
Abstract In isolated human umbilical vein (HUV), the
contractile response to des-Arg9-bradykinin (des-Arg9-BK),
selective BK B1 receptor agonist, increases as a function
of the incubation time. Here, we evaluated whether cy-
clooxygenase (COX) pathway is involved in BK B1-sen-
zitized response obtained in 5-h incubated HUV rings. The
effect of different concentrations of indomethacin, sodium
salicylate, ibuprofen, meloxicam, lysine clonixinate or
NS-398 administrated 30 min before concentration-re-
sponse curves (CRC) was studied. All treatments pro-
duced a significant rightward shift of the CRC to des-
Arg9-BK in a concentration-dependent manner, which
provides pharmacological evidence that COX pathway is
involved in the BK B1 responses. Moreover, in this tissue,
the NS-398 pKb (5.2) observed suggests that COX-2 path-
way is the most relevant. The strong correlation between
published pIC50 for COX-2 and the NSAIDs’ pKbs esti-
mated further supports the hypothesis that COX-2 metabo-
lites are involved in BK B1 receptor-mediated responses.
In other rings, indomethacin (30, 100 µmol/l) or NS-398
(10, 30 µmol/l) produced a significant rightward shift of
the CRC to BK, selective BK B2 agonist, and its pKbs
were similar to the values to inhibit BK B1 receptor re-
sponses, suggesting that COX-2 pathway also is involved
in BK B2 receptor responses. Western blot analysis shows
that COX-1 and COX-2 isoenzymes are present before
and after 5-h in vitro incubation and apparently COX-2
does not suffer additional induction.
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Introduction

In 1977, two mammalian bradykinin (BK) receptor subtypes
were proposed, B1 and B2 (Regoli et al. 1977). BK and the
decapeptide Lys-bradykinin (kallidin) are endogenous ag-
onists for BK B2 receptors. The cleavage of these peptides
by arginine carboxipeptidases produces selective BK B1
receptor agonists, des-Arg9-BK and des-Arg9-kallidin
(Marceau et al. 1998). BK B2 receptors are constitutively
expressed in a variety of tissues and mediate most of the
in vivo effects to kinins (Bathon and Proud 1991). On the
other hand, the BK B1 receptors are not present in any sig-
nificant amount in normal tissues and their expression is
often inducible rather than constitutive. BK B1 receptor-
mediated responses are up-regulated in a time- and pro-
tein synthesis-dependent process (Regoli et al. 1978;
Bouthillier et al. 1987; Sardi et al. 2000).

Molecular cloning has revealed the primary structures
of BK B1 (Menke et al. 1994) and BK B2 (McEachern et
al. 1991) receptors, and has identified them as members of
the G protein-coupled receptor family characterized by
seven membrane-spanning α-helices. The identity of G
protein subtypes linked to the BK B1 receptor is similar to
the ones coupled to BK B2 receptor (de Weerd and Leeb-
Lundberg 1997). Both BK B1 and B2 receptors are pri-
marily linked to polyphosphoinositide phospholipase C
activation. In rabbit vascular smooth muscle cells it has
been described that BK B1 receptors stimulate phos-
phatidylinositol hydrolysis leading to mobilization of in-
tracellular calcium. In addition, rabbit BK B1 receptors
appear to be coupled to phospholipase A2 pathway, which
releases the prostaglandin precursor, arachidonic acid (Tro-
pea et al. 1993; Schneck et al. 1994). On the other hand,
BK B2 stimulus has also been reported to cause arachi-
donic acid release via the rise in cytosolic free calcium
and the activation of phospholipase A2 that consequently
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increases prostanoid production in porcine tracheal
smooth-muscle cells (Tanaka et al. 1995). Furthermore,
either BK B1 or BK B2 receptors stimulation induces acti-
vation of cyclooxygenase (COX) pathway, leading to the
production of relaxing prostaglandins in mouse trachea
(Li et al. 1998).

Two forms of cyclooxygenase exist and can generate
prostaglandins from arachidonic acid: COX-1, which is
constitutively expressed in many cells, and COX-2, which
is inducible by a variety of stimuli. Both COX-1 and
COX-2 are integral membrane proteins that have been lo-
calized to the endoplasmic reticulum and nuclear mem-
branes (Otto et al. 1993; Morita et al. 1995).

