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Abstract Direct methanol fuel cells (DMFCs) represent

an interesting alternative in obtaining electricity in a clean

and efficient way. Portable power sources are one of the

most promising applications of passive DMFCs. One of the

requirements in these devices is to use high alcohol con-

centration, which due to methanol crossover causes a

considerable loss of fuel cell efficiency. In order to develop

methanol tolerant cathodes with suitable activity, different

supported catalysts namely PtCo/C and PtCoRu/C, were

prepared either via ethylene glycol reduction (EG) with or

without microwave heating assistance (MW) or via the

alloy method, the latter followed by a thermal treatment in

a reducing atmosphere (N2/H2). All cathode-catalysts were

tested to determine the role of the components in simul-

taneously enhancing the oxygen reduction reaction (ORR)

and discouraging the methanol oxidation reaction.

According to the synthesis methodology, X-ray photo-

electron spectra showed that the amount of metal oxides on

the surface varies, being higher on the PtCo/C EG and

PtCoRu/C EG catalysts. The electrochemical character-

ization of the catalysts was accomplished in a three elec-

trodes electrochemical cell with a glassy carbon rotating

disk electrode covered with a thin catalytic film as working

electrode. To study the ORR and the influence of different

methanol concentrations, linear sweep voltammetry and

cyclic voltammetry were employed. The PtCo/C EG, with

an important metal oxide amount on the surface, and the

PtCoRu/C MW and EG electrodes, both with RuO2 on their

surfaces, were the most tolerant to methanol presence.

Keywords ORR � PtCo/C � PtCoRu/C � Methanol

crossover � DMFC � Methanol-tolerant cathode catalysts

1 Introduction

Direct methanol fuel cells (DMFCs) are an interesting

alternative to obtain electricity in a clean and efficient way

to substitute traditional environmentally harmful energy

sources [1, 2].

One of the most promising applications of DMFCs is as

power source in portable devices. In particular, passive

alcohol fuel cells using high alcohol concentration have

been proposed [3, 4].

Unfortunately, methanol permeation across the polymer

electrolyte membrane (methanol crossover) causes a con-

siderable loss of efficiency in the cell, because both the

oxygen reduction reaction (ORR) and the methanol oxi-

dation reaction (MOR) occur simultaneously at the

cathode.

Numerous attempts have been proposed to find a solu-

tion to the problem by either synthetizing novel ion con-

ducting membranes resistant to alcohols [5, 6] or by

making electrocatalysts with high activity for the ORR and

at the same time tolerant to alcohol presence [7–9]. Plati-

num is considered as the most active catalyst for ORR in

acid media, however due to kinetic limitations of the
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reaction, mostly due to Pt-oxide formation, materials with

high catalytic activity are required for low temperatures

fuel cells to compensate the low efficiency of the kinetic

process [10, 11].

It has been claimed that by alloying platinum with

certain transition metals M (M = Co, Fe, Cr, Ni) it is

possible to improve the Pt activity for the ORR due to

the cocatalysts causing a downward shift of the Pt

d-band center with respect to the Fermi level, thus

diminishing the adsorption strength of the oxygen spe-

cies. The improvement for the ORR has been demon-

strated with PtM alloys prepared by different procedures

[11–13].

Moreover, in DMFCs, problems related to catalytic

activity of the cathode are more severe since methanol

competes with oxygen for the active Pt sites and a mixed

potential emerges from the simultaneous occurrence of the

ORR and MOR reactions. Different Pt base nanoparticles

have been proposed and employed for ORR in presence of

methanol [14–16]. In Ref. [17], Ocón et al. claimed that a

methanol tolerant catalyst, namely PtCoRu/C, can be

obtained in an operating DMFC after Ru dissolution of a

PtRu anode and its subsequent deposition on the PtCo/C

cathode.

