53, where the modeling of the interaction between learning and
different dynamics was investigated. An interesting modeling perspective refers to
the dynamics of heritages 23

In more details, the application treated in Ref. [54] refers to learning dynamics
in the spatially homogeneous case, specifically to collective learning in a classroom.

In more details, three different cases are considered:

Case (a) corresponds to the traditional teaching approach, which assumes that
students only attend lectures of the teacher.

Case (b) in which students are engaged in collaborative work forming groups of
two individuals. The groups are homogeneous and the members of each group are
selected among students having similar initial achievements.

Case (c), where the students are organized in groups as in case (b), but the groups
are heterogeneous and the members are chosen at random.
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As for the transition probability densities we must distinguish two types of
dynamics:

e For the student-teacher interaction the probability for a student to learn is pro-
portional to the level of knowledge of the teacher. The subsequent increase of
knowledge is a uniform random variable given by a fraction of what he/she does
not know.

e For the student-student interaction the probability for a student to learn is pro-
portional to the product of his level of ignorance and the level of knowledge of
the interaction partner. The subsequent increase of knowledge is a uniform ran-
dom variable given by a fraction of what he does not know. The probability for
a student to keep his level of knowledge is proportional to the level of knowledge
itself.

The application shows that the level of knowledge of a student not only increases,
but also can decrease, which is not unexpected. Indeed, inappropriate teaching
material, lack of attention of the students, disordered discussions, misunderstand-
ings and so on, may result in unlearning. Furthermore, the performance of low level
students may be enhanced when they form groups with better students, although
this improvement is obtained at the expense of the achievements of their peers.

The kinetic theory modeling offers deeper insights into system dynamics by nat-
urally providing the time evolution of the density distribution functions of each
group of students, while the subdivision into functional subsystems allows to inves-
tigate how the different types of students interact.

Let us conclude this subsection by some remarks, selected according to the
authors’ perspective, looking ahead to research perspectives:

(1) Nonlinear interactions: Nonlinearity of interactions at the micro-scale means
that the output of interactions could depend not only on the microscopic state
of the interacting entities, but also on the probability distribution functions of
the functional subsystems to which they belong.

(2) Mutations and selection: Post-Darwinian dynamics consisting in mutations fol-
lowed by selection plays an important role in biology. An analogous dynamic
appears in social systems, where new groups may be generated, for instance,
by the aggregation of different groups. These, subsequently, may either expand
or disappear due to a competition somehow mediated by the external environ-
ment.

(3) From learning to behavioral dynamics: Collective learning is almost always fol-
lowed by a subsequent dynamic, where individual behaviors depend on the level
of learning which is heterogeneously achieved in a population.

We mention two case studies, treated in the next subsections, where learning
dynamic precede a subsequent dynamic.

In crowd dynamics in the presence of epidemics, the awareness of the risk of
contagion can pervade crowds moving in venues of a territory. This feeling, which
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is learned by interactions with other individuals, modifies individual trajectories in
the search of paths through low density areas, but paying the price of increasing,
with respect to the trajectories in absence of such awareness, to reach a target. This
topic has been introduced in Ref. 110, within the framework of models of behavioral-
social crowd dynamics 209 accounting for recent studies on the pandemic by virus
COVID-1923

Analogous phenomena appear in the modeling of the motion of cells, where
interactions firstly define the biological function expressed by various cell popula-
tions and subsequently express a motion strategy 37

In the analysis of technological learning and industrial dynamics, learning might
be represented as the process of accumulation of knowledge of heterogeneous firms,
competing to increase their market shares. Knowledge is idiosyncratic but its level
and distribution influence the overall collective population dynamics of firms.

4.2. Vehicular traffic and human crowds

The modeling and simulation of vehicular traffic and human crowds by the kinetic
theory approach is a very active research area involving challenging analytical prob-
lems and potentially leading to novel applications 23

The kinetic theory modeling of vehicular traffic trace back to the pioneering
works 28028 41 a review of the most recent contributions on this research area,
including human crowds, is given in Ref.[6l The modeling of interactions by density
dependent rules has been firstly introduced in Refs. and In both works it
has been assumed that the speed of vehicles can only take a finite number of veloc-
ities, but the grid of discrete velocities is different in the two cases, namely it is a
fixed grid in Ref. [67 whereas it depends on the density in Ref. Further develop-
ments of this pivotal idea have been given in Refs. [84 and 85 while a qualitative
analysis and numerical study of the initial value problem has been carried out in
Ref. 37

The modeling of human crowds accounting for nonlinear interactions between
pedestrians has been started in Ref. 24l and further extended by various authors as
reported in Ref. [6l See also Refs. [80, [8T], [109, and In Ref. [109] the kinetic
model presented in Ref. [30]is further developed to study the dynamics in bounded
domains with obstacles. In Ref. [T10, such model is coupled to a disease contagion
model inspired from the work on emotional contagion in Refs. [44] and [149, while
in Ref. it is further extended to account for the propagation of stress conditions
in time and space.