In isolated human umbilical vein (HUV) the presence
of both BK B2 and BK B1 receptors has been previously
demonstrated using selective agonists and antagonists. In
this tissue, BK promotes a potent and effective vasocon-
strictor response and depends only on BK B2 receptor
stimulus (Sardi et al. 1997). On the other hand, the con-
tractile effect of des-Arg9-BK develops from an initial
null level and increases in magnitude as a function of the
in vitro incubation time and depends exclusively on BK
B1 receptor stimulation (Sardi et al. 1997). It has been
proposed that BK B1 receptor is induced under certain
pathophysiological conditions such as tissue injury, in-
flammation or during trauma tissue isolation and incuba-
tion (Marceau et al. 1998).

The aim of this study was to investigate whether COX
isoenzyme pathways are involved in contractile responses
mediated by BK B1 or BK B2 receptor stimulation in
HUV. Therefore, the effects of different non-steroidal an-
tiinflammatory drugs (NSAIDs) on BK B1 or BK B2 re-
ceptor-mediated contractile responses were evaluated in
this tissue.

Materials and methods

Preparation of tissues for tension measurements. Approximately
15–35 cm of human umbilical cords excised midway between the
placenta and infant were obtained from normal full-term deliver-
ies. Immediately, cords were placed in modified Krebs’ solution at
4°C of the following composition (expressed in mmol/l): NaCl
119, KCl 4.7, NaHCO3 25, KH2PO4 1.2, CaCl2 2.5, MgSO4 1.0,
EDTA 0.004, and D-glucose 11. The samples were placed onto
dissecting dishes containing Krebs’ solution and veins were care-
fully dissected free from Warthon’s jelly using micro-dissecting
instruments and cut into rings of approximately 3 mm width. The
preparations were suspended in 10-ml organ baths and stretched
with an initial tension of 3–5 g as described previously (Errasti et
al. 1999). The time from delivery until the tissue was set up in the
organ bath was approximately 3 h.

Changes in tension were measured with Grass isometric trans-
ducers (FT-03C; Grass Instruments, Quincy, Mass., USA) and dis-
played on a Grass polygraph (model 7D). During the incubation
period, Krebs’ solution was maintained at 37°C and at pH 7.4 by
constant bubbling with 95% O2/5% CO2. Bath solution was re-
placed every 15 min. After 70 min of equilibration, each prepara-
tion was contracted with 40 mmol/l KCl to test its functional state.
Optimal passive tension was adjusted throughout the equilibration
period.

Des-Arg9-BK and BK concentration-response curves in presence
of COX inhibitors. After 5-h equilibration period cumulative con-

centration-response curves were obtained for des-Arg9-BK or BK,
BK B1 or BK B2 receptor-selective agonists, respectively. Only
one agonist concentration-response curve was performed on a sin-
gle ring. In all experiments, tissues were incubated with captopril
(1 µmol/l) 30 min before BK receptor stimulation, to avoid peptide
degradation by kininase II (angiotensin-converting enzyme). Some
HUV rings were exposed to lysine clonixinate (100 µmol/l and
300 µmol/l), ibuprofen (100 µmol/l and 300 µmol/l), sodium sali-
cylate (1 mmol/l), indomethacin (10, 30 and 100 µmol/l), meloxi-
cam (3 µmol/l and 10 µmol/l), NS-398 (10 µmol/l and 30 µmol/l),
30 min before cumulative concentration-response curves were
constructed. At the end of each experiment, the BK B2 receptor ag-
onist BK (0.1 µmol/l) or serotonin (10 µmol/l) was applied to de-
termine the tissue maximal response.