The use of different procedures to synthesize metal

nanoparticles supported on carbon of high surface area

plays an important role in the development of fuel cell

technology. Special attention should be paid not only on

the catalyst composition but also on the synthesis method

employed in their preparation [12, 18].

The aim of this work is to synthesize by different routes

carbon supported nanoparticles of PtCo/C and PtCoRu/C as

methanol tolerant oxygen reduction catalysts and to discern

the causes of improvements in their methanol tolerance.

2 Materials and methods

2.1 Preparation and characterization of the catalysts

Carbon supported nanoparticles (NP) of PtCo/C and

PtCoRu/C were prepared by using either (i) the classic

ethylene glycol method (EG) [19] and a variation with

microwave-assisted heating (MW) or (ii) the alloy method

(AM), in line with Gonzalez et al. [20].

2.1.1 Classic EG and microwave heating assisted MW

methods

In the classic EG, ethylene glycol is the reducing agent and

dissolving medium where the synthesis occurs. Summa-

rizing, ethylene glycol solutions of each metal precursor,

H2PtCl6, CoCl2 and RuCl3, in the required amount were

added in a suspension of a calculated amount of func-

tionalized carbon black support in ethylene glycol, under

vigorous stirring. The mixture was stirred for 4 h under N2

bubbling. Once the stirring was finalized, NaOH solution in

ethylene glycol was added to the mixture to adjust its pH

around 13. In order to achieve complete reduction of the

metallic precursors, the mixture was refluxed at 197 �C for

2 h also under N2 bubbling. The solid was isolated by low

pressure filtering, then thoroughly rinsed with water and

dried at 70 �C in an oven for 12 h. The synthesized

electrocatalysts were labeled as PtCo/C EG and PtCoRu/C

EG. Additionally, functionalization of the support was

achieved after oxidative treatment in 70 % HNO3 solution

at 140 �C for 2 h, according to the work of Bonesi et al.

[21].

In the ethylene glycol microwave-assisted heating

procedure (MW), PtCoRu/C MW was prepared following

the method described by Almeida et al. [22]. Following

this method, a calculated amount of the different pre-

cursors was added in ethylene glycol and stirred for

approximately 5 min in an ultrasonic bath, and a mea-

sured amount of carbon Vulcan� XC-72R powder was

then added. The mixture was kept under ultrasound

stirring for 30 min, until a homogeneous suspension was

obtained. This suspension was then placed in a common

household microwave oven (Likon, 2.45 GHz, 700 W)

and irradiated for 70 s. Finally, the suspension was fil-

tered and washed repeatedly with water, and then dried

in an oven at 80 �C for 12 h.

2.1.2 Alloy method

In the AM, the initial reactant was a given quantity of

E-TEK Pt/Vulcan XC-72R, which was dispersed in water

and ultrasonically stirred for 15 min. The initially acidic

pH was shifted to 8 by adding an ammonium hydroxide

solution. At this point, the required amount of CoCl2, in

order to obtain the compositions listed in Table 1, was

put into the mixture and then, a HCl solution was added

to reach a pH of 5.5. Stirring continued for 1 h and then

the solid was isolated by filtering, rinsing with water

repeatedly and finally drying at 70 �C in an oven for

12 h. After that, the powder was heat-treated at 900 �C

in a H2/N2 atmosphere for 1 h to form a binary alloy

catalyst. The synthesized electrocatalysts were labeled as

PtCo/C AM.

2.2 Catalysts characterization

2.2.1 Physicochemical characterization

All synthesized materials were studied in terms of

composition and surface chemistry by using energy-
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dispersive X-ray spectroscopy (EDS) and X-ray photo-

electron spectroscopy (XPS).

For the surface composition analysis via XPS a standard

Al/Mg twin anode X-ray gun and a hemispherical elec-

trostatic electron energy analyzer were used. For the ana-

lysis, the powdered samples were spread on an adhesive

carbon tape and the C 1 s peak at 284.5 eV was used as

reference to calibrate the binding-energy scale.