The control of crowds is studied in Ref. [8 by means of the social influence of
leaders, namely trained personnel that may guide pedestrians to egress from com-
plex environment whose connectivity is not known or modified by incidents. Beside
its theoretical interest, this topic is of practical importance as it may significantly
contribute to crowd management in emergency situations where overcrowding may
cause fatal accidents.
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More recently, focus has been put on accounting for human psychology in the
modeling of the social dynamic in crowds®™4 as the literature on safety prob-
lems clearly indicates that crisis management can take advantage of models that
account for human behaviors IBEOI3305I 1y these studies, interacting pedestrians
modify their psychological status and, in turn, the walking strategy. The emotional
states significantly affects the overall crowd dynamics in extreme real-life situations
such as a peaceful demonstration that turns violent and the spreading of panic in
emergency evacuations.

A closely related problem is that of epidemics spread. An hybrid approach, that
couples a kinetic model of crowd dynamics with one of contagion spreading, has
been proposed in Ref. In spite of the similarity between models that deal with
evacuation and virus transmission a remarkable difference must be pointed out. In
the former the key social state is the level of stress whereas in the latter is the
level of awareness. The resultant pedestrians’ behavior is completely different in
the two cases. The level of stress promotes aggregation of walkers and leads to the
herd behavior under panic conditions 9 By contrast, the level of awareness pushes
pedestrians to follow social distancing guidelines.

The research program on these challenging topics has just started, and many
contributions are still to come due to the many complex aspects of human psychol-
ogy as well as the inherent system heterogeneity. A multiscale framework, like the
one proposed in Ref. [[5] for the modeling of human crowds, needs to be formulated
because, for practical applications, the crowd must be described at all the three
possible modeling scales (i.e. microscopic, mesoscopic, macroscopic) by a consistent
approach, namely models must be derived at each scale using the same principles
and similar parameters.

It is foreseeable that the main objective of the future computational modeling
of human crowds is the development of a simulation platform in support to urban
planners and/or crisis managers 28 This platform may consider to simulate a mixed
traffic consisting of cars, trams, and pedestrians, and lead to optimize the flow of
vehicles over networks of roads in cities by defining optimal transportation policies,
improve the management of safety problems, such as emergency evacuation, and/or
the design of buildings.

Furthermore, such a platform can be used in training crisis managers as it
allows to explore scenarios triggered by different courses of action. This “what-if”
analysis is crucial for elaborating optimal procedures, especially for dealing with
emergency conditions. Note that the platform can also be designed to create virtual
and augmented-reality applications that further enhance the training capability.
A major issue in developing this kind of platform is the modeling of interactions
between heterogeneous agents and the capability to fully capture the geometrical
complexity of the network where the dynamic is studied. In this respect, the plat-
form needs to be developed within a system approach to crowd dynamics that also
includes the modeling of how the crowd behavior modifies in extreme situations.
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4.3. From the immune competition to modeling virus pandemics

Modeling the immune competition between cancer and immune cells ended up with
the first class of models derived within a mathematical theory of active particles29
This research line has been further developed in Ref. [38 to account for mutations
and selection of tumor cells as well as for the learning ability of the immune system,
while the modeling of the role of macrophages has been developed in Ref. The
book™20 is a useful reference to understand the complex dynamics in immunology,
while the book™¥ provides a precious description of cancer biology. The pioneering
paper 88 devoted to the modeling of virus mutations followed by a learning dynam-
ics, provides some ideas which can be developed toward a modeling approach to
depict the complex mutation-learning dynamics specifically referred to COVID-19.

The modeling of the dynamics of the corona-virus requires, as shown in Ref.[25] a
multiscale approach beyond deterministic population dynamics, as contagion occurs
at the high scale of individuals depending on the viral charge inside each individual
whose dynamics is at smaller scales determined by the competition between virus
particles and the immune system. In addition, spatial dynamics and interactions
are important features to be considered, as the dynamics are generated by nonlocal
interactions and transportation devices. In the following, some reasonings about a
number of research perspectives are presented.