Western-blot analysis of COX-1 and COX-2. HUVs were cut and
the vein was carefully dissected free of surrounding tissues and
mechanically denuded of endothelium. Tissues were homogenized
in ice-cold buffer (50 mmol/l, Tris) with a Polytron homogenizer
(Kinemateca, Switzerland). Microsomal fractions were obtained as
previously described (Paz et al. 1999). Protein concentration was
determined by the Bradford (1976) method using a Bio-Rad Kit.
Microsomes were boiled in Laemmli sample buffer (Laemmli
1970) and microsomal protein (80 µg) was loaded to a 10% SDS-
polyacrylamide gel electrophoresis. The resolved proteins were
electrotransferred onto nitrocellulose membranes as described by
Towbin et al. (1979), and stained briefly with Ponceau S to deter-
mine uniformity of electrophoretic transfer. Membranes were
blocked in Tris-buffered saline (TBS) containing 0.5% Tween 20
and 1% BSA and then incubated overnight with 1:1000 dilution of
either COX-1 or COX-2 rabbit polyclonal antibodies. Membranes
were washed five times in TBS containing 0.5% Tween 20 prior to
incubation with alkaline phosphatase-conjugated goat anti-rabbit
IgG for 1 h. Immunoreactive bands were detected by enhanced
chemiluminescence.

Chemicals and solutions. Ibuprofen, indomethacin and NS-398 
(N-(2-cyclohexyloxy-4-nitrophenyl)-methanesulfonamide) were pur-
chased from Biomol Research Laboratories (Plymouth Meeting,
Pa., USA); BK, captopril and sodium salicylate were from Sigma
Chemical (St. Louis, Mo., USA); des-Arg9-BK was obtained from
Bachem Bioscience (Torrance, Calif., USA); serotonin creatinine
sulfate complex was purchased from Research Biochemicals
(Natick, Mass., USA). COX-1 and COX-2 rabbit polyclonal anti-
bodies were from Cayman Chemical (Ann Arbour, Mich., USA).
Lysine clonixinate was a generous gift from Roemmers (Argentina)
and meloxicam was donated by Boehringer Ingelheim (Argentina).
All concentrations of drugs are expressed as final concentrations in
the organ bath. Ibuprofen, indomethacin, meloxicam and sodium sali-
cylate were made up in ethanol (99.5%) on the day of use. Stock
solutions of peptides, serotonin and captopril were made up in dis-
tilled water, stored frozen in aliquots and thawed and diluted daily.
NS-398 was dissolved in dimethylsulfoxide (DMSO) and stored at
–20°C. The final concentrations of ethanol and DMSO in the bath
solutions were always less than 1%. Lysine clonixinate was pre-
pared daily in alkaline solution. Control trials were performed in
the presence of the corresponding concentration of ethanol or
DMSO.

Expression of results and statistical analysis. All data are pre-
sented as means ± SEM. Responses are expressed as grams of de-
veloped contraction. The pEC50 values, negative logarithms of the
agonist concentration that produces 50% of the maximum, were
determinated using ALLFIT, a nonlinear curve-fitting computer
program (De Lean et al. 1978).

The NSAIDs’ blocking potencies (pKb) were estimated accord-
ing to:

pKb=log{(DR-1)/[NSAID]} (1)

where DR is the concentration ratio between the EC50 value in the
presence and absence of NSAID. Only the lowest concentration of
NSAID that shifts the curve to the right without affecting its max-
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Fig.1 Concentration-effect curves to des-Arg9-BK on control
HUV rings (■ , A n=8, B n=7, C n=8, D n=5, E n=7, F n=6) and
on tissues exposed to NSAIDs for 30 min. Tissues were exposed
to: indomethacin (A 30 µmol/l, ❏ , n=5; 100 µmol/l, ● , n=5);
sodium salicylate (B 1 mmol/l, ❏ , n=7); ibuprofen (C 100 µmol/l,
❏ , n=5; 300 µmol/l, ● , n=6); meloxicam (D 10 µmol/l, ❏ , n=5);
lysine clonixinate (E 100 µmol/l, ❏ , n=7; 300 µmol/l, ● , n=4) or

NS-398 (F 10 µmol/l, ❏ , n=6; 30 µmol/l, ● , n=4). Points represent
the mean of n determinations made after the 5-h equilibration pe-
riod; vertical lines show SEM. Responses are expressed in grams
of developed contraction. Abscissa scale: –log10 of molar concen-
tration. *,✝ Significant differences (P<0.05) between pEC50 and
maximal response, respectively



imal response was used for this calculation. The pKb estimates ob-
tained for the different NSAIDs in the HUV were plotted against
previously published pIC50 of these NSAIDs for COX-1 or COX-2
(Futaki et al. 1994; Pallapies et al. 1995; Frölich 1997). Linear re-
gression was used to correlate pKb and IC50 values. Statistical
analysis was performed by means of paired Student’s t-test. P-val-
ues lower than 0.05 were taken to indicate significant difference
between means.