2.2.2 Electrochemical characterization

The electrochemical characterization was accomplished

by employing a standard three-electrode electrochemical

cell. We used as a working electrode a rotating disk

electrode (RDE) of glassy carbon (0.071 cm2 geometric

area) covered with a thin layer of catalyst powder (28

lg cm-2 Pt loading), attached by a Nafion� thin film

[23]. A Pt foil of 1 cm2 geometric area was used as

counter electrode and a saturated calomel electrode

(SCE) as reference electrode. In this work, we refer all

potentials to that of the reversible hydrogen electrode

(RHE). The supporting electrolyte used was 0.5 M

H2SO4 and the working solution was an O2 saturated

0.5 M H2SO4 solution containing different CH3OH con-

centrations. The electrochemical experiments were con-

ducted at room temperature. Prior to all experiments, we

cycled the potential of the working electrode between

0.05 and 1.10 or 0.8 V (depending on the catalyst

composition) at a rate of 0.1 Vs-1 in a N2 purged 0.5 M

H2SO4 solution in order to get a stable voltammetric

profile.

The electrochemically active surface area of each

working electrode, listed in Table 1, was then determined

by integrating the charge required for stripping a pre-

adsorbed monolayer of CO at 0.05 V, taking into account

that 420 lC is equivalent to 1 cm2.

3 Results and discussion

3.1 Physicochemical characterization

3.1.1 EDS analysis

The atomic percentages of the components in PtCo/C and

PtCoRu/C EG, MW and AM catalysts, listed in Table 1,

were determined by EDS. It can be highlighted that EDS is

a surface technique that goes through\1 lm whereas XPS

measures the elemental composition of the surface from the

top to 4 nm in depth.

3.1.2 XPS analysis

The surface composition of the catalysts was determined

measuring the Pt 4f, Co 2p and Ru 3d photoelectron peaks.

The XPS spectra of Pt based catalysts Pt5Co/C AM, Pt5Co/

C EG, PtCoRu/C MW and PtCoRu/C EG obtained in the

region of Pt 4f core level, are shown in Fig. 1a, b, c and d,

respectively. Each of these elemental spectra is composed

of two identical peaks that correspond to the spin–orbit

split 4f 7/2 and 4f 5/2 of Pt. We identified up to three

components in each spectrum which are ascribed to ele-

mental Pt(0) and Pt-oxides species, presumably PtO and

PtO2.

For the Pt5Co/C AM in Fig. 1a, we identified a single

component at binding energies, BE = 71.2 eV, ascribed to

Pt(0). As expected the AM catalysts submitted to an H2/N2

atmosphere at high temperature allow getting metallic Pt

[20]. For the Pt5Co/C EG catalyst in Fig. 1b, we identified

two additional components to Pt(0), at 72.3 and 74.3 eV

ascribed to PtO and PtO2 [24]. For the PtCoRu/C MW

catalyst in Fig. 1c and for the PtCoRu/C EG catalyst in

Fig. 1d, we also identified two additional components to

Pt(0), at BE = 73.3 eV and at BE = 75.4 eV. Here it is

Table 1 Summary of the properties of the investigated catalysts

Synthesis method Pt/Co at. ratioa Pt/Ru at. ratioa Catalyst label SAb [mA cm-2] MAc [AmgPt
-1] ECSAd [m2gPt

-1] Onset ORRe [V]