Heterogeneity: Most epidemiological models are based on averaged large population
behaviors over a given calendar time. In particular, compartmental models (start-
ing from the celebrated model by Kermack and McKendrickm) use mean-field
approximations. However, these models involve complex parameters that depend on
many factors, which makes it difficult to predict how a change of a single environ-
mental, demographic or epidemiological condition will affect the whole population.
Moreover, these models are not valid if the population size is small-to-medium, as
happens in some spatial domains (neighborhoods, stations, schools, etc.) that are
very relevant in the dynamics on the development of an epidemic. Including hetero-
geneity, in the formulation of epidemiological models, improves their predictive and
explanatory power and applicability. For instance, Refs. [103] and [104 are valuable
references that consider heterogeneity in populations described by compartmental
models.

Some infections need modeling heterogeneity. For instance, during the COVID-
19 crisis, the number of tested positive cases has shown to be a very widespread
variable. However, its real usefulness is limited since it is highly dependent on
testing capacity. Accordingly, Aguiar et al® propose to include the presence of
different heterogeneous sub-populations, like hospitalizations, ICU admissions and
deceased in order to have a better overview of the situation, obtaining very good
forecasts through the so-called SHARUCD model. Kinetic models are also use-
ful to deal with heterogeneity. The multiscale kinetic theory approach developed
in Ref. accounts for individual reactions to the infection and pandemic events
heterogeneously distributed over the population. In addition, kinetic models let the
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population be divided into social, age, immune and/or gender groups, what may give
specific answers to several questions arising in public health. Interactions between a
pandemic with production systems? and with human psychological fragility®® are
problems of great general interest.

Spatial dynamics and propagation of infectious diseases: When it comes to assessing
particular responses to specific outbreaks, studying how the proximity of people
plays a role in the diffusion of a disease and what can be done in crowded areas and
mass gatherings is crucial to give targeted responses. Crowd and epidemiological
modeling have so far been treated as separated fields of research, with a very few
attempts to link them together SO10GII0

In order to study the propagation of an epidemic through the development of
mathematical models of crowd dynamics, a deep understanding of how risk aware-
ness spreads and how it triggers a diffusion of coping strategies is needed T Moreover,
an accurate representation of the spread over larger territories, like an entire city,
leads to consider multi-scale, multi-layer networks 2125

Different approaches can be used to model and simulate the spatial propagation
of contagion within a set of active particles. From a continuous kinetic approach
coupling the ideas presented in Sec. with contagion dynamics SO0 ¢4 Agent-
Based modeling (see e.g. Ref. [I42] for an interactive tool to study contagion dynam-
ics, or Ref. [62] for an agent-based simulation of vaccination policies), without losing
sight of contagion over graphs or networks ™45 The approach shall be carefully
selected, based on the system under study and on the objectives of each specific
research.

Within host dynamics: The discussion above deals with disease transmission at the
scale of an epidemic. However, it is also useful to describe disease processes at the
microscopic scale, namely the spread of a viral or bacterial infection among a popu-
lation of target cells, resulting in the so-called in-host models. Some recommended
readings on this topic are Refs. [39] and 122 together with the review® and
references therein, which introduce essentials on cell biology and immunology.

For respiratory diseases that cause damage to the lungs, like COVID-19, mod-
els should describe the dynamics of the viral load which might lead to different
asymptotic trends between full recovery and death by overload and even mate-
rial corruption of the lung. A description of the dynamics of the lung in order
to detect those areas which are more susceptible to stretch overload in the pul-
monary parenchyma is provided in Ref. Recent contributions in this topic are
given in Ref. [09] which presents an interactive COVID-19 tissue simulator of viral
dynamics of SARS-CoV-2 in a layer of epithelium and several sub-models (such
as single-cell response, pyroptosis death model, tissue-damage model, lymph-node
model and immune response), and Ref. [[48 which develops a community-driven
SARS-CoV-2 tissue simulator.

Multiscale aspects: 1t is plain that modeling ought to be developed within a mul-
tiscale approach, as the contagion dynamics should be treated at the scale of
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individuals, while the state of each single individual (healthy, infectious, etc.)
depends on the dynamics at the micro-scale of cells related by the within-host
competition between pathogens (e.g. viral particles or bacteria) and the immune
system. Both scales constantly interact and this is probably one of the key features
of the model presented in Ref. This coupling, as well as the heterogeneity of
populations, leads to variety of research perspectives accounting for immunization
and vaccination programs, see Refs. [60 and [R7L

4.4. From behavioral to evolutionary economics

The very first application to modeling social dynamics by the kinetic theory meth-
ods arguably belongs to the pioneering paper X while the kinetic theory of active
particles was applied in Refs. [7], 40, [4T], 42| and [43] to opinion formation and wealth
policy, by using scalar discrete activity variables. Further studies have followed
in the field of behavioral and political economy, as examples 8873 This research
activity refers to the stream of behavioral economics!