Results

Effect of COX inhibition on BK B1 receptor-mediated
response in isolated HUV

The possible involvement of COX products on the des-
Arg9-BK contractile response has been assessed by testing
the effect of NSAIDs with different relative COX-1 and
COX-2 selectivity. All the concentration-response curves
to the selective BK B1 receptor agonist were performed
after 5 h of incubation. HUV rings were exposed to
NSAIDs 30 min before the construction of the curves.
The effect of ibuprofen (100, 300 µmol/l), meloxicam 
(10 µmol/l), sodium salicylate (1 mmol/l) or lysine
clonixinate (100, 300 µmol/l), which inhibit both COX-1
and COX-2 with similar potency, was evaluated. More-
over, HUV rings were treated with the COX-1-selective
inhibitor, indomethacin (10, 30, 100 µmol/l) as well as the
COX-2-selective inhibitor, NS-398 (10, 30 µmol/l). All
treatments, except indomethacin 10 µmol/l, produced a
significant rightward shift of the contractile response to
des-Arg9-BK (Fig.1; Table 1). Furthermore, some NSAID
concentrations diminished the maximal response to this
selective BK B1 receptor agonist (Fig.1; Table 1), but did
not modify the maximal response to the selective BK B2
receptor agonist BK (0.1 µmol/l) at the end of each exper-
iment (control: 15.8±2.1 g; indomethacin 100 µmol/l:
15.5±2.6 g, n=5; control: 18.5±1.4 g; ibuprofen 300 µmol/l:

17.2±2.2 g, n=6; control: 15.8±0.5 g; lysine clonixinate
300 µmol/l: 14.5±1.7 g, n=4).

The NSAIDs’ potencies (pKb) estimated for their antag-
onist effects on the BK B1 receptor-mediated responses in
HUV are shown in Table 2. Figure 2 shows the correlation
between NSAIDs’ pKb in HUV and previously published
pIC50 for COX-1 or COX-2. The scattergrams for COX-1
and COX-2 show a clear relationship between the present
functional data (pKb) and COX-2 affinities (COX-1: r2=
0.276, P=0.28; COX-2: r2=0.841, P<0.05; Fig.2).

Effect of COX inhibition on BK B2 receptor-mediated
response in isolated HUV

In order to evaluate the possible involvement of prostanoids
on BK B2 receptor contractile responses, the effects of in-
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Table 1 Effect of NSAIDs on
the contractile responses to
des-Arg9-BK or BK in HUV
(NC not calculated)

*Significant differences be-
tween treated and control
paired tissues (P<0.05)

pEC50 Maximal response (g) n

Control Treated Control Treated

Des-Arg9-bradykinin
Indomethacin (10 µmol/l) 7.29±0.18 7.14±0.13 14.8±2.3 11.9±1.4 5
Indomethacin (30 µmol/l) 7.43±0.06 7.00±0.15* 14.7±1.1 13.2±2.0 5
Indomethacin (100 µmol/l) 7.45±0.20 NC 13.5±2.0 5.3±3.1* 5
Sodium salicylate (1 mmol/l) 7.40±0.08 6.97±0.10* 16.6±1.5 14.0±2.3 7
Ibuprofen (100 µmol/l) 7.43±0.06 6.90±0.11* 13.8±1.2 13.0±2.9 5
Ibuprofen (300 µmol/l) 7.36±0.07 NC 14.9±1.5 9.4±3.1* 6
Meloxicam (10 µmol/l) 7.62±0.04 7.16±0.10* 17.7±1.0 14.5±2.6 5
Lysine clonixinate (100 µmol/l) 7.44±0.06 7.01±0.15* 16.1±1.2 15.6±1.6 7
Lysine clonixinate (300 µmol/l) 7.31±0.06 NC 15.1±2.1 4.1±2.4* 4
NS-398 (10 µmol/l) 7.43±0.11 7.04±0.12* 16.2±1.6 14.0±3.0 6
NS-398 (30 µmol/l) 7.47±0.06 6.95±0.07* 16.9±2.4 12.8±2.6 4