EG 5.2 Pt5Co EG 0.18 0.07 40.06 0.837

AM 5.3 Pt5Co AM 0.24 0.19 79.79 0.867

EG 10.1 Pt10Co EG 0.12 0.06 49.86 0.842

AM 10.4 Pt10Co AM 0.33 0.30 90.66 0.875

EG 3.1 1.1 PtCoRu EG 0.11 0.05 44.68 0.829

MW 8.3 1.2 PtCoRu MW 0.19 0.11 58.92 0.859

a Determined from EDS analysis
b Specific activity for ORR in an O2 saturated 0.5 M H2SO4 calculated at 0.8 V
c Mass activity for ORR in an O2 saturated 0.5 M H2SO4 calculated at 0.8 V
d Electrochemically active surface area
e Onset potential for ORR determined from Fig. 2
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worth noting that extra components are shifted apart 1 eV

to more bounded states in both PtCoRu/C with respect to

the nominal values of PtO and PtO2. This shift has been

already reported in the literature [25, 26]. Jung et al. [27]

analyzing Pt-oxide thin films in the region of Pt 4f core

level have also reported a component at 73.3 eV ascribed

to the formation of an intermediate oxide, probably Pt2O3-

like.

The contribution to the Pt 4f raw spectra of the peaks

corresponding to the Pt-oxides is 14 % in the PtCoRu/C

synthesized by MW method and in those catalysts obtained

by the EG method reached almost 40 % as shown in

Table 2.

In regard to Ru, the XPS spectra of PtCoRu/C catalysts

were analyzed in the region of the Ru 3d core-level peak,

which partially overlaps with the C 1 s core-level peak.

Each of these elemental spectra is composed of two iden-

tical peaks for Ru, which correspond to the spin–orbit split

3d 5/2 and 3d 3/2 (with relative intensities 3:2), and for C a

single peak 1 s, for each component. For PtCoRu/C MW

and PtCoRu/C EG the XPS spectra of Ru are shown in

Fig. 1e and f respectively. We identified a single compo-

nent of Ru 3d at BE = 281 eV for the PtCoRu/C MW

catalyst, and at BE = 281.5 eV for the PtCoRu/C EG

catalyst (the existence of only a single component was also

corroborated by measuring the Ru 3p peak, not shown).

The Ru 3d peaks for the PtCoRu/C MW catalyst can be

assigned to RuO2 (280.8 eV), and although in the PtCoRu/

C EG catalyst it is shifted from the bulk binding energy of

RuO2, it could still be assigned to it due to final state

effects because of the small size of NP [28]. This final state

effect produces binding energy shifts to more bound states.

This core level shifts of small metallic NP over poor

conducting substrates comes from the positive charge that

remains in the NP once created the electron–hole pair

during the photoemission process, as this charge is not

neutralized in times relevant to photoemission due to the

weak NP-substrate interaction.

Besides the single Ru 3d component, in Fig. 1e and f,

several C 1 s components are plotted. The XPS peak

deconvolution of C 1 s shows four single peaks, at ca.

284.5 eV, 287 eV, 288.5 eV and 291 eV, which could be

assigned according to increasing binding energy values:

C=C (284.45 eV) and C–C (285.3 eV) for the signal at

284.5 eV; C–O (286.9 eV) and [C=O (287.2 eV) for the

signal at 287 eV; –COO (288.96 eV) for the peak at

288.5 eV; and ester group (292.3 eV) for the peak at

291 eV [29, 30].

The Co 2p XPS spectra (not shown) of the synthesized

catalysts exhibit peaks with binding energies that can be

assigned to Co (0) (778.3 eV), Co(OH)2 (781 eV), and

CO3O4 or CoO at (780.3 eV) [24].

Fig. 1 XPS spectra of Pt 4f from a Pt5Co/C AM b Pt5Co/C EG

c PtCoRu/C MW d PtCoRu/C EG and of Ru 3d from e PtCoRu/C

MW and f PtCoRu/C EG

Table 2 XPS determined percentage (% wt) of metallic Ptand Pt-

oxides

Catalyst Metallic Pt [% wt] Pt-oxides [% wt]

Pt5Co/C AM 100 0

Pt10Co/C AM 100 0

PtCoRu/C MW 86 14

PtCoRu/C EG 65 35

Pt10Co/C EG 66 34

Pt5Co/C EG 62 38
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In all cases the spectra were fitted using a Voigt function

for each peak plus a Shirley-type background. The total

fitted intensities along with the experimental ones are

shown in each spectrum.