Recent advancements moved from behavioral and collective population dynam-
ics to model the footprints of evolutionary processes in economic dynamics by
means of the kinetic theory of active particles, in short the KTAP approach, which
includes both continuous and discrete distribution in the space of micro-states. In
order to address the modeling of evolving economies, the capitalist system has to
be understood as characterized by processes of endogenous self-sustained growth,
punctuated by small and big crises. The following statement, from p. 83 of Ref. [136]
enlightens the underlying modeling scope:

Industrial mutation — if I may use the biological term — that incessantly
revolutionizes the economic structure from within, incessantly destroying
the old one, incessantly creating a new one. This process of Creative
Destruction is the essential fact about capitalism.

In modern capitalism, business firms are a central locus of the efforts to advance
technologies, develop new products and operate new production processes ™ In this
respect the application of the KTAP approach to evolutionary dynamics as started
with the modeling of firm-level behaviors. The key patterns meant to capture firm-
level attributes and their interaction (see Refs. 28| [76] and [78) include:

— Persistently heterogeneity in firm characteristics nested in competitive environ-
ments that shape their individual economic fate and, collectively, the evolution
of the forms of industrial organization.

— The process through which heterogeneous firms compete, let us call it Schum-
peterian competition, on the basis of the products and services they offer and
obviously their prices, and get selected—with some firms growing, some declin-
ing, some going out of business, some new ones always entering.

— Such processes of competition and selection are continuously fueled by the activ-
ities of innovation, adaptation, imitation by incumbent firms and by entrants.
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More specifically, the approach developed in Ref. 2§ restricts to the following
dynamics:

(1) Learning or empirically the within effect capturing idiosyncratic innovation,
imitation, changes in technique of production.

(2) Selection or empirically the between effect capturing market interactions where
more competitive firms gain at the expense of less competitive ones.

In addition, the approach in Ref. 28 considers two functional subsystems which
are nested into a hierarchical structure:

(1) Subsystem 1: Evolutionary landscape: It represents the dynamics of learn-
ing to which firms are subject to. It is meant to capture the arrival of new
technologies, new ideas, new organizational practices. It evolves independently
from firm interactions, and it follows a continuous growth process. In economic
terms, it represents the evolution of the technological frontier.

(2) Subsystem 2: Evolutionary landscape and endogenous system of
interactions: It comprises two distinct levels of interactions: one which deter-
mines the advancement of knowledge of each individual firm through the action
of the first subsystem, the second which entails the competition in the market
arena among heterogeneous firms in terms of knowledge level.

Starting from the results in Ref. 28] the following lines of research might be
pursued:

e Imitation, entry, exit: A first line of advancement with respect to the application
of the KTAP to evolutionary economics entails the modeling of imitation, entry
and exit dynamics applied to firms™ Imitation across firms represents the pos-
sibility to include forms of knowledge transmission occurring between pairs, say
similar firms in the innovation space, which might acquire competencies and capa-
bilities from other firms, and not simply from the exogenous innovation dynamics
lead by Subsystem 1. Including imitation patterns might allow also to consider
mutation, say from being a bad toward being a good firm in terms of the overall
activity rate. With reference to selection, currently the modeling approach has
stuck with a constant number of firms, however selection occurs also at the fringe
and it is affected by exit, say mortality of firms. Additionally, entry of new types
of firms, and particularly their attributes in terms of learning capacity is crucially
important to shape the overall selection dynamics. Finally, entry of new firms
might occur in the same sector or even in other sectors of activity.

e From single sector to multi-sector dynamics: Firms producing similar products
are said to belong to the same sector of activity. Sectors are in general defined in
terms of the produced output, say automotive versus food versus pharmaceutical
sectors. Indeed, a big chunk of the evolution of modern capitalism has occurred
by means of the arrival of new sectors of activity introducing long-term effects of
structural change with some sectors gaining product and labor shares and some
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others declining™% A further evolution of the KTAP modeling approach toward
evolutionary economics entails the introduction of multi-sector spaces of compe-
titions, by means of parallel hierarchical Subsystems 1, as outlined above, each
of one characterized by its internal knowledge evolution, but competing among
them in terms of Subsystem 2 not only in terms of their internal efficiency but
also of desirability of the produced product. The introduction of a multi-sector
perspective would entail the specification of consumption dynamics shaping the
overall evolution of each sector.