Bradykinin
Indomethacin (30 µmol/l) 9.59±0.07 9.30±0.10* 15.8±2.0 15.7±1.8 7
Indomethacin (100 µmol/l) 9.59±0.07 8.74±0.16* 15.8±2.0 15.6±2.6 7
NS-398 (10 µmol/l) 9.54±0.09 9.50±0.11 15.6±2.3 15.9±2.0 6
NS-398 (30 µmol/l) 9.61±0.06 9.08±0.10* 16.6±1.3 16.7±2.5 6

Table 2 NSAIDs’ potencies for their blocking actions on BK B1
or BK B2 responses in HUV and their previously published pIC50
for COX-1 and COX-2 (ND not determined)

pKb pIC50

BK B1 BK B2 COX-1 COX-2
receptor receptor

Indomethacin 4.8 4.5 7.6a 5.8a

Sodium salicylate 3.2 ND 3.6a 3.1a

Ibuprofen 4.4 ND 5.3a 4.1a

Meloxicam 5.3 ND 6.7a 6.8a

Lysine clonixinate 4.2 ND 5.2b 4.2b

NS-398 5.2 5.0 <4.0b 5.4b

aBovine aortic endothelial cells were used for determining COX-1
activity, J774.2 macrophages induced with lipopolysaccharide to
express COX-2 (Frölich 1997)
bPurified enzyme preparations from sheep seminal vesicles (COX-1)
and sheep placenta (COX-2; Futaki et al. 1994; Pallapies et al.
1995)



domethacin (30 µmol/l and 100 µmol/l) or NS-398 
(10 µmol/l and 30 µmol/l) were studied. When HUV rings
were exposed to indomethacin (30 µmol/l and 100 µmol/l)

or NS-398 (30 µmol/l), a significant rightward shift of the
concentration-response curves to BK was observed with-
out affecting the maximal response (Fig.3; Table 1). The
NSAIDs’ potencies (pKb) estimated for their inhibitory ef-
fects on the BK B2 receptor-mediated responses in HUV
are shown in Table 2.

COX-1 and COX-2 expression in isolated HUV

HUV expresses both COX-1 and COX-2 proteins as
shown by Western blot analysis (Fig.4). COX-1 and
COX-2 proteins were measured before (t=0 h) and after a
prolonged in vitro incubation (t=5 h). Figure 4 suggests a
decrease of COX-1 as well as COX-2 proteins at 5-h in-
cubation period of the tissues. Antibodies against COX-1
or COX-2 identified bands of approximately 70 kDa in
both experimental conditions.

Discussion

In the isolated HUV, we have previously demonstrated
that contractile response to des-Arg9-BK, selective BK B1
receptor agonist, increases as a function of the in vitro in-
cubation time (Sardi et al. 1997). The BK B1 receptors of
this tissue behave as their counterparts in rabbit vascular
tissues since they are expressed de novo in a protein syn-
thesis-, trafficking- and glycosilation-dependent process
(Audet et al. 1994; Sardi et al. 1998, 1999). On the other
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Fig.2 Correlation plots com-
paring the NSAID potencies
(pKb) for their blocking effects
on the BK B1 receptor-medi-
ated response and previously
published pIC50 for COX-1 and
COX-2. The following NSAIDs
are shown: indomethacin 
(▲, 30 µmol/l); sodium salicy-
late (◆ , 1 mmol/l); ibuprofen
(■ , 100 µmol/l); meloxicam
(❏ , 10 µmol/l); lysine clonixi-
nate (▼, 100 µmol/l) and NS
398 (● , 10 µmol/l)