3.2 Electrochemical characterization

To assess the activity for ORR we recorded polarizations

curves at different rotation rates between 1.0 and 0.2 V

scanning the working electrode potential at a rate of

0.005 Vs-1 (LSV). The current densities of the polariza-

tion curves shown in this work were calculated taking into

account the geometric area of the electrode. The back-

ground current was measured by running the polarization

curves under identical conditions as the LSV for ORR,

under N2-purged 0.5 M H2SO4 solution. This background

current was subtracted from the experimental ORR current

to eliminate any contributions of capacitive current. Typi-

cal polarizations curves for ORR on Pt10Co/C AM and EG,

Pt5Co/C AM and EG, PtCoRu/C EG and PtCoRu/C MW

electrodes at a rotating disc rate x = 2,000 rpm are shown

in Fig. 2a, b and c, respectively. In order to determine the

electrocatalytic activity of each electrode, the current val-

ues of the polarization curves for the ORR were used to

calculate according to Koutecky- Levich the kinetic current

at E = 0.8 V. The specific activity (SA) and mass activity

(MA) values of the tested electrode are listed in Table 1. It

is notice, that EG catalysts exhibit lower MA and ECSA

values than those of AM and MW catalysts. The reason of

this behavior can be the smaller amount of metallic Pt in

EG catalysts. Further investigation would be necessary to

fully understand these results. The onset potential, at which

the current for oxygen reduction is first observed, was

determined by the point of intersection of two lines, one

drawn extending the baseline (i.e. from 1 to 0.9 V) and the

other extending the increasing linear portion of ORR curve,

the onset potential for each catalysts is shown in Table 1.

The superposition of the ORR polarization curves con-

firmed that the catalysts exposed to a reducing atmosphere,

AM catalysts, alongside with MW catalyst have the highest

onset potential for the ORR, due to the same reason written

right above, i.e. the smaller amount of metallic Pt in EG

catalysts.

To find out how the composition and the synthesis method

of the electrode materials influence the methanol tolerance,

we measured the polarization curves in O2 saturated 0.5 M

H2SO4 ? 0.1 M CH3OH at x = 2,000 rpm with the dif-

ferent catalysts. We show in Fig. 3a the polarization curves

for the ORR employing Pt10Co/C EG and AM and in Fig. 3b

those on Pt5Co/C EG and AM. It is clear from the figures that

the AM catalysts show less methanol tolerance [31] and that

the amount of Co has also an influence on methanol toler-

ance, i.e. higher Co amount diminishes the MOR [32]. From

the electrocatalytic behavior of the tested electrodes, we

conclude that the best catalyst for ORR is not the most tol-

erant to methanol presence. Polarization curves for the ORR

on PtCoRu/C EG and PtCoRu/C MW, which are shown in

Fig. 3c, exhibit a remarkable high methanol tolerance. It

seems that the presence of Ru in the catalyst has contributed

to increase the alcohol tolerance, XPS results identify a

unique species RuO2, which has been found to be less active

for methanol oxidation [33, 34].

It is important to point out that the requirements

demanded for a suitable cathode catalyst are: (i) good

catalytic behavior for the ORR and (ii) high tolerance to

methanol presence. Therefore, not only the synthesis

method but the composition of the catalysts are important

in order to obtain a suitable cathode catalyst. In Fig. 4a, for

Pt10Co/C EG, and in Fig. 4b, for PtCoRu/C EG the

polarization curves for ORR in the presence of different

amount of methanol are shown. Notice that Pt10Co/C EG,

despite being obtained by the same method that PtCoRu/C

EG, shows that higher concentrations of methanol makes it

less resistant. To confirm these results, the following

investigation on the electrocatalytic behavior of PtCoRu/C

and PtCo/C catalysts for methanol oxidation, in a N2 sat-

urated 0.1 M CH3OH ? 0.5 M H2SO4 solution, was car-

ried out by cyclic voltammetry. In Fig. 5 are shown the

current density-potential profiles on Pt10Co/C AM and

PtCoRu/C EG, the current densities are given on the basis
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-4
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-1