e Network structure: Neither firms nor sectors of activity are monads: in order to
operate production activity, firms require to buy intermediate production goods
from their peers that might be other firms in the same sector of activity or even
in different ones. In economics, the phenomenon is labeled under the notion of
value chain or vertical integrated structure 4 implying that each producer relies
on a chain of suppliers of goods, and itself is the supplier of other firms. The inte-
gration of the KTAP with a network structure of firms, whose links represent the
flows of knowledge or goods will allow to model one of the most important fea-
ture of contemporary capitalism and to allow to study how structures of relations
among peers along the chain differently affect the selection process. Underlying
conditions leading to virtuous or vicious chains might be studied.

e Ezxploiting the multi-scale approach: From firms to sectors to the macro-economy:
Together with flexibility and heterogeneity, the other fundamental attribute of
the KTAP approach is being multi-scale. The multi-scale structure brings enor-
mous benefits to study economic processes which in general are stratified and are
not isomorphic to different levels of aggregation™ A future modeling advance-
ment would be to insert, on top of a multi-product structure, a third upper
subsystem represented by the overall macro-economy, including all sectors and
being endowed by its own activity functions. The macroeconomic Subsystems
would be particularly relevant to study policy effects which are conducted at the
macro-level.

4.5. Behavioral swarms

The assumption of the continuity of the distribution functions, that is the depen-
dent variable of the mathematical structures derived in Sec. [l has been critically
analyzed in that section. This hypothesis breaks down if the number of interacting
a-particles is not sufficiently high, in some sense still to be defined, to justify it.
This conceptual difficulty motivates the search of alternative approaches suitable
to tackle this key problem.

A simple approach consists in substituting the continuous distribution over the
micro-state by a discrete one so that each node of the discrete micro-scale vari-
able represents the number of particles in a certain domain of the space of the
microscopic states. This approach has been applied in a variety of real world appli-
cations, for instance vehicular trafficBH6484 social dynamics™ and evolutionary
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economics 28 However, the problem of selecting the discrete nodes, which may
depend on the local density,@I is still open.

Alternative frameworks can be found in the literature, examples include agent
methods with application to sociophysics, lattice Boltzmann with application to
pattern formation in biology7 and behavioral swarms? The third approach has
been recently proposed based on the idea that the classical theory of swarms can
be developed to account for a behavioral dynamics by inserting in the micro-state
of the interacting individuals the activity variable¥ The authors have used the
definition behavioral swarms to identify this specific feature of their mathematical
approach.

A classical reference for the swarm dynamics is the pioneering paper by Cucker
and Smale where the collective behaviors of interacting mechanical self-propelled
particles is studied within a pseudo-Newtonian framework. This paper has moti-
vated a huge literature on the modeling, qualitative analysis, and computational
applications of the mathematical theory of swarms e.g. Refs.[9Tland 92| Interactions
produce accelerations, where inertia is hidden in the interaction parameters rather
than being explicitly taken into account. The mathematical literature in the field
has been reviewed and critically analyzed in Secs.[Bland 6 of Ref. [6l, see also Ref. ]3]

The original model%3 describes the temporal evolution of the mechanical vari-
ables (positions and momentum) of the individual entities, but unlike in the model-
ing of the collective dynamics of biological and social complex systems, one needs to
take into account internal variables such as temperature, spin and excitation, to list
a few 239 These pioneering papers have motivated the overall contents of Ref. [33|
where mathematical structures have been derived to model the dynamics of both
social and mechanical variables according to a hierarchy by which individuals firstly
modify their activity variable and subsequently develop their movement in space
by mechanical rules driven by the activity. Hence, individual entities are viewed as
a-particles. The examples treated in Ref. [33]show how individuals firstly learn, from
the surrounding a-particles in their sensitivity area, how the velocity directions can
be selected and subsequently develop their movement strategy. Selection refers to
a fixed number of a-particles according to the conjecture proposed in Ref.

The theory proposed in Ref. [33] is somehow inspired by some applications of
the theory to social and economical problems #7827 Ag mentioned, it consists
in the derivation of differential structures which, consistently with the paradigms
proposed in Sec. 2l describe the interactive dynamics of the activity and mechanical
variables. These structures have been applied to the modeling of price dynamics
in open markets where sellers and buyers undergo non-symmetric interactions22113
and in the behavioral dynamics of swarms33 where it is shown how the modeling
of collective learning in real swarms modifies the collective behavior with respect
to that in absence of learning.