Fig.3 Concentration-effect curves to BK on control HUV rings
(■ , A n=7, B n=12) and on tissues exposed to indomethacin 
or NS-398 for 30 min. Tissues were exposed to: indomethacin 
(A 30 µmol/l, ❏ , n=7; 100 µmol/l, ● , n=7); NS-398 (B 10 µmol/l,
❏ , n=6; 30 µmol/l, ● , n=6). Points represent the mean of n deter-
minations made after the 5-h equilibration period; vertical lines
show SEM. Responses are expressed in grams of developed con-
traction. Abscissa scale: –log10 of molar concentration. *Signifi-
cant differences (P<0.05) between pEC50

Fig.4 COX-1 and COX-2 protein expression in HUV before and
after in vitro incubation. HUV ring lysates were prepared immedi-
ately post-dissection (t=0 h) and after a prolonged in vitro incuba-
tion (t=5 h). Equal amounts of tissue protein (80 µg/lane) were
separated on a 10% SDS-polyacrylamide gel and transferred to a
nitrocellulose membrane. Membranes were analysed by Western
blot using human COX-1- and COX-2-specific antibodies. Both
COX-1 and COX-2 bands migrated with an approximate molecu-
lar mass of 70 kDa. This figure is representative of three indepen-
dent experiments



hand, BK B2 receptors are present in a preformed and sta-
ble manner, and mediate a maximal vasoconstriction in
HUV (Altura et al. 1972; Gobeil et al. 1996; Sardi et al.
1997).

The second messenger pathways activated by BK B1
receptors are similar to those coupled to BK B2 receptors.
Both BK receptors are coupled to Gq/11 proteins to stimu-
late either phospholipase C or phospholipase A2 (Marceau
et al. 1998). In several tissues, it has been described that
BK B1 and B2 receptors stimulate phosphatidylinositol
hydrolysis leading to mobilization of intracellular cal-
cium. In addition, both receptors, through phospholipase
A2 pathway, release arachidonic acid and consequently in-
crease prostanoid production (Slivka and Insel 1988;
Farmer et al. 1991; Tropea et al. 1993; Delamere et al.
1994; Schneck et al. 1994; Pang and Knox 1997).

In HUV, indomethacin (10 µmol/l) does not affect the
concentration-response curve to the BK B1 receptor ago-
nist (see Table 1). This is in agreement with previously
published data reported by our group (Sardi et al. 1997).
However, when HUV rings were exposed to higher con-
centrations of indomethacin, a concentration-dependent
rightward shift of the contractile response to des-Arg9-BK
was observed. The BK B1 receptor-mediated responses
were antagonized by indomethacin with a pKb value of
4.8 (Table 2), that is a Kb value of 15.8 µmol/l. These re-
sults agree with previous reports showing that des-Arg9-
BK-induced effects in vitro could be mediated through the
production of arachidonic metabolites that induce smooth
muscle contraction (Meini et al. 1998; Bagate et al. 1999).
Furthermore, in different tissues, the BK B1 effects of des-
Arg9-BK are inhibited by indomethacin (Churchill and
Ward 1986; Drapeau et al. 1991; Li et al. 1998; Bagate et
al. 1999).

In the present study, a concentration-dependent right-
ward shift of the contractile response to des-Arg9-BK was
also obtained employing other NSAIDs with different
COX-1 and COX-2 selectivity, such as sodium salicylate,
ibuprofen, meloxicam, lysine clonixinate or NS-398. The
inhibitory effects evoked by all the NSAIDs employed in
this study on the responses mediated by the agonist des-
arg9-BK provide pharmacological evidence to support the
view that COX pathway is involved in the signal trans-
duction of the BK B1 receptor in HUV.