0

E / V vs. RHE
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Fig. 2 Polarization curves for ORR in O2 saturated 0.5 M H2SO4 at

v = 0.005 Vs-1 and x = 2,000 rpm on Pt10Co/C AM ( ), Pt5Co/C

AM ( ), PtCoRu/C MW ( ), Pt5Co/C EG ( ), Pt10Co/C EG ( )

and PtCoRu/C EG ( ) catalysts. (Color figure online)
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of the electrochemically active area. It can be seen that in

the increasing potential scan (forward scan), the onset

potential for methanol oxidation on PtCoRu/C EG has

almost the same value as the one on Pt10Co/C AM (onset

potential ca. 0.36 V). In the decreasing potential scan

(backward scan) the methanol oxidation peak emerges

immediately after the surface oxide reduction happens. In

particular, for the PtCoRu/C EG catalyst, the methanol

oxidation peak in the reverse scan is located at lower

potential value, i.e. 0.50 V, in comparison to 0.65 V for

Pt10Co/C, indicating a lower electrocatalytic reactivity of

the PtCoRu/C EG catalyst for this alcohol oxidation. From

this analysis we conclude that PtCoRu/C EG is not a

suitable catalyst for methanol oxidation.

Taking into account the curves shown in Fig. 3, we

define the term relative methanol tolerance percentage

(RMT %) of the prepared catalysts, considering the ratio of

the difference between the current density for ORR with

and without methanol at 0.7 V for any catalyst and the

same difference on the catalysts with the highest activity

for MOR (i.e. Pt10Co/C), the calculated ratio for each

catalyst is then subtracted from 1 and multiplied by 100.
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Fig. 3 Polarization curves for ORR in O2 saturated 0.5 M H2SO4 at

v = 0.005 Vs-1 and x = 2,000 rpm without and with 0.1 M CH3OH

a on Pt10Co/C AM without CH3OH ( ) or with 0.1 M CH3OH ( )

and on Pt10Co/C EG without CH3OH ( ) or with 0.1 M CH3OH

( ), b on Pt5Co/C EG without CH3OH ( ) with 0.1 M CH3OH ( )

and on Pt5Co/C AM without CH3OH ( ) or with 0.1 M CH3OH ( )

and c PtCoRu/C EG without CH3OH ( ) or with 0.1 M CH3OH ( )

and on PtCoRu/C MW without CH3OH ( ) or with 0.1 M CH3OH

( ). (Color figure online)
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Fig. 4 Polarization curves for

ORR in O2 saturated 0.5 M

H2SO4 with different CH3OH

concentrations at

v = 0.005 Vs-1 and

x = 2,000 rpm a on Pt10Co/C

EG without CH3OH ( ), with

0.01 M CH3OH ( ), with

0.05 M CH3OH ( ), with 0.1 M

CH3OH ( ), with 0.5 M

CH3OH ( ) and b on PtCoRu/

C EG without CH3OH ( ), with

0.01 M CH3OH ( ), with

0.05 M CH3OH ( ), with 0.1 M

CH3OH ( ), with 0.5 M

CH3OH ( ). (Color figure

online)
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The RMT % of all catalysts are listed in Table 3. Notice

that the highest RMT % values correspond to PtCoRu/C

catalysts and the lowest value to PtCo/C AM catalysts.

4 Conclusions

• The AM and MW methods allow to get the best cata-

lysts for ORR.

• The AM method used to obtain suitable catalysts for

ORR worsens methanol resistance, in contrast to the

EG method.

• A higher Co amount in the catalyst composition

diminishes methanol oxidation.

• A strong effect on the methanol tolerance is achieved

by the addition of Ru in the catalyst composition.
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