The approach of behavioral swarms is a very recent proposal and we cannot yet
state that a complete theory is presently available, as important topics should still
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be developed. For instance, we refer to the dynamics across functional subsystems
and the modeling of mutations followed by selections. This specific dynamics is
important not only in the modeling of biological systems, for instance multicellular
systems in cancer phenomenal®? and the immune competition 122 but also in social-
economical systems, where pseudo-Darwinian dynamics are observed in various
cases, where active particles mutate and can be selected with some analogy with
biological systems.

4.6. Additional reasonings

The review of applications presented in this section is essentially descriptive, how-
ever each application has been followed by simulations suitable to provide a quanti-
tative description of the predictive ability of models. A brief description with focus
on emerging behaviors is given below looking ahead to validation of models which
are required to reproduce all emerging behaviors that are observed in real systems.

(1) Models of collective learning®®58l were applied to learning in a class-room and,
in addition, as a preliminary dynamic in all following applications. Emerging
behaviors show the difference between collective and individual learning.

(2) Propagation of virus infection was shown in crowd dynamics ™0 while the role
of stress induced by perception of danger has been shown in Ref. 31l

(3) Modeling of virus pandemics has shown the in-host immune competition
between virus and immune cells that can enhance the collective spread of the
epidemics 2 An interesting behavior is shown in the modeling of virus’ vari-
ations, where new variants progressively replace the original less aggressive
virus 28

(4) Simulations developed in Ref. 28 show how idiosyncratic learning of technolog-
ical progress can lead to a monopole of a limited number of enterprises followed
by disappearance of the others.

(5) The mathematical theory of behavioral swarms followed quantitative results
on a dynamics where individual in a swarm perceives the movement of the
neighborhood individual and develops an individual strategy that modifies the
collective dynamics 33

The aim of simulations is not limited to provide quantitative results, as they
can also investigate emerging collective behaviors that is the first step toward the
validation of models. Indeed, the collective dynamics of living systems often shows
emerging behaviors which preserve the qualitative behavior for different initial con-
ditions although quantitatively sensitive to small variation of parameters.

It is worth noticing that a common feature of all applications is that the col-
lective dynamics is an output of the interaction between different dynamics. In
this case, the activity variable is a vector, while the interaction follows a certain
hierarchy of dynamics. For instance in the case of the interaction between firms
and markets, firms firstly develop an idiosyncratic learning of technological growth,
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while market sharing is a consequence. This dynamics has been studied in the case
of space homogeneity, while in crowd dynamics the interactions involves, firstly,
social interactions, while walking dynamics follows being influenced by the social
awareness acquired by each individual by means of a collective learning within the
crowd.

Additional common features characterized all examples proposed in this section.
Some of them are selected in the following and are referred to the specific mod-
els treated in the applications proposed in this section. Specifically: Action of the
external environment; Competition among a-particles; and Mutation and selection.
The interested reader can be rapidly recognize the above five features in the var-
ious class if models treated in this section. The next section. which is devoted to
research perspectives, will add further reasonings on modeling and developments of
the mathematical structures.

5. Perspectives Toward a Mathematical Theory of Living Systems

In this paper, we have, proposed and critically analyzed a mathematical theory
which aims at describing, by a differential system, the complex dynamics of systems
composed by many interacting living entities. The rationale to achieve this objective
were presented in Sec. 2] the mathematical structures and tools were developed in
Sec. [3] while various applications were reviewed in Sec. [4]

As already stressed, further developments of the mathematical theory are needed
to pursue the challenging objective posed in this paper, namely providing an answer
to the key question posed in the title, namely What is life? posed within the frame-
work of mathematical sciences.

Accordingly, this last section is devoted to select a number of research perspec-
tives which can contribute to the design of a mathematics of living systems. In
more details, the following topics have been selected on the basis of the authors’
past experience and present vision:

(1) Modeling pseudo-Darwinian dynamics.
(2) Multiscale vision, representation, and dynamics.
(3) Reasonings on agent methods referred to the KTAP theory.

These topics are treated in the following subsections, while the closure focuses
on the mythical, however worth to be chased, objective indicated in the title of our
paper. For each topic, firstly, we provide a qualitative description. Subsequently,
we verify how far the approach of the mathematical theory can capture the specific
dynamics under consideration. Finally, possible developments of the aforementioned
mathematical theory are considered.

5.1. Pseudo-Darwinian mutations and selection

All living systems evolve in time and generate, from a certain genotype, a sequence
of phenotypes that are modification of the original one. According to the general
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framework proposed in our paper, the description of an evolutionary system starts
with a number of FSs which, due to mutations and selection, changes in time
to include new FSs generated by mutations, while other FSs, less fitted to the
environment, disappear by selection.