Furthermore, the results obtained with the COX-2-se-
lective inhibitor NS-398 suggest that COX-2 pathway is
the most relevant. Previous studies employing different
experimental conditions in various in vitro assay systems
have shown variable IC50 values for inhibition of COX-2
activity by the highly selective inhibitor compound NS-
398. These values range from 30 nmol/l to 3.8 µmol/l (Fu-
taki et al. 1994; Masferrer et al. 1994; Panara et al. 1995;
Miralpeix et al. 1997; Snyder et al. 1999). The results ob-
tained with NS-398 under our experimental conditions al-
low us to estimate an inhibitory affinity value (pKb: 5.2)
on BK B1 receptor-mediated responses. The NS-398 pKb
observed in HUV is similar to the inhibitory value on
COX-2 activity (IC50: 3.8 µmol/l, pIC50: 5.4) obtained
with this isoenzyme isolated from sheep placenta (Futaki

et al. 1994). On the other hand, in two different prepara-
tions (Baculovirus-expressed recombinant murine COX-1
enzyme; Masferrer et al. 1994; and COX-1 purified 
enzyme from ram seminal vesicles; Futaki et al. 1994)
NS-398 has not affected COX-1 activity at concentrations
as high as 100 µmol/l.

On the other hand, these results allow us to estimate an
inhibitory affinity value (pKb) for each NSAID on BK B1-
mediated responses and speculate about which COX iso-
form is involved in these responses. Although correlation
does not necessarily establish causality, our present results
showing a strong correlation between the previously pub-
lished pIC50 for COX-2 and the NSAIDs’ pKb estimates
further support the hypothesis that COX-2 metabolites are
involved in BK B1-mediated responses in HUV.

In several tissues BK B2 receptor-mediated contrac-
tions are associated with the production of metabolites of
arachidonic acid generated through COX pathway. COX
inhibitors reduce the contraction caused by BK in human
foetal placental veins (Tulenko 1981), rat mesenteric ar-
teries (Fasciolo et al. 1990; Weinberg et al. 1997), canine
saphenous vein (Marsault et al. 1997) and guinea-pig tra-
chea (Da Silva et al. 1995). In the present study, when
HUV rings were exposed to indomethacin (30 µmol/l and
100 µmol/l) or NS-398 (30 µmol/l), a significant right-
ward shift of the concentration-response curves to BK
was observed yielding NSAID potency values (pKb) that
are in agreement with previously published pIC50 for
COX-2. Therefore, in isolated HUV, COX-2 metabolites
seem to be involved in both BK B1 and B2 contractile re-
sponses.

In contrast to the constitutive expression of COX-1 in
many organs and tissues, COX-2 is an isoenzyme that is
characterized by absent or low expression under resting
conditions whose induction is dependent on stimulation
by cytokines, mitogens and a variety of tissue activators
(Vane et al. 1998). On the other hand, both isolated ar-
teries and veins of umbilical cords from full-term preg-
nancies produce great amounts of prostanoids (Bjoro et al.
1986). In endothelium-denuded HUV obtained from nor-
mal full-term deliveries, Western blot analysis shows that
both COX-1 and COX-2 proteins are expressed. Consid-
ering that COX-1 is a constitutive protein and its expres-
sion should not be decreased during the incubation period,
the apparently diminished expression of both isoenzymes
at 5 h could be related to a protein loss throughout the 
in vitro incubation in addition with the washouts every 
15 min. Moreover, the amount of COX-2 in HUV after 
5-h incubation period suggests that this enzyme does not
suffer an additional in vitro induction process. These re-
sults are in accord with previous studies in human foetal
membranes and myometrium. In these tissues, COX-1 ex-
pression is not significantly changed with labour, whereas
expression and activity of COX-2 are significantly in-
creased before and during term and pre-term labour in
myometrium, amnion, chorion and placenta (Slater et al.
1999; Sawdy et al. 2000).

In summary, our present results suggest that prostanoid
pathway participates in the BK B1-sensitized contractile
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responses in HUV, preferentially through COX-2 isoen-
zyme. Moreover, in this tissue the COX-2 pathway also
seems to be involved in BK B2 receptor-mediated re-
sponses. Furthermore, we have shown that both COX-1
and COX-2 are present in the isolated HUV before incu-
bation and, apparently, COX-2 does not suffer an addi-
tional up-regulation process with the 5 h of in vitro incu-
bation. Further experiments with simultaneous measure-
ments of endogenous eicosanoid synthesis in response to
des-Arg9-BK and BK, in the absence and presence of the
NSAIDs, should be performed to determine which
prostanoid(s) participate on the kinin responses in HUV.
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