This dynamics is well known in biology, as it often corresponds to the onset
of phenotypes that generate genetic diseases, for instance cancer 150 However, we
can observe the presence of pseudo-Darwinian mutations and selection in a broad
variety, if not all, living systems. As an example, the need of including this type of
dynamics in the modeling of systems in evolutionary and behavioral economics is
motivated in Ref. 12| from the very first chapters.

In more details, this topic is treated in Refs. and [78] consistently with
the interpretation of the interaction between firms and open markets mediated by
the ability of firms to learn new skills in the design and production of goods. The
dynamics, as shown in Ref. 28 may lead to the selection of firms which may even
aggregate, while other firms may disappear due to their loss to capture the market.

The mathematical structures (3.2)—(3.7) show how this dynamics can be
described, at formal level, by the terms C}'Lk and Pf;k which model, respectively,
conservative and proliferative dynamics, while selection is described by the destruc-
tive term Dj,. All different types of dynamics account for the interaction with the
external environment that can promote both mutations and selection. Alternative
approaches have been developed by nonlinear dynamical systems with mutations
and selection 57

The key problem of KTAP methods consists in the modeling of these terms
accounting for both internal features and interaction with the external environment
and /or specific actions. The mathematical structures (3.2)—(3.7) have been derived
at the microscopic scale by a statistical representation consistent with the system’s
heterogeneity. A conjecture, worth to be studied, is that the rules by which a-
particles interact may be induced by the dynamics of interaction at a submicroscopic
scale. As an example, in biology the functions expressed by a cell are determined
by the dynamics at the molecular (genetic) level, while in the case of firms the
internal staff organization determines the dynamics of each firm. Various examples
of evolutionary systems can be found also in social systems, as an example, the
dynamics of cultural evolution 3

An additional example concerns the dynamics of a virus pandemic in a complex
interconnected world®® which shows how the contagion can diffuse in a crowd,
where the awareness of the contagion is heterogeneously distributed. Subsequently,
a within host competition between virus and immune systems develops inside the
lung of infected individuals. The study of this interaction depicts useful scenarios of
hospitalization, recovery and death, by a multiscale approach, where the dynamics
of individuals depends on the dynamics at smaller scales inside each individual.

An interesting research perspective, definitely worth to be studied, consists in
understanding the interplay between the dynamics at the two scales. A reasonable
assumption is that, similar mathematical tools can be used for both scales albeit if
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referred to different variables and interactions. Then, the coupling should explain
how the output from the lower scale affects the higher scale.

5.2. On a multiscale vision

The modeling of complex systems always needs a multiscale approach, where the
dynamics at the large scale must be properly related to the dynamics at the low
scales. This features appears also in the interactions as some of the models reviewed
in Sec. [ include not only micro-scale interactions, but also micro-macro interac-
tions that occur between particles and F'Ss viewed as a whole being represented by
their mean value.

All systems are multiscale, where we can identify the micro-scale (individual
based) and macro-scale (hydrodynamics). Kinetic theory methods provide a statis-
tical representation of micro-scale entities when the overall system is constituted
of a large number of interacting entities, in our case a-particles. A general vision of
multiscale methods consists firstly, in modeling individual based interactions, which
are used to derive models at the micro-scale; subsequently, these models are used to
derive kinetic type models, namely at the mesoscopic scale. The third step consists
in developing asymptotic or averaging methods which lead to macro-scale models
by letting this parameter to zero under reasonable physical assumptions.

This micro-macro derivation corresponds to the sixth problem posed by David
Hilbert for classical particles in physics. Possible generalizations to a-particles sys-
tems are treated in Refs. [51] and 52l Specific applications have been developed
referring to crowd dynamics?2 and biology as reviewed in Ref. [52. The key difficulty,
well defined in Ref. [I1 is the fact that living systems leave far from equilibrium
which makes highly difficult the search for pseudo-Maxwellian distribution as in the
case of the classical kinetic theory.

An additional vision, which has been applied in the derivation of crowd dynam-
ics models within a multiscale framework ™ consists in deriving models at all three
scales, independently. The derivation should be based on the same physical prin-
ciples and should use analogous parameters corresponding to the same principles.
Indeed, this modeling rationale provides a necessary framework to Hilbert-type
derivations. In all cases, the concept of scaling and representation should be pre-
cisely referred to the specific class of systems under consideration.

5.3. Perspective ideas on agents methods

Modeling and simulations of systems, somehow of the type reviewed in Sec. 4, can
be developed by the so-called agent-based models™ It is crucial understanding the
conceptual differences between this method and KTAP and, subsequently, investi-
gate if each method can learn skills and tools reciprocally across them.

An Agent-Based-Model (ABM), sometimes called multi-agent system (MAS) on
the basis of differences that we will not explore here, is missing a definite general
framework. Following Axtell and Epstein in Ref. [16, an agent-based computational
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model contains a population of data structures representing individual agents, act-
ing and interacting. Systematic regularities emerge at the macro-level from the local
behavior of the agents. We have no equations governing the overall social struc-
tures, thus avoiding any aggregation or misspecification bias. The only equations
present—if any—are those used by individual agents for decision-making. Different
agents may have different decision rules and additional information; the agents are
simple, and we look for the emergence of the complexity from their interaction.
Agent models are built from the bottom up, describing individual behaviors and fit-
ting them, even heterogeneously, into the agents. We observe the individual (micro)
and aggregate (macro) effects that emerge from their activities and interactions.

The main differences between ABM method and KTAP refer both modeling
aspects of the individual entities constituting the overall system and on the devel-
opment of simulations. In more details:

e Agent-based models (ABMs) live in computer environments as data structures,
where agents are modeled by a set of variables and interaction rules stated con-
sistently with the programming language used for the simulations. These rules
are heuristically designed (invented) by the modeler with the aim of obtaining
realistic computer simulations of the collective behavior of each specific system
under consideration.

e In the kinetic theory of active particles, a-particles are entities carrier, in prob-
ability, of mechanical and behavioral variables, their interactions are modeled
accounting for their micro-state and F'S as well as for the distribution functions
over the micro-sate. The collective dynamics is described by differential frame-
works which capture the complexity feature of living systems.

e The common feature of the two approaches is that both of them need a detailed
description of interactions at the microscopic scale while the difference consists in
the way of implementing it. If we look at the contents of the preceding subsection
we do reach the idea that improving the modeling at the micro-scale would bring
advantage of both approaches in view of a mathematical theory suitable to unify
the two methods within a unitary framework.

According to this brief description, it appears that ABMs fully relay on heuris-
tic interpretations of real world, the KTAP theory on a rationale consistent with
the frameworks and tools offered by mathematical sciences. The lack of analytic
equations in ABMs is simply a technical, but not conceptual, difference as the
two methods would meet if the modeling of agents would follow well-defined rules
such as those in the modeling of a-particles in the KTAP theory. Conversely, the
kinetic theory approach would enrich its ability to describe real world phenomena
by enriching the modeling of a-particles by exploiting the flexibility of the ABMs
approach. Flexibility is very useful in modeling real world situations™® in a com-
plexity®2 framework.

The main advantage of the ABMs, i.e. their easiness in adapting to any detail
of the agent behavior, can also dangerously conflict with the need of generalization
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and abstraction. To avoid that kind of error we have to keep in mind the paradoxical
situation that Borges pictures in Ref. [49, where

the Colleges of Cartographers set up a Map of the Empire which had the
size of the Empire itself and coincided with it point by point.

producing completely useless object.

These reasonings naturally lead to propose the research perspective also to the
interaction between the theory of behavioral swarms and the ABMs approach. This
objective pursued only when the behavioral swarms theory will be made complete
by including non-conservative interactions, corresponding to proliferative and/or
destructive events, as well as interactions that lead to mutations by moving across
functional subsystems, while Darwinian selection would follow.

5.4. Closure

Let us finally return to the main objective of our paper, namely, let us try to
understand how far the contents of our paper has moved along the quest toward a
mathematical theory of living systems. As mentioned, the theory proposed in our
paper is based on the idea of referring the derivation of models to the mathematical
structures that have the ability to capture a selected number of the complexity
features of living systems. Mathematical models can be derived by inserting in these
structures specific models of interactions at the micro-scale.

This approach justifies the use of the term mathematical models as these refer to
a well-defined mathematical theory which can be further developed and improved
by considering all hints given in Secs. Hence, this paper is not exhaustive.
In addition, further steps toward the derivation of models consist in improving
the description of interactions consistently to the theoretical inputs which can be
delivered by the science of the research field where the specific system object of
modeling can be referred to. In this case, we can use terms such as biological-
mathematical theory, economical mathematical theory, and so on focusing on each
specific scientific field.

Finally, we stress once more that the aforementioned challenging objective needs
the interdisciplinary way of thinking whose presence has pervaded the whole paper.
We do believe that the interdisciplinary vision of science is not simply an approach,
but a necessary way of developing research activity devoted to life. Indeed, it is a
new science. This concept is precisely the message in Ref.